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Abstract

Crop breeding involves two selection steps: choosing progenitors and selecting individuals within progenies. Genomic prediction,
based on genome-wide marker estimation of genetic values, could facilitate these steps. However, its potential usefulness in grapevine
(Vitis vinifera L.) has only been evaluated in non-breeding contexts mainly through cross-validation within a single population. We
tested across-population genomic prediction in a more realistic breeding configuration, from a diversity panel to ten bi-parental
crosses connected within a half-diallel mating design. Prediction quality was evaluated over 15 traits of interest (related to yield,
berry composition, phenology and vigour), for both the average genetic value of each cross (cross mean) and the genetic values of
individuals within each cross (individual values). Genomic prediction in these conditions was found useful: for cross mean, average
per-trait predictive ability was 0.6, while per-cross predictive ability was halved on average, but reached a maximum of 0.7. Mean
predictive ability for individual values within crosses was 0.26, about half the within-half-diallel value taken as a reference. For some
traits and/or crosses, these across-population predictive ability values are promising for implementing genomic selection in grapevine
breeding. This study also provided key insights on variables affecting predictive ability. Per-cross predictive ability was well predicted
by genetic distance between parents and when this predictive ability was below 0.6, it was improved by training set optimization. For
individual values, predictive ability mostly depended on trait-related variables (magnitude of the cross effect and heritability). These
results will greatly help designing grapevine breeding programs assisted by genomic prediction.

Introduction

Breeding for perennial species is mostly based on phe-
notypic selection and is hindered by cumbersome field
trials and the long generation time. Genomic prediction
(GP), based on genome-wide prediction of genetic values
[1], has been widely adopted in modern plant and animal
breeding programs, for its superiority in terms of cost and
time saved compared to traditional phenotypic selection,
but also because it allows handling traits with complex
genetic determinism. GP requires a model training step
within a reference population, prior to model application
to a target population of selection candidates [2]. In
perennial crops, a population encompassing most of the
species’ genetic diversity could be particularly interest-
ing as a training population to reduce phenotyping effort,
since breeding cycle and juvenile phase are long.

Breeding schemes typically involve first the choice of
parents (individuals to be crossed) and then the selec-
tion of offspring within crosses. GP is adapted both for
predicting cross mean and for ranking genotypes within

a cross (Mendelian sampling). These steps correspond to
the components of the predictive ability (PA) of GP. It is
indeed defined as the sum of cross mean and Mendelian
sampling terms, as detailed in Werner et al. [3].

Cross mean is the sum of the breeding values of par-
ents if allelic effects are only additive, but in practice
some deviation may result from dominance or epistasis
[4]. So far, a few studies only have investigated cross
mean PA in heterozygous crops [5–8], although none of
them clearly investigated its influencing parameters.

In contrast, the prediction of genetic values within
a cross (Mendelian sampling), has been widely studied,
both with simulated and real data, and various param-
eters affecting PA have been pointed out, including the
statistical method used [9], the composition and size
of training and validation populations [10, 11], the trait
genetic architecture and heritability [12, 13] and marker
density [14]. Genetic relationship between the training
and validation sets is known to strongly affect PA [15],
with low or even sometimes negative accuracies for
across-breed GP in animals [16]. This can be explained
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by the loss of linkage phase between the marker and
QTL or by differences in linkage disequilibrium among
populations [17]. Another explanation is the presence
of specific allelic effects and allele frequencies, due
to the genetic background [18]. All these effects are
linked to genetic relationship. Some studies specifically
derived deterministic equations to predict PA for across-
population GP, based on genetic relationship and
heritability (e.g. [19–21]).

In grapevine (Vitis vinifera subsp. vinifera), very few
authors have assessed the potential interest of GP. Viana
et al. [22] investigated GP within a bi-parental population
from a cross between an interspecific hybrid and a
seedless table grape. Later, Migicovsky et al. [23] used
a panel of 580 V. vinifera accessions to perform both
GP and genome-wide association study (GWAS) for 33
phenotypes. More recently, Brault et al. [24] investigated
GP within a bi-parental population from a cross between
Syrah and Grenache. In a related study, Fodor et al. [25]
had simulated a structured and highly diverse grapevine
panel and bi-parental populations with parents origi-
nating from the panel. They applied GP and found little
difference between PA values estimated within the panel
or across populations. Finally, Flutre et al. [26] studied
127 traits with GWAS and GP within a diversity panel;
they also applied across-population GP, but with 23 test
offspring and for one trait only. Before genomic selection
can be deployed in grapevine, evaluating PA across pop-
ulations is thus crucially needed. In particular, PA could
be evaluated with a diversity panel and a bi-parental
progeny as training and validation sets, respectively.
This is a challenging configuration considering the low
genetic relatedness but this configuration is much more
likely to occur in actual breeding schemes than GP within
the same population. As in grape, studies investigating
across-population GP are also lacking in most clonally
propagated crops.

