Search via Parallel Lévy Walks on Z^2
Andrea Clementi, George Giakkoupis, Emanuele Natale, Francesco d’Amore

To cite this version:

HAL Id: hal-03694177
https://hal.science/hal-03694177
Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Search via Parallel Lévy Walks on \mathbb{Z}^2

Francesco d’Amore

Joint work with Andrea Clementi, George Giakkoupis, and Emanuele Natale

Published in PODC 2021

HALG 2022
London School of Economics

London, 02 June 2022
Lévy walk (informal):
A Lévy walk is a random walk whose step-length density distribution is proportional to a power-law, namely, for each $d \in \mathbb{R}^+$, $f(d) \sim 1/d^\alpha$, for some $\alpha > 1$

Note: the speed of the walk is constant
Movement models and foraging theory

Lévy walks are used to model movement patterns [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Rhytidoponera mayri workers. Credit: Associate Professor Heloise Gibb, La Trobe University
Movement models and foraging theory

Lévy walks are used to model movement patterns [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Widely employed in the Foraging theory

Optimality results: Lévy walks are optimal in different search problems [Viswanathan et al., Nature 1999], [Guinard and Korman, Sciences Advances 2021]
The Lévy flight foraging hypothesis

Formulation of an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have evolved to exploit Lévy flights/walks
The Lévy flight foraging hypothesis

Formulation of an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have evolved to exploit Lévy flights/walks.

We test this hypothesis by focusing on a distributed search problem:
- the **ANTS** (Ants Nearby Treasure Search) problem
The ANTS problem

Introduced by [Feinerman et al., PODC 2012]

Setting:
• k (mutually) independent agents on \mathbb{Z}^2
• start moving from the origin
• time is synchronous and marked by a global clock
• one special node $P \in \mathbb{Z}^2$, the target, placed by an adversary
 at unknown (Manhattan) distance ℓ
The ANTS problem

Introduced by [Feinerman et al., PODC 2012]

Setting:
- k (mutually) independent agents on \mathbb{Z}^2
- start moving from the origin
- time is synchronous and marked by a global clock
- one special node $P \in \mathbb{Z}^2$, the target, placed by an adversary at unknown (Manhattan) distance ℓ

Task: find the target as fast as possible

Lower bound: hitting time $\Omega \left(\frac{\ell^2}{k} + \ell \right)$ both with constant probability and in expectation
Our contributions

(i) first definition of Lévy walk in the discrete setting in \(\mathbb{Z}^2 \), which is simple and time-homogeneous
Our contributions

(i) first definition of Lévy walk in the discrete setting in \mathbb{Z}^2, which is simple and time-homogeneous

(ii) to the best of our knowledge, first analysis of the hitting time distribution of k parallel walks
Our contributions

(i) first definition of Lévy walk in the discrete setting in \mathbb{Z}^2, which is simple and time-homogeneous

(ii) to the best of our knowledge, first analysis of the hitting time distribution of k parallel walks

(iii) Lévy walks can be employed to give a natural, almost-optimal algorithm for the ANTS problem (no knowledge of k, no communication)

Hitting time: $\mathcal{O}\left(\left(\frac{\ell^2}{k} + \ell\right)\text{polylog}\ell\right)$ with high probability
The end

To find out more, I invite you to the poster session!