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We investigate the statistics of rogue waves occurring in the inverse cascade of surface gravity7
wave turbulence. In such statistically homogeneous, stationary and isotropic wave fields, low-8
frequency waves are generated by nonlinear interactions rather than directly forced by a wave9
maker. This provides a laboratory realization of arguably the simplest nonlinear sea state,10
in which long-time acquisitions are performed and compared with theoretical models. The11
analysis of thousands of rogue waves reveals that some of their properties crucially depend12
on four-wave resonant interactions, large crests being for instance more likely than predicted13
by second-order models.14

1. Introduction15

As a result of cheaper computational storage and improved sensors, the number of surface16
waves included in databases of field measurements has soared over recent decades, going17
from fifty thousand at the end of the 1970s to hundreds of millions in 2020 (Forristall18
1978; Karmpadakis et al. 2020). They allow for systematic correlation studies with hindcast19
data, evidencing, for instance, that the probability of occurrence of rogue waves (RWs)20
is independent of the instantaneous wind speed and direction (Christou & Ewans 2014).21
These approaches are undoubtedly valuable as they single out the environmental conditions22
that favour the occurrence of RW but remain far from being exhaustive. For instance, the23
overwhelming majority of deep-water waves discussed in this context in Christou & Ewans24
(2014) share the same directions of swell and current, precluding the possible evidence25
of generation of RW by wave-current interactions, a phenomenon yet recognized as a26
promising outlook (Adcock & Taylor 2014; Toffoli et al. 2015; Ducrozet et al. 2021).27
More fundamentally, drawing a comprehensive theory of RWs based on these results is28
complicated by the lack of statistically stationary states: in practice, wave elevation time29
series from different storms are spliced into 20 min samples then recombined with others30
sharing similar proxies (e.g., wave mean frequency, mean direction of propagation, etc.),31
which unavoidably introduces a bias and explains why the distribution of rare events such as32
RWs is still discussed.33
To assess theoretical models, laboratory experiments nicely complement field experiments34

since they provide long-time statistics under controlled conditions. Most of them take place35
in long flumes in which unidirectional waves, also referred to as “long-crested waves”, are36
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randomly generated by a wave maker and propagate over more than a hundred meter before37
being damped by a beach. Such experiments typically report a transient overshoot of the38
kurtosis, of the spectral width and of the RW probability associated with the emergence of39
high-amplitude structures locally akin to the so-called Peregrine soliton (PS) (Onorato et al.40
2004, 2005, 2006; Shemer & Sergeeva 2009; Shemer et al. 2010b,a; Cazaubiel et al. 2018;41
Dematteis et al. 2019; Michel et al. 2020). This dynamics can be modelled by the nonlinear42
Schrödinger equation (NLSE), an exact solution of the latter, localized in both space and time,43
being the PS. The instability of a continuous wave train, called the “modulation instability”44
and generating RWs, can also be studied in long one-dimensional flumes and described by45
the NLSE, see, e.g., Lighthill (1965); Benjamin & Feir (1967); Lake et al. (1977); Melville46
(1982); Chabchoub et al. (2017) and references therein. All these results strongly depend47
on the directionality of the wave field, as shown both theoretically through the existence48
of transverse instabilities (Badulin & Ivonin 2012; Ablowitz & Cole 2021), numerically49
(Onorato et al. 2002; Soquet-Juglard et al. 2005; Gramstad & Trulsen 2007; Toffoli et al.50
2008) and experimentally (Waseda 2006; Onorato et al. 2009), questioning their relevance51
in accounting for in situ RWs.52
On the other hand, another set of experiments investigate the theory of weak wave53

turbulence (WWT), which predicts how energy spreads among random waves in nonlinear54
interaction (Falcon & Mordant 2022). They take place in basins with reflecting walls and55
deal with isotropic or at least strongly multidirectional waves (“short-crested waves”). Until56
recently, they essentially consisted of generating waves with a wavelength a fraction of the57
length of the basin and measuring the energy cascade toward small scales (Denissenko et al.58
2007; Lukaschuk et al. 2009; Nazarenko et al. 2010; Deike et al. 2015; Aubourg et al. 2017;59
Campagne et al. 2018). A breakthrough occurred in 2020, when it was evidenced that forcing60
multidirectional random waves of short wavelengths in such basins not only generates even61
shorter wavelengths but also larger ones, corresponding to the inverse cascade of WWT62
(Falcon et al. 2020). Such wave fields are valuable for the study of RWs since the waves63
involved in their dynamics are spontaneously generated by nonlinear interactions rather64
than directly forced by the wave-maker. Moreover, they verify isotropy, homogeneity and65
stationarity, and therefore offer a unique framework to confront theoretical predictions on66
RWs to a simplified though strongly nonlinear model of the sea state. The present study67
reports the statistics of thousands of RWs measured in such a state and investigates the effect68
of high-order nonlinearities.69