The aim of this study was to assess across-population
genomic PA and to provide a more thorough understand-
ing of parameters affecting PA in a situation close to
the one typically encountered in a breeding context, i.e.
across populations, for a clonally propagated crop such
as grapevine. Our study was based on phenotypic data for
15 traits, related to yield, berry composition, phenology
and vigour, measured both in a diversity panel [27], and
in a half-diallel with 10 bi-parental crosses. We assessed
PA under three scenarios, first for cross mean, and then
for Mendelian sampling term; the results provided keys
to understand PA determinants in both cases. Finally, we
implemented training population optimization to inves-
tigate under which conditions PA can be improved.

Results
Extent of genetic diversity within the half-diallel
population
We first evaluated the genetic variability of half-diallel
crosses with respect to the diversity panel, through their

projection on the first plane of a PCA based on geno-
typic data at 32894 SNPs within the diversity panel.
The half-diallel crosses were genetically close to the
wine west (WW) subpopulation from the diversity panel
(Figure 1a), which was expected, given that all half-diallel
parents except Grenache are wine varieties from western
Europe (Figure 1a, Figure S1). The half-diallel diversity
covered the whole range of WW diversity, and progenies,
all located exactly between their respective parents, were
well separated from each other along the first two PCA
axes (Figure 1a).

We then investigated broad-sense heritability values
(H2) for 15 traits related to yield, berry composition,
phenology and vigour. Overall H2 values were medium to
high, ranging from 0.49 for mcwi (full names of traits are
available in Material and Methods section) in the half-
diallel to 0.91 for mbw in the panel (Figure 1b; Table S1).
Correlation between half-diallel and diversity panel her-
itability values was 0.25. Per-cross H2 values for each
trait varied among half-diallel crosses (Figure S2), which
might result from the fairly small number of offspring
per cross (from 64 to 70). Nevertheless, we observed a
0.62 correlation between overall and per-cross H2. Mean
cluster width displayed extreme variation in H2 per cross
(from 0.02 to 0.67). This might be due to the difficulty to
phenotype this specific trait because of the presence of
lateral wings in some individuals.

Within the half-diallel and for all traits, the cross
effect was retained in the mixed model for genetic value
estimation, but its magnitude with respect to the total
genetic variance varied depending on the trait, ranging
from less than 10% to ca. 50% (Figure 1b; Table S1).
Depending on the trait or cross, the distribution of
genotypic BLUPs varied widely (Figure 1c-e; Figure S3),
some traits such as vigour being quite comparable
among crosses, while others such as mbw or mcwi varied
greatly. We also observed transgressive segregation
within the half-diallel progenies (Figure 1c-e; Figure S3)
for most traits and subpopulations. The 15 traits studied
represented a large phenotypic diversity, structured
among crosses (Figure S4).

Prediction of cross mean and Mendelian
sampling within- and across-populations
Prediction of cross mean

We first implemented cross mean prediction, as if aim-
ing to select parents for future crosses, selecting the
method best adapted to genetic architecture between RR
and LASSO (see Material and Methods). Predictive ability
(PA) was assessed as Pearson’s correlation between the
observed mean genotypic value per half-diallel cross
and the one predicted based on parental average geno-
types (Table S2). Three scenarios were tested (Material
and Methods, Figure 2): allelic effects estimated within
the whole half-diallel (scenario 1a), in families with one
parent in common (scenario 1b), or within the whole
diversity panel (scenario 2).
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Figure 1. Description of the half-diallel, relative to the diversity panel. a: PCA of the diversity panel based on 32 894 SNPs with the 3 sub-populations
distinguished by different colors, on which half-diallel progenies (dots) and parents (triangles) were projected. b: Broad-sense heritability estimates in
the whole half-diallel (red) and in the diversity panel (blue) for the 15 traits studied (left axis), with shape corresponding to the transformation applied
to raw data; the relative variance due to the cross effect and the coefficient of determination of the subpopulation effect, for the half-diallel (red) and
the diversity panel (blue), respectively, are also reported with “+” (right axis). c, d, e: genotypic value BLUP distribution in each subpopulation or
progeny, for mean berry weight, mean cluster width and vigour, respectively; BLUPs for parents are indicated by their initial letters (Table S4). Number
of genotypes per subpopulation/progeny is indicated below the subpopulation/progeny name. These traits were chosen to represent various levels of
H2 and relative importance of cross effect. BLUP distributions for all traits are presented in Figure S3.