2. Experimental setup70

Experiments are carried out in the large-scale basin (40 m long × 30 m wide × 5 m71
deep) of Ecole Centrale de Nantes, France. At one end of the basin, 48 flaps of width72
ℓ = 0.62 m are driven independently by different realizations of white noise filtered in the73
[ 50−Δ 5 , 50 +Δ 5 ] frequency range, with 50 = 1.8 Hz the central frequency and Δ 5 = 0.2 Hz74
the bandwidth. Therefore, each flap generates independent waves of frequency around 5075
(wavelength _0 = 0.48 m, group velocity E6 = 0.43 m · s−1) with a directional spread that76
can be estimated as \ = 2× (_0/ℓ) = 88o. Three forcing amplitudes are considered, hereafter77
referred to, in increasing order, as Runs 1 to 3. At the other end, a solid vertical wall is built78
ahead of the usual beach. This setup is sketched in Fig. 1 Left.79
As reported in Falcon et al. (2020), a statistically stationary, homogeneous and isotropic80

nonlinear steady state is reached after a transient of up to twenty minutes. The general81
picture is as follows: during this transient, the waves generated at 50 by the flaps travel over82
nearly 70 times the length of the basin (20 min/E6 = 2.8 km). As they propagate, nonlinear83
effects such as four-wave resonant interactions and very steep structures spread energy in all84
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Figure 1: Left: Experimental setup showing the 48 flap wave generator, the end wall and
the 23 probes. Probes 1 and 2 are used to verify the wave maker behaviour and are not
included in the data analysis. Right: Photograph of a typical wave field (Run 3, the

horizontal field of view is approximately one metre).

directions. Some of these strongly nonlinear effects visible from the shore are found to occur85
homogeneously in the basin, e.g. capillary waves generated by large gravity waves. Note that86
white capping is not observed, see Fig. 1 Right.87
The surface elevations {[8 (C)}8=1...23 are recorded by 23 resistive probes of vertical88

resolution 0.1 mm and frequency resolution 100 Hz during 27 to 30 hours depending on the89
run. These measurements can be used to verify the claims of stationarity, homogeneity and90
isotropy. Stationarity is confirmed through the time evolution of statistical measurements of91
the wave field, e.g. the standard deviation of surface elevations computed over one minute92
samples, and is achieved after up to twenty minutes, see figures in Falcon et al. (2020). The93
transients are not investigated in this study and only measurements performed in the steady-94
state regimes are hereafter discussed. All probes are found to measure a similar standard95
deviation of surface elevation up to a maximum relative difference of 10%: homogeneity is96
closely achieved, and to remove the small remaining bias each signal is normalized by the97
standard deviation of the corresponding probe. Isotropy is the most challenging assumption98
to test since it cannot be investigated from a single elevation signal. The cross-correlation99
between pairs of elevation signals is therefore introduced. For each run, it is computed as100

'8, 9 (g) =
〈[8 (C)[ 9 (C + g)〉√
〈[8 (C)2〉〈[ 9 (C)2〉

, (2.1)101

where 〈·〉 denotes a temporal averaging. Over all runs, all lags g and all probes 8 ≠ 9 , |'8, 9 |102
remains less than 0.2 and the probes are therefore largely uncorrelated, as expected from103
their large spatial separation. Nevertheless, the remaining correlations evidence that '8, 9 (g)104
is almost symmetric, i.e. that the wave field is essentially isotropic ('8, 9 ( |g |) and '8, 9 (−|g |),105
respectively, account for signals propagating from 8 to 9 and from 9 to 8). Quantitatively,106
with (8 ≠ 9) ∈ [13, 14, 15] standing for the three close central probes and gmax such that107
'8, 9 (gmax) is maximum,108 ����'8, 9 (gmax) − '8, 9 (−gmax)

'8, 9 (gmax)

���� < 0.16, (2.2)109

a strong indication toward isotropy. Finally, note that the power spectrum density ([ ( 5 )110
(PSD), reported in Fig. 2, reveals that most of the energy is located at frequencies smaller111
than the forcing range, corresponding to waves forced by nonlinear interactions. These PSDs112
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Figure 2: PSD of surface elevation for the three different steady states considered. Thin
lines correspond to experimental results and thick ones to their numerical model. The

forcing bandwidth is also displayed.

present some features theoretically predicted for the inverse cascade of WWT and derived113
under the assumption of stationarity, homogeneity and isotropy (Falcon et al. 2020).114
It is instructive to detail the energy budget of this wave field. Energy is injected in the wave115

system at a rate Pinj that can be measured through decay experiments and is of several watts116
(see Falcon et al. (2020), note that this power is much smaller than the one supplied to the117
wave maker). Conversely, the power dissipated by viscosity at high frequency (> 2Hz) at the118
surface boundary layer can be estimated from the experimental PSD and reads (Miles 1967)119

Pdiss = 2(d6
∫ ∞

2 Hz
([ ( 5 )U( 5 )d 5 , (2.3)120

with ( = 30 × 40 m2 the surface of the basin, d = 103 kg ·m−3 the density, 6 = 9.81 m · s−2121
the acceleration due to gravity, U( 5 ) = 2a:2 = 2a(2c 5 )4/62 the damping coefficient for122
clean water and a = 10−6m2 · s−1 the kinematic viscosity. We find typically Pdiss ∼ Pinj/10,123
meaning that most of the energy is dissipated by another mechanism than viscous dissipation124
of high-frequency waves in the bulk. We believe that this mechanism is linked with the125
nonlinear dynamics at large scales, which involves very steep structures acting as localized126
sources of dissipation (e.g., cusps of very steep slope).127

3. Numerical model128

To identify high-order nonlinear effects in the experimental data, these wave fields are129
reproduced numerically up to second-order nonlinearities. The elevation at a given location is130
computed as [(C) = [ (1)+[ (2) , where the linear contribution [ (1) is the sum of #l×#\ = 512131
independent progressive waves (#l = 16 angular frequencies, each of them associated with132
#\ = 32 directions), and [ (2) is the nonlinear correction. More precisely, [ (1) reads133

[ (1) (C) =
#l∑
=l=1

#\∑
=\=1

0=l ,=\ cos
(
−l=l C + q=l ,=\

)
, (3.1)134

where 0=l ,=\ are random numbers drawn from normal distributions of zero mean and135
standard deviations �=l . The phase constants q=l ,=\ are uniformly distributed in the range136

Focus on Fluids articles must not exceed this page length
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Run 1 Run 2 Run 3
exp num th exp num th exp num th

f (cm) 0.98 1.02 1.63 1.74 2.31 2.37
S 0.21 0.19 0.20 0.25 0.24 0.23 0.22 0.20 0.22

 − 3 0.18 0.06 0.06 0.20 0.09 0.07 0.17 0.07 0.04
a 0.25 0.21 0.30 0.22 0.36 0.31

50 (Hz) 1.68 1.60 1.43 1.37 1.18 1.13
5p (Hz) 1.38 1.35 1.15 1.20 0.90 0.90
5) (Hz) 1.59 1.54 1.33 1.31 1.06 1.04
Y) 0.10 0.10 0.12 0.12 0.11 0.10
#tot 3 779 963 3 385 889 2 548 368
#RW 937 840 899 798 475 450

Table 1: Standard deviation f, skewness S, kurtosis  , dimensionless spectral bandwidth
a, mean frequency 50, peak frequency 5p, Tayfun frequency 5) and steepness Y) based on

5) . “exp” denotes experimental measurements, “num” numerical models and “th”
theoretical estimates given by Eq. (4.1) and (4.3) and computed based on the experimental

PSD. The number of waves #tot and rogue waves #RW, defined as � > 2�( with
�( = 4f, are also reported.

[0, 2c]. The leading-order nonlinear correction [ (2) stems from Longuet-Higgins (1977) (up137
to a correction factor of one half, see Srokosz (1986)). In particular, it involves the wave138
vectors of the linear waves, set to model an isotropic wave field as139

k=l ,=\ =
l2
=l

6

[
cos

(
2c=\
#\

)
eG + sin

(
2c=\
#\

)
eH

]
. (3.2)140

The angular frequencies
{
l=l

}
are linearly distributed in a given range with Δl =141

2c × 0.1 rad · s−1. Both this range and the constants
{
�=l

}
are adjusted to reproduce142

the experimental spectra at large scale, see Fig. 2. For each run, 5 × 107 values of [(C = 0)143
and millions of waves from time series of [(C) with a time step of 0.01 s are computed from144
independent drawings of

{
0=l ,=\ , q=l ,=\

}
. The former are used to obtain the data reported145

in Tab. 1 and Fig. 2-3 whereas waves are documented in Fig. 4 - 8.146

4. Moments147

The first moments of [(C) from experiments and numerical models are reported in Tab. 1.148
The standard deviation f = 〈[2〉1/2 is found to increase with the forcing amplitude, while149
the skewness S = 〈[3〉/f3 and the kurtosis  = 〈[4〉/f4 remain roughly constant. Other150
characteristics of sea states are computed, namely the dimensionless spectral bandwidth151
a = (<0<2/<2

1 − 1)1/2, with <= =
∫
([ ( 5 ) 5 =d 5 the spectral moments, the mean frequency152