Figure 2. Schematic description of the three scenarios tested. TS:
training set, VS: validation set. Each small grey circle represents one
cross of the half-diallel and the large grey triangle represents the
diversity panel. In scenario 1a, GP was applied within the half-diallel
population with 10-fold cross-validation repeated 10 times. In scenario
1b, the three half-sib families from each parent were used separately as
TS. In scenario 2, TS was the diversity panel. See details in Table S6.

In scenario 2, per-trait and per-cross predictive ability
was lower and more variable than in scenarios 1a and 1b
(Figure 3). Average per-cross PA was 0.54, 0.63 and 0.36 in
scenarios 1a, 1b and 2, respectively (Figure 3a). Average
per-trait PA was close to 1 for most traits in scenarios 1a
and 1b (Figure 3b), and still high (around 0.75) in scenario
2, when excluding nbclu and vigour (Table S3). Overall PA
(over the 150 cross x trait combinations) was 0.45. There
was upward or downward bias for some traits, scenarios
or methods, and in scenario 1a, LASSO resulted in larger
bias (Figure S5).

Prediction of Mendelian sampling
We then measured PA for individual offspring within
each half-diallel cross, thus considering separately the
Mendelian sampling component. For each cross and trait,
we compared the observed and predicted genotypic val-
ues in the three scenarios (Figure 2; Figure S6, Figure S7).
In Figure S7, results are displayed for each method.

In scenario 1a (Figure 4a), average PA per trait ranged
from 0.18 for mcwi to 0.57 for mbw, with a 0.47 overall
average (Figure S8a). The extent of PA variation among
crosses depended on the trait and could be very large,
as for samplday (from 0.202 to 0.624). Unlike for traits,
no cross had constantly high or low PA (Figure S8b).
RR method yielded the highest PA for all traits except
shik.ripe.

In scenario 1b (Figure 4b), there were two PA values per
cross, one for each parental training set (TS). The differ-
ence between these two values varied widely, depending
on the cross and trait (up to about 0.5 for mcwi in GxS),
with an overall average of 0.36. Most often, PA was lower
in scenario 1b than in scenario 1a, likely because no full-
sibs were included in the training set. However, there
were several cases with PA values similar or higher in
scenario 1b for one parental TS compared to scenario
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Figure 3. Boxplots of PA values for the three scenarios (1a: within whole half-diallel prediction; 1b: half-sib prediction within half-diallel; 2:
across-population prediction with diversity panel as training set and each half-diallel cross as validation set). Each PA value was the best one obtained
between RR and LASSO methods. Average PA is indicated next to each boxplot. a: per-cross PA, b: per-trait PA. Per-cross PA corresponds to the Pearson’s
correlation between observed and predicted family mean, over the 10 crosses. Similarly, per-trait PA was calculated over the 15 traits.

1a. RR method produced the best PA in 80% of the 30
combinations (2 parents x 15 traits).

In scenario 2 (Figure 4b), overall average PA (0.23) was
nearly halved compared to scenario 1a, with trait depen-
dent differences in PA between both scenarios. Some
traits such as vigour, clucomp and maltar.ripe displayed
a particularly marked decrease. On the opposite, mcwi
and vermatu reached equivalent PA values in both sce-
narios. RR provided the best PA for 11 traits.

When only WW genotypes from the diversity panel
were used as TS, PA was lower by 0.05 compared to
scenario 2 (Figure S9).

Exploring factors affecting predictive ability, and
training set optimization
We sought those variables affecting the PA values
observed above, both for prediction of cross mean and
Mendelian sampling. We then implemented training set
(TS) optimization in an attempt to increase PA.