50 = <1/<0, the peak frequency 5p, the Tayfun frequency 5) = 50/[1 + a2(1 + a2)−3/2]153
discussed later in the manuscript (Tayfun 1993; Tayfun & Fedele 2007) and the steepness154
Y) = (2c 5) )2f/6 based on 5) , with 6 the acceleration due to gravity. The dimensionless155
parameters measured experimentally (S,  , a and Y) ) correspond to typical values observed156
in the ocean, although field measurements yield 50,p,) = $ (0.1) Hz and f = $ (1) m157
(Christou & Ewans 2014). This confirms that the wave field under study shares the complex158
dynamics at work in the ocean while allowing the recording of ten times more waves over159
the same acquisition time.160
The skewness S can be compared with theoretical predictions. The linear model reduces161

surface elevation to a sum of independent progressive waves of various frequencies and162
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amplitudes ([ (1) (C) in (3.1)), for whichS vanishes. In the 1960s, Longuet-Higgins computed163
the second-order nonlinear correction [ (2) (C) and showed that it only involves non-resonant164
interactions, mathematically of the form of progressive waves that do not verify the linear165
dispersion relation, the so-called “boundwaves” (Longuet-Higgins 1977). The skewness then166
becomes non-zero and can be inferred from ([ ( 5 ): simplified under the assumption of an167
isotropic wave field, it reads168

S =
∫

3:1

2cf3 ([ (:1)([ (:2)�
(
:2

:1

)
d:1,2 (4.1)169

170

where � is an explicit function, see Appendix A. Further, assuming a narrowband frequency171
spectrum (a � 1, i.e., 50 = 5) = 5p) numerically yields S = 2.07Y) , in contrast to S = 3Y)172
for unidirectional waves of a narrowband frequency spectrum. The theoretical prediction of173
S computed from Eq. (4.1) together with the experimental PSD ([ is reported in Tab. 1: it174
accounts for both numerical models and experimental results.175
Several decades later, Janssen built on the canonical transformation introduced in Zakharov176

(1968) to derive the surface elevation up to the next order and to consistently compute the177
deviation of the kurtosis from three (Janssen 2009). Disentangling resonant and non-resonant178
interactions, he obtained179

 = 3(1 + �dyn
4 + �can

4 ), (4.2)180

where�dyn
4 results from four-wave resonant interactions and only allows analytic expressions181

for spectra that are narrow in frequency and direction (Fedele 2015; Janssen & Fedele 2019).182
In contrast, �can

4 is associated with bound waves and can be inferred directly from ([ ( 5 ):183
for an isotropic wave field,184

�can
4 =

∫
:2

1
c2f4 ([ (:1)([ (:2)([ (:3)k

(
:2

:1
,
:3

:1

)
d:1,2,3 , (4.3)185

186

where k is another explicit function, see Appendix B. Furthermore, if the spectrum is187
narrowband in frequency, it reduces to �can

4 = 2.75Y2
)
. The theoretical values of 3�can

4188
computed from Eq. (4.3) and the experimental PSD ([ are reported in Tab. 1. They match189
our numerical models, in which no resonant interaction takes place, but strongly differs from190
experimental measurements. This demonstrates that fou- wave interactions not only generate191
the low-frequency waves under study but also crucially affect their statistics. Note that a192
similar conclusion has been reached in a regime of capillary wave turbulence dominated by193
four-wave interactions (Xia et al. 2010; Shats et al. 2010).194

5. Probability Density Functions (p.d.f.s)195

The p.d.f.s of experimental and numerical normalized surface elevations 5 (D = [/f) are196
reported in Fig. 3, along with a normal law of zero mean and unit variance, a Tayfun law197
and two Gram-Charlier series. The normal distribution describes linear waves and accounts198
neither for the finite skewness nor for a kurtosis other than three. The Tayfun law corresponds199
to unidirectional and narrowband waves with second-order nonlinearities (Tayfun 1980), see200
Appendix C for its analytic expression. It only depends on the steepness Y) and has been201
shown empirically to provide a fair estimate of the tails of 5 (D) for isotropic and broadbanded202
waves as well, provided that Y) is artificially tuned to generate the observed skewness (0.24203
in the case of Fig. 3 (left)) (Aubourg et al. 2017; Falcon et al. 2020). It is found here to fit204
the tails of the numerical p.d.f.s and to underestimate the experimental ones. This difference205
in the probability of extreme surface elevations translates into the difference in kurtosis206
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Figure 3: The p.d.f.s of the normalized surface elevation [/f from experiments (symbols)
and numerical models (thick coloured lines), compared with (left) a normal law and a
Tayfun law and (right) the second- and third-order Gram-Charlier series computed with

S =  − 3 = 0.2.

Figure 4: The p.d.f.s of the normalized wave troughs and crests compared with numerical
models (thick coloured lines), a Rayleigh distribution (black solid line) and the first

nonlinear corrections for unidirectional and narrowband waves (dotted lines).

discussed before. The p.d.f.s are also compared with the low-order Gram-Charlier series207
commonly used in theoretical work on surface waves, see Appendix D for definitions. They208
are reported in Fig. 3 (right) based on the typical experimental values S =  − 3 = 0.2209
from Tab.1. As observed in Klahn et al. (2021), they both underestimate large positive values210
and fail to capture large negative ones (for which the p.d.f. is either undefined, as for the211
second-order Gram-Charlier approximation, or largely above the experimental data, as for212
the third-order approximation).213
Time series are then analysed in terms of zero down-crossing waves, i.e. events separated214

by zero crossings ([ = 0) in which [ assumes negative then positive values (IAHR 1989).215
By definition, the wave height � is the sum of the wave trough [T (taken positive) and wave216
crest [C, the duration of the wave being the period ) . In this manuscript, RWs are defined as217
waves for which � > 2�( , with �( = 4f the significant wave height, whereas large crests218
are defined by [C > 1.25�( . The threshold 1.25�( = 5f corresponds to an alternative219
definition of RWs in the literature (Fedele et al. 2016). The numbers of recorded waves and220
RWs are reported in Tab. 1.221
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Figure 5: The p.d.f.s of the normalized wave height �/�( from experiments (symbols)
and numerical models (thick coloured lines), compared with a Rayleigh distribution.

Consider first the p.d.f. of [C and [T. For unidirectional and narrowband wave fields, they222
have been explicitly computed by Tayfun up to second-order nonlinearities (Tayfun 1980),223
see Appendix E for their analytic expressions. Similar to surface elevation, the p.d.f. of [C224
has been empirically found to fit the tails of multidirectional wave fields as well (Soquet-225
Juglard et al. 2005; Denissenko et al. 2007; Klahn et al. 2021). Both experimental and226
numerical p.d.f.s are reported in Fig. 4 along with the theoretical Rayleigh distribution227
( 5R(b) = b exp(−b2/2), capturing linear waves) and the Tayfun distributions with the228
steepness parameter tuned to describe a skewness of 0.24. Our numerical models with229
bound waves only indicate that the fortuitous agreement between Tayfun’s predictions for230
unidirectional waves and data from isotropic wave fields is restricted to crests. Moreover,231
one of the main outcomes of this work is that large crests are much more likely to be found232
experimentally than numerically or expected from the Tayfun law.233
The wave height � = [C + [T is then investigated. As routinely observed, the distribution234

of �/�( as a function of the wave period ) peaks close to the inverse Tayfun frequency235
5 −1
)

(Tayfun 1993; Tayfun & Fedele 2007), see the additional figures in Appendix F. The236
experimental and numerical p.d.f.s of D = �/�( , reported in Fig. 5, are compared with237
the Rayleigh distribution 5' (D) = 4D exp(−2D2), which describes narrowband waves with238
no assumption on directionality and is valid even when the second-order nonlinearities are239
included (Longuet-Higgins 1952; Tayfun 1980). These data are all found to be similar. The240
wave height � = [C + [T is therefore not only independent of second-order nonlinearities,241
as can be shown theoretically, but also seems to be largely independent of higher-order242
corrections. This is in sharp contrast with the statistics of [C and [T detailed above.243

6. Shape of large crests244

Themean surface elevation at a given position right before/after a large crest occurs (identified245
as [(0) with time origin shifted such as the crest manifests at C = 0) is approximated at second246
order in the joint limit of small amplitude and frequency bandwidth as247

[(C) = [(0)

Ψ(C) + [�F(C)

�B

1 + [�F(0)
�B

 , (6.1)248
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Figure 6: Shape of the large crests ([(0) > 1.25�() for Run 2. The coloured area
corresponds to experiments (mean value ± standard deviation), the black dashed line to
numerical models and solid lines to first- and second-order theories. Similar figures for

Run 1 and Run 3 are reported in Appendix F.

where Ψ(C) = 〈[(0)[(C)〉/f2 is the autocorrelation function, F is a function of ([ detailed249
in Appendix G and [� is the linear component of [(0) (Fedele & Tayfun 2009). Previous250
studies have only tested this result in the linear limit in which [� = 0 (Soquet-Juglard et al.251
2005; Klahn et al. 2021). The normalized elevation [(C)/[(0) computed from Eq. (6.1) with252
both [� = 0 and [� = 1.25�B is reported in Fig. 6, along with experimental and numerical253
values for crests such that [� > 1.25�( . Our data confirm that the linear approximation254
overestimates the depths of the troughs preceding and following the crest, a discrepancy255
fixed with second-order corrections. However, both theoretical models are symmetric in256
time reversal (since Ψ(C) = Ψ(−C) and F (C) = F (−C)) whereas experimental measurements257
before and after the crest occurs persistently differ. This asymmetry also manifests in steeper258
slopes before the crests (C < 0) than after (C > 0). The numerical simulations of Fujimoto259
et al. (2019) have shown that, at a fixed time and for directional wave fields, high crests are260
not symmetric in space as a result of the four-wave resonant interactions not captured by the261
second-order model reported in Eq. (6.1).262