Variables affecting the prediction of cross mean

In scenario 2, per-cross PA was highly correlated (0.85)
with the cross parents’ additive genomic relationship
(Figure 5a, Figure S10a). No such strong correlation
was found for per-cross PA in scenarios 1a or 1b
(Figure S10a). The proportion of non-segregating markers
showed low correlation with per-cross PA in all scenarios
(Figure S10a).

Since variation in per-cross PA for scenario 2 was
extremely large, from −0.15 for GxCS to 0.73 for SxPN
(Figure 3a), we implemented TS optimization for each
cross, to try and increase low PA values. Optimization
actually improved PA for crosses with PA initially below
0.6, for TS sizes between 50 and 150 (Figure 6). The largest
improvement, from 0 to 0.61, was observed for GxPN
cross.

The variable that most affected per-trait PA was the
σ 2

C/
(
σ 2

C +σ 2
G

)
ratio (relative variance of cross effect). It was
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Figure 4. a: Mendelian sampling PA per trait and cross for scenario 1a with the best method between RR and LASSO. Vertical bars represent the
standard error around the mean (95% of the confidence interval), based on the outer cross-validation replicates. PA corresponds to the Pearson’s
correlation between the BLUPs of the genotypic value and the predicted genotypic values. b: Difference between PA of scenario 1a and of the other
scenarios. S2 is displayed with a triangle, and S1b by circles, colored according to the parental training set and filled if the best method was RR and
empty otherwise.

strongly correlated with PA in scenarios 1a and 1b (0.8)
and to a lesser extent in scenario 2 (0.53, Figure S10b).

No other explanatory variable displayed any sig-
nificant impact despite a fairly high correlation with
per-trait or per-cross PA, which could be due to low
sample sizes (15 and 10 for per-trait and per-cross PA,
respectively).

Factors affecting Mendelian sampling prediction

To model Mendelian sampling PA for each scenario
and method selected for each trait (RR, LASSO or best),

we applied multiple linear regression on six to nine
variables depending on the scenario, as detailed in
Material and Methods. The highest coefficient of deter-
mination (37.8%) was obtained in scenario 1a with the
best method (Figure 5b). Coefficients of determination
were lower, lower and higher for LASSO compared to RR
in scenarios 1a, 1b and 2, respectively. Three variables
were found to impact PA in all scenarios: half-diallel
overall H2, per-cross H2 and the proportion of non-
segregating markers. Surprisingly, half-diallel overall H2

was not selected in scenario 2 with either RR or best
method, while it had a strong effect in other modalities.
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Figure 5. a: Plot of per-cross PA for cross mean in scenario 2, obtained with the best method between RR and LASSO for each cross, against the
distance between cross parents on the first axis of the diversity panel PCA (Figure 1a). Best method is indicated with the triangle filling and cross with
the color. b: Relative importance of variables affecting PA for Mendelian sampling in the three scenarios tested. Variables were selected from an overall
model, after a model selection step. Response individual PA values were obtained either as the best one between RR and LASSO, with RR or with
LASSO. Relative importance was estimated with pmvd method, from relaimpo R-package version 2.2–5. Coefficients of determination (R [2]) of selected
models are indicated above each stacked bar.

The selected variables were quite similar between sce-
narios 1a and 1b, with a high effect of half-diallel overall
and per-cross H2, but differed in scenario 2 in which more
variables were selected. Overall, most of the relative
importance came from variables related to the trait and
not to the genetic composition of TS or validation set (VS).

We also calculated individual PA with optimized TSs
derived from the diversity panel (Figure S11). However,
we did not observe any improvement compared to using
the whole diversity panel. This is consistent with the
fact that genetic relationship seemed not to impact PA
(Figure 5b).

Discussion
Our study allowed us to thoroughly explore GP poten-
tial in grapevine breeding, by scanning a large range
of potentially useful configurations: (i) with 15 weakly
related traits with variable levels of H2 and phenotypic
structure (subpopulation or cross effects on phenotypic
data) (Figure S4), (ii) in across-population scenarios with
TS ranging from half-sibs (scenario 1b) to a diversity
panel (scenario 2), (iii) with 10 balanced VS crosses. More-

over, we decomposed PA into cross mean and Mendelian
sampling components, each being useful in breeding to
select parental genotypes and offspring within crosses,
respectively. All these results allowed us to get insight
into main factors affecting PA. We will focus our discus-
sion on prediction with the diversity panel as TS, since
this is the most sought-after configuration in perennial
species breeding.