7. Conclusion263

Laboratory experiments with simplified directional spectra provide useful hints about264
the various processes taking place in the ocean without the usual bias of, e.g., wave265
breaking regularization in numerical simulations or varying environmental conditions in field266
measurements. In this study, more than two thousands RWs were observed in statistically267
homogeneous, isotropic and steady wave fields, allowing the predictions of commonly used268
theoretical models to be confronted with data in which strongly nonlinear events take place.269
To highlight the consequences of these high-order nonlinearities, numerical simulations270
associated with similar PSDs and valid up to second order were carried out. Therefore, they271
include the leading-order bound wave correction but not the resonant interactions.272
The third and fourth normalized moments of surface elevation are compared with273

theoretical results in which the leading-order bound wave correction is accounted for. These274
analytic expressions are found to accurately describe the skewness of both experimental and275
numerical data. However, they significantly underestimate the experimental kurtosis while276
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being in agreement with the numerical ones, evidencing a first consequence of resonant277
interactions on the statistics. This discrepancy is also manifest in the tails of the normalized278
surface elevation p.d.f.s.279

The surface elevation time series are then split into individual waves whose heights, crests280
and troughs are analysed. The wave height is found to be robust to high-order effects, the281
experimental p.d.f.s being similar to the numerical ones and to the Rayleigh distribution.282
A similar conclusion cannot be drawn regarding the wave crests and troughs, for which283
large values are much more likely experimentally than numerically, indicating that four-wave284
resonant interactions strongly affect their statistics. The impact of high-order nonlinearities285
on large crests is further evidenced through the comparison of their mean shape with first-286
and second-order theoretical predictions, none of them being able to capture the asymmetry287
under time reversal. Therefore, the phenomenology of rogue waves crucially depend on how288
they are defined: high-order nonlinear effects do not seem to play a significant role if the289
wave height criterion � > 8f is used, whereas for RW depicted as [C > 5f (referred to as290
‘large crests’ in this paper) they significantly enhance their probability of occurrence. This291
finding demonstrates the current need for higher-order theoretical models that disentangle292
troughs and crests.293

Note that, as reported in previous studies (Aubourg et al. 2017; Falcon et al. 2020; Soquet-294
Juglard et al. 2005; Denissenko et al. 2007; Klahn et al. 2021), some features of our second-295
order numerical model of isotropic waves are surprisingly well fitted by theoretical models296
derived for unidirectional and narrowband wave fields, provided that the single parameter297
they depend on, the steepness Y) , is tuned to generate the observed skewness. This applies298
to the tails of the PDFs of both the normalized surface elevation and wave crests, but not to299
the wave troughs.300

Many geophysical processes that are both challenging to model theoretically and to301
disentangle from other effects in field experiments could benefit from similar investigations302
with these isotropic nonlinear steady states. This includes, but is not limited to, the impact303
of waves on mixing and air-sea fluxes, the effect of rain in calming the sea and the effective304
parameters of random nonlinear waves (diffusion of a pollutant, damping and scattering of a305
wave train, etc.).306
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Appendix A. Detail on equation (4.1)312

Following Janssen (2009) and its notations, the third moment of the surface elevation `3 is313
related to the standard deviation √`2 and to the skewness parameter �3 through its Eqs. (51)314
and (52), that are315

�3 =
`3

`
3/2
2

=
3

<
3/2
0

∫
dk1,2�1�2

(
A1,2 + B1,2

)
, (A 1)316

where <0 =
∫

dk1�1 and � (k) is the first-order spectrum. After lengthy but straightforward317
computations using various equations of Janssen (2009) , we obtain the transfer coefficients318

Rapids articles must not exceed this page length
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A1,2(k1, k2) and B1,2(k1, k2) for deep-water gravity waves319

A1,2 =
1

√
:1:2


(√
:1 +
√
:2

)2
(k1 · k2 − :1:2)

(
√
:1 +
√
:2)2 − |k1 + k2 |

−
(
k1 · k2 − :1:2 −

√
:1:2(:1 + :2)

2

) ,
(A 2)

320

B1,2 =
1

√
:1:2

[
(
√
:1 −
√
:2)2(k1 · k2 + :1:2)

(
√
:1 −
√
:2)2 − |k1 − k2 |

−
(
k1 · k2 + :1:2 −

√
:1:2(:1 + :2)

2

)]
.