Range of PA values
For the prediction of cross mean, overall PA was 0.45 in
scenario 2, average per-cross PA of 0.36, while the average
per-trait PA was twice as high (0.6) (Figure 3). In studies
concerning other plant crops, the average per-cross PA
was not reported [5–8], probably because, in most cases,
there were not enough traits to estimate it. Bernardo et
al. [5] and Osthushenrich et al. [6] also reported a high-
average per-trait PA, above 0.9, while Yamamoto et al.
[8] reported PA values from 0.21 to 0.57 depending on
the trait.

For the prediction of Mendelian sampling, overall
average PA was lower than overall PA for cross mean
in scenario 2 (0.23 and 0.45, respectively). Yet, Mendelian
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Figure 6. PA for cross mean predicion after training set optimization and with the best method between RR and LASSO, for each cross. Best method is
indicated with the triangle filling and TS optimization method with the color. For comparison, random selection of TS genotypes (in grey) was
performed and repeated ten times, error bars correspond to 95% of the confidence interval around the mean. We also report per-cross PA with the
whole diversity panel (in red), with a maximum TS size of 279 which may vary depending on traits.

sampling PA was still quite high, considering that TS was
essentially unrelated to VS for most genotypes and with
no first-degree relationship with predicted progenies.
When WW subpopulation was used as TS (Figure S9),
PA was lower compared to scenario 2, despite a higher
relatedness, probably due to the small TS size (around
92). The same diversity panel was previously used in
Flutre et al. [26] for predicting individual genotypic
values of 23 additional Syrah x Grenache offspring.
The reported PA for mbw was 0.56, whereas in the
present study, we obtained 0.35 in the Grenache x
Syrah progeny (n = 59). We further investigated such
discrepancy, and found it related to a sampling bias
due to the small VS size in Flutre et al. [26] (data not
shown).

The range of average per-trait Mendelian sampling PA
observed in scenario 2 (from 0.11 to 0.39) was consistent
with those described on fruit perennial species where
individual prediction was performed with a TS not
directly related to the VS (neither half-sib nor full-sib).
In Coffea, Ferrao et al. [28] reported differences in per-
trait PA, from slightly negative values up to ca. 0.60. But,
in this study, overall PA was calculated for all crosses
of the VS, thus encompassing both cross mean and
Mendelian sampling predictions, making comparison
with our Mendelian sampling results alone impossible.
In contrast, some studies in apple yielded within cross
individual PA values. For instance, Muranty et al. [29]

reported average per-trait PA ranging from −0.14 to 0.37,
and Roth et al. [30] found PA values from −0.29 to 0.72
for fruit texture, highly dependent on the cross for all
traits. Conversely, our PA values were mainly stable over
crosses and variable over traits, in the three scenarios
(Figure S8). This difference might partly be due to the
larger trait diversity we explored as compared to Roth
et al. [30], as suggested by comparing our Figure S4 with
their Figure 1A. A complementary explanation could be
that progeny size varied from 15 to 80 in Roth et al. [30],
while here progeny sizes were very close and thus less
likely prone to sampling variability and to upward or
downward bias.

Several factors may influence Mendelian sampling PA
in our study compared to others. Among potential inflat-
ing factors, we can mention a slight over-representation
of phenotyped individuals from the WW panel subpop-
ulation, to which four out of the five parents of the
half-diallel belong, leading to a higher genetic relation-
ship between effective TS and VS. Factors potentially
decreasing PA could be differences between TS and VS
experimental designs since the diversity panel and the
half-diallel were not phenotyped on the same years,
had different plant management systems (overgrafting
or simple grafting, respectively) and were planted a
few kilometers apart. Nevertheless, for most studied
traits, two years of phenotyping were used to compute
genotypic BLUPs, which could at least compensate for
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differences between years, usually referred to as the
millesime effect.

Variables affecting PA in across-population
genomic prediction
We focused on PA obtained with the best method
between RR and LASSO, to take into account the part
of variability among traits associated with genetic
architecture. Indeed, LASSO is supposed to be better
adapted to traits underlined by few QTLs, while RR would
yield better PA for highly polygenic traits [24]. However,
we showed that for a given trait x cross combination,
i.e. for a given genetic architecture, the best method
selected changed depending on the scenario: LASSO
was more often selected for scenario 2 than for scenario
1a, both for cross mean and individual prediction. This
means that the best method choice also depends on the
relationship between TS and VS. This was also suggested
in cattle breeding by MacLeod et al. [31], who found
that BayesRC method (comparable to LASSO) yielded
better results than GBLUP (comparable to RR) for across-
population GP.

Studying both per-cross and per-trait PA allowed us to
characterize different variables affecting PA. Regarding
the other factors affecting PA, for cross mean prediction
in scenario 2, we found no other variable significantly
affecting per-trait PA (Figure S10b). Conversely, per-cross
PA was strongly affected by the genetic distance between
parents (Figure 5a, Figure S10a). To our knowledge, such
correlation has never been reported before. We could
hypothesize that when one parent is farthest from WW
-the most represented panel subpopulation in TS- (e.g.
Grenache, Figure 1a, Figure S1), associated crosses might
have different QTLs or allelic frequencies, compared to
WW ones, thereby explaining the decrease in PA for
crosses related to Grenache. Such differences underlying
marker effects were already described in maize [32].
Simultaneously, some QTLs in these associated crosses
might be less genetically linked to causal polymorphisms
due to higher genetic distance. However, this cannot be
the only explanation for the large correlation of per-cross
PA with pairwise parent distance, because the correlation
between PA and genetic distance between TS and VS was
much lower (Figure S10a).

For the prediction of Mendelian sampling, the vari-
ables explaining individual PA in scenario 2 were quite
different from those explaining cross mean PA. Trait-
related variables had a large impact on individual PA:
half-diallel overall and per-cross heritability, but also the
relative variance of cross effect (Figure 5b). Surprisingly,
genetic relationship between TS and VS had little to
no impact on PA, although this factor has often been
reported to affect PA [15, 17]. Most studies reported sepa-
rately the effects of different variables on individual PA.
Riedelsheimer et al. [33] also performed multiple linear
regression of individual PA on several factors to study
their impact. They found that TS composition (number
of crosses and their relationship with VS) explained most

of the variance (41.7%), followed by trait (27.6%) and VS
composition (4.8%). The variance in genetic relationship
between TS and VS may be smaller in our study.

Practical consequences on breeding programs
Across-population GP with model training in a diversity
panel appeared to be promising in grapevine breeding for
some traits and crosses, particularly for parent choice
(Figure 3; Figure 4; Table S3; Figure S8).

The usefulness of GP for better selecting parents
for future crosses can be at first assessed by the low
overall correlation between mean parental genotypic
values (BLUPs) and mean offspring BLUPs (0.27; see
also Figure S12). This correlation was much lower
than overall PA for cross mean in scenario 1b (0.68)
and slightly lower than overall PA for cross mean in
scenario 2 (0.45). In strawberry, Yamamoto et al. [8] also
evidenced the interest of GP for predicting cross mean,
with no additional benefit from including dominance
effects into GP models, even if cross means were not
equal to parental means. Moreover, in some cases, GP
could provide other advantages over mean parental
genetic values, for instance when parents are not
phenotyped for some reasons, because too young or
without representative phenotypes (e.g. using microvine
[34], in a new environment, etc). This was actually the
case, in our half-diallel trial, for the Terret Noir parent,
which suffered from mortality probably due to rootstock
incompatibility and consequently had no phenotypic
record for most studied traits.

Even though PA was quite high for some traits and
crosses in scenario 2, on average it remained moder-
ate both for cross mean and individual prediction. Both
PAs were much higher in scenario 1a, due to increased
relationship between training and validation sets. Never-
theless, such an extreme configuration is rarely used in
plant breeding programs, especially in perennial species,
because it requires to partly phenotype the cross to be
predicted. An intermediate configuration, scenario 1b,
could be implemented in breeding programs when PA
from scenario 2 is not sufficient and half-sib families are
available, because in this scenario, cross mean PA was
similar as in scenario 1a and individual PA intermediate
between scenarios 1a and 2.