(A 3)

321

322

It can be readily confirmed that this expression of the skewness corresponds to the one initially323
derived by Longuet-Higgins (Eq. (3.11) of Longuet-Higgins (1977) corrected by a misprint324
of one half). Given that the wave field is assumed isotropic, � (k)dk = ([ (:)/(2c)d:d\,325
with ([ (:) the surface elevation PSD. Moreover, since the transfer coefficients are invariant326
by a simultaneous rotation of k1 and k2, eq. (A 1) reduces to327

�3 =
3

<
3/2
0

∫ 2c

0
d\

∬
d:1d:2

([ (:1)([ (:2)
2c
√
:1:2

(A 4)328


(√
:1 +
√
:2

)2
(k1 · k2 − :1:2)

(
√
:1 +
√
:2)2 − |k1 + k2 |

+ (
√
:1 −
√
:2)2(k1 · k2 + :1:2)

(
√
:1 −
√
:2)2 − |k1 − k2 |

− k1 · k2 +
√
:1:2(:1 + :2)

 ,329

330

with k1 = :1eG and k2 = :2
(
cos \eG + sin \eH

)
. Define a function � such that331

� (U) =
∫ 2c

0
d\

[ √
U

(
1 +
√
U
)2 (cos \ − 1)

(1 +
√
U)2 −

√
1 + U2 + 2U cos \

+
√
U(1 −

√
U)2(cos \ + 1)

(1 −
√
U)2 −

√
1 + U2 − 2U cos \

+ (1 + U)
]
,

(A 5)332
and (A 4) then reads333

�3 =
3

<
3/2
0

∬
([ (:1)([ (:2):1

2c
�

(
:2

:1

)
d:1d:2, (A 6)334

which corresponds, with �3 → S and <0 → f2 (our notations), to Eq. (4.1).335

Appendix B. Detail on equation (4.3)336

A similar procedure can be applied to compute the canonical contribution to the kurtosis337
from Eq. (59) of Janssen (2009) ,338

�can
4 =

4
<2

0

∫
� (k1)� (k2)� (k3)Ψ(k1, k2, k3)dk1dk2dk3, (B 1)339

where Ψ is an explicit interaction coefficient not detailed here. With � (k8) =340
([ (:8)/(2c)d:8d\8 and f2 = <0,341

�can
4 =

4
(2c)3f4

∫
([ (:1)([ (:2)([ (:3)Ψ(k1, k2, k3)d:1d:2d:3d\1d\2d\3. (B 2)342
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Since Ψ is invariant under a simultaneous rotation of k1, k2 and k3, a first integration can be343
performed344

�can
4 =

4
(2c)2f4

∫
([ (:1)([ (:2)([ (:3)Ψ(:1eG , k2, k3)d:1d:2d:3d\2d\3, (B 3)345

with k2,3 = :2,3
(
cos \2,3eG + sin \2,3eH

)
. Finally, note that the function Ψ is such that346

Ψ(:1eG , k2, k3) = :2
1Ψ

(
eG ,

k2

:1
,
k3

:1

)
, (B 4)347

and define a function k by348

k (U, V) =
∫
Ψ

(
eG , U

[
cos \2eG + sin \2eH

]
, V

[
cos \3eG + sin \3eH

] )
d\2d\3. (B 5)349

The coefficient �can
4 then reads350

�can
4 =

4
(2c)2f4

∫
([ (:1)([ (:2)([ (:3):2

1k

(
:2

:1
,
:3

:1

)
d:1d:2d:3, (B 6)351

which corresponds to Eq. (4.3).352

Appendix C. Tayfun p.d.f. of surface elevation353

The p.d.f. of surface elevation can be explicitly computed in the case of a unidirectional and354
narrowband wave field in which only the first nonlinear correction is computed. However,355
several misprints make the expression of this PDF difficult to obtain from the literature. In356
particular, the original derivation of Tayfun (1980) must be corrected as follows: his Eq. (24)357
should read358

�b (D) = (2c)−1/2
∫ ∞

U(D)
4−g

2/2 {erf [�(g, D) + V] + erf [�(g, D) − V]} 3g, (C 1)359

and his corrected Eq. (27) is360

�(g, D) = V

√
1 +
√

2WD
V
+ g2

2V2 . (C 2)361

Note also that only approximate expressions of this p.d.f. are reported in Soquet-Juglard362
et al. (2005) : indeed, their Eq. (7) becomes undefined for large negative values of the surface363
elevation (if their 1 + 2fI < 0, their � (0) required in the integral is no longer real valued).364
For completeness, the full set of equations required to compute the p.d.f. 5 (D) of the365

normalized surface elevation D = [/f (f = 〈[2〉1/2) is reported below366

5 (D) = d�
dD
, � (D) = 1

√
2c

∫ ∞

U(D)
4−

g2
2 [erf (�(g, D) + V) + erf (�(g, D) − V)] dg (C 3)367

with368

�(g, D) = V

√
1 +
√

2WD
V
+ g2

2V2 , V =
1√

−1 +
√

1 + 4f2:2
, W =

√
1 +
√

1 + 4f2:2

2
, (C 4)369

and370

U

(
D > − V

√
2W

)
= 0, U

(
D < − V

√
2W

)
= V

√√√
−2

(
1 +
√

2WD
V

)
. (C 5)371
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Appendix D. Second- and third-order Gram-Charlier series372