We found TS optimization useful mostly for cross
mean prediction for crosses with low PA. The advantage
of TS optimization was less clear for individual pre-
diction. This was consistent with the fact that genetic
parameters more strongly affected cross mean PA than
individual PA. In contrast, Roth et al. [30] observed in
apple a systematic increase of individual PA with an
optimized TS in the same context (i.e. with a diversity
panel as TS and bi-parental families as VS, and common
optimization methods). To our knowledge, only a single
study tested TS optimization for cross mean prediction,
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by Heslot and Feoktistov [35], who implemented opti-
mization of parent selection for hybrid crossing in sun-
flower while selecting individuals to phenotype, but did
not calculate cross mean PA.

Since our results show that prediction of cross mean
can be quite accurate and useful in scenario 2, we
decided to go one step further and implemented cross
mean prediction for all 38 781 possible crosses between
the 279 genotypes of the diversity panel, based on
parental average genotypes (Table S2) and on marker
effects estimated with RR in this population. As predicted
cross mean were biased for some traits in the ten half-
diallel crosses (Figure S5), we estimated the bias for each
trait from these data to correct the predicted mean in
the possible diversity panel crosses. Figure S13 shows
the large potential diversity to be explored through
crossing in grape, for all the traits considered in the
present study, illustrating the finding of Myles et al.
[36] that genetic diversity in grapevine was largely
unexploited. Such an example opens many prospects
for the use of GP to design future crosses. Indeed, we
limited here our prediction to the 279 panel genotypes
representing the V. vinifera diversity, but potentially
any other (unphenotyped) genotype of interest with
dense genotypic data could be used for this purpose as
exemplified with the half-diallel, since its five parents
were not part of the diversity panel.

Prospects
Based on our results, the following improvements could
be tested: i) increase SNP density [25, 37] and include
structural variants ii) implement non-additive effects in
GP models such as dominance or epistatic effects and
iii) add crosses from other panel subpopulations as VSs.
Indeed, since all our half-diallel crosses had at least one
parent belonging to the WW subpopulation, it would
be beneficial to include crosses with parents from the
WE and TE subpopulations too. Specific GP models that
include genetic structure in marker effect estimation
[38, 39] could also be tested.

Predicting cross variance could also prove useful to
design the offspring selection step, more specifically for
choosing the number of offspring to test or produce for a
given cross. Depending on the available funds and breed-
ing program, a breeder may want to select crosses with
high genetic variance, in order to maximize the prob-
ability to generate top-ranking genotypes. Conversely,
choosing a cross with low variance could limit the risk
of breeding poor genotypes.

Conclusion
We implemented GP in grapevine in a breeding con-
text, i.e. across populations, on 15 traits, in ten related
crosses, and obtained moderate to high PA values for
some crosses and traits, thus showing GP usefulness in
grapevine. Never before had genomic prediction been
implemented for so many traits and crosses simultane-
ously in this species. We showed that per-cross PA was

strongly correlated with the genetic distance between
parents, whereas Mendelian sampling PA was largely
determined by trait-related variables, such as heritability
and the magnitude of the cross effect.

Material and methods
Plant material
The half-diallel consists of 10 pseudo-F1 bi-parental
families obtained by crossing five V. vinifera cultivars:
Cabernet-Sauvignon (CS), Pinot Noir (PN), Terret Noir
(TN), Grenache (G) and Syrah (S) [40]. Each family
comprised between 64 and 70 offspring, with a total of
676 individuals including parents.

The diversity panel consists of 279 cultivars selected
as maximizing genetic diversity and minimizing kinship
among cultivated grapevine. Grapevine genetic diversity
is highly heterozygous with a weak to moderate struc-
turation into three subpopulations: WW (Wine West), WE
(Wine East) and TE (Table East) [27].

Field experiments
Field design

The half-diallel was created in 1998 at INRAE Montpellier,
grafted on Richter 110, and planted in 2005, at the Institut
Agro experimental vineyard “Le Chapitre” in Villeneuve-
lès-Maguelone (Southern France). The progenies were
planted in two randomized complete blocks, with plots
of two consecutive plants per offspring per block.

The field design for the diversity panel was previously
described in Flutre et al. [26]. Briefly, cultivars were over-
grafted on 6-year-old Marselan in 2009, itself originally
grafted on Fercal rootstock, a few kilometers away from
the diversity panel. They were planted in five randomized
complete blocks, with one plant per cultivar per block.