A theoretical approach to the p.d.f. of surface elevation consists in using low-order Gram-373
Charlier series. Following Klahn et al. (2021), we define in this manuscript the second-order374
approximation as375

5��2

(
D =

[

f

)
=

1
√

2c
4−D

2/2
[
1 + S

6
�3(D)

]
, �3(D) = D3 − 3D, (D 1)376

and the third-order one377

5��3

(
D =

[

f

)
=

1
√

2c
4−D

2/2
[
1 + S

6
�3(D) +

1
24
( − 3)�4(D) +

1
72
S2�6(D)

]
, (D 2)378

with379

�4(D) = D4 − 6D2 + 3, �6(D) = D6 − 15D4 + 45D2 − 15. (D 3)380

Appendix E. Tayfun p.d.f. of the crests and troughs381

For unidirectional and narrowband wave fields, the p.d.f. of crests accounting for second-382
order nonlinearities reads (Tayfun 1980)383

5� (bC) =
2Y

−1 +
√

1 + 4Y2

(
1 − 1√

1 + 2YbC

)
exp

−
(
−1 +

√
1 + 2YbC

)2

−1 +
√

1 + 4Y2

 , (E 1)384

with bC = [C/f and f = 〈[2〉1/2 (note that the PDF reported in Tayfun (1980) considers385
instead the wave crest normalized by the standard deviation of the linear component). The386
steepness parameter Y = f: , with : the central wavenumber of the narrowband wave fields,387
is in that case related to the skewness S = 3Y +$ (Y3). Similarly, for the troughs,388

5) (bT) =
−2Y

−1 +
√

1 + 4Y2

(
1 − 1√

1 − 2YbT

)
exp

−
(
−1 +

√
1 + 2YbT

)2

−1 +
√

1 + 4Y2

 , (E 2)389

with bT = [T/f.390

Appendix F. Additional wave features391

The raw data of the normalized wave height �/�( plotted versus the wave period ) are392
reported in Fig. 7, while the shape of the large crests for Runs 1, 2 and 3 are shown in Fig. 8393

Appendix G. Expected shape of large waves394

From Eq. (5.7) of Fedele & Tayfun (2009) , define in the deep-water and isotropic limit the395
function396

F (C) = 2
(2c)2f3

∫
([ (:1)([ (:2)397 [

(A1,2 + B1,2) cos(l1C) cos(l2C) − (A1,2 − B1,2) sin(l1C) sin(l2C)
]
3:13:23\13\2,

(G 1)
398

399
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Figure 7: Experimental normalized wave height as a function of the wave period. The
mean value is plotted in thick black and peaks close to the Tayfun period 1/ 5) . Vertical

lines indicate 5 −1
0 , 5 −1

)
and 5 −1

p ( 5 −1
0 < 5 −1

)
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Figure 8: Shape of large crests ([(0) > 1.25�() for Runs 1, 2 and 3. The coloured area
corresponds to experiments (mean value ± standard deviation), the black dashed line to
numerical models and solid lines to first- and second-order theories. The central figure

corresponds to Fig. 6.

with l1,2 =
√
6:1,2. A first angular integration can be performed to obtain400

F (C) = 1
cf3

∫
([ (:1)([ (:2)401 [

(A1,2 + B1,2) cos(l1C) cos(l2C) − (A1,2 − B1,2) sin(l1C) sin(l2C)
]
3:13:23\,

(G 2)
402

403

with k1 = :1eG and k2 = :2
(
cos \eG + sin \eH

)
. Further assume404

� (U) =
√
U

∫ 2c

0
d\

[ (
1 +
√
U
)2 (cos \ − 1)

(1 +
√
U)2 −

√
1 + U2 + 2U cos \

− (1 −
√
U)2(cos \ + 1)

(1 −
√
U)2 −

√
1 + U2 − 2U cos \

+ 2

]
,

(G 3)405
to obtain406

F (C) = 1
cf3

∫
([ (:1)([ (:2):1

[
�

(
:2

:1

)
cos(l1C) cos(l2C) − �

(
:2

:1

)
sin(l1C) sin(l2C)

]
d:1d:2

(G 4)407
which allows simple numerical integration. The elevation profile [(C) close to a crest of linear408
elevation b2 then follows from Eq. (5.10) of Fedele & Tayfun (2009) and reads at leading409
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order410

[(C) = b2Ψ(C) +
b2
2F (C)
4f

, (G 5)411

with Ψ(C) = 〈[(0)[(C)〉/f2 the autocorrelation function.412
413
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