Phenotyping

We studied 15 traits in both trials: berry composition
with malic (mal.ripe), tartaric (tar.ripe) and shikimic acid
(shik.ripe) concentrations in μeq.L−1 measured at ripe
stage (20◦ Brix) (according to Rienth et al. [41]), from
which two ratios were derived, shikimic / tartaric acid
(shiktar.ripe) and malic / tartaric acid (maltar.ripe); mor-
phological traits with mean berry weight (mbw, in g)
measured on 100 random berries, mean cluster weight
(mcw, in g), mean cluster length (mcl, in cm) and mean
cluster width (mcwi, in cm), measured on 3 clusters,
number of clusters (nbclu) and cluster compactness (clu-
comp) measured on the OIV semi-quantitative scale;
phenology traits with veraison date (onset of ripening;
verday, in days since January 1st), maturity date cor-
responding to berries reaching 20◦ Brix (samplday, in
days since January 1st) and the interval between verai-
son and maturity (vermatu, in days); vigour (vigour, in
kg), derived as the ratio between pruning weight and
the number of canes. Phenotypic data were collected
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between 2013 and 2017 for the half-diallel and in 2011–
2012 for the diversity panel. There was a slight over-
representation of phenotypes from the WW subpopula-
tion because of fertility issues in WE and TE subpop-
ulations. Distribution of raw phenotypic data for both
populations are shown in Figure S14.

SNP genotyping
For the half-diallel, we used genotyping-by-sequencing
(GBS) SNP markers derived by Tello et al. [40], 622 of the
676 individuals being successfully genotyped, as well as
the five parents. Raw GBS data were processed separately
for each cross, and then markers from all crosses were
merged together (390 722 SNPs), thus generating many
missing data (85% of missing data per marker on aver-
age), since all markers did not segregate in all progenies.
Markers with more than 80% of missing data were
removed and remaining markers were imputed with FIm-
pute3 [42] (86 017 SNPs). Some parental cultivars were
used either as female or male, depending on the cross, a
configuration not allowed by FImpute3. We thus declared
only a partial pedigree maximizing the number of crosses
defined with both parents (Table S4). For the diversity
panel, we used the same SNP markers as in Flutre
et al. [26], except that we applied a filter on minor allelic
frequency (5%) and no filter on linkage disequilibrium,
which yielded 83 264 SNPs. In both populations, sequence
data were mapped on PN40024 12X.v2 grapevine refer-
ence sequence before SNP calling [43].

Finally, we only retained the 32 894 SNPs common to
both populations (marker density plotted in Figure S15).

Phenotypic data analyses
Half-diallel
Statistical modeling for estimating genotypic values

For each trait, we applied a log or square-root transfor-
mation if raw data distribution was skewed according to
a QQ-test. Then, we fitted the following linear mixed full
model by Maximum Likelihood:

yijkl = μ + Gi
___

+ Cj
___

+ Bk + Yl + (B : Y)kl + (G : Y)il
______________

+ (C : Y)jl
______________

+ x
__

+ y
__

+ x : y
________

+ (x : Y)l
____________

+ (
y : Y

)
l

____________
+ εijkl

with yijkl the phenotype of genotype i from cross j in
block k and year l. Among the fixed terms, μ was the
overall mean, and Bk and Yl the effects of block k and
year l. Among the random terms, Gi and Cj were the
effects of genotype i nested within cross j, and x and y the
field coordinates. Interactions are indicated with “:”. εijkl

was the random residual term, assumed to be normally
distributed.

Sub-model selection was based on Fisher tests for
fixed effects and log-likelihood ratio tests for random
effects. It was performed with the step function from
lmerTest R-package [44]. Variance components were esti-
mated after re-fitting the selected model by Restricted

Maximum Likelihood (Table S5), and diagnostic plots
were drawn to visually check the acceptability of model
hypotheses such as homoscedasticity or normality and
detect outliers. Best Linear Unbiased Predictors (BLUPs)
of cross (C) and genotype (G) values were computed. For
genomic predictions, we used their sum (C + G) as total
genotypic values for both training and validation data.
Variance component estimates were used to compute
the proportion of genetic variance due to differences
between crosses as: σ 2

C/
(
σ 2

C + σ 2
G

)
.

Heritability estimation

We estimated overall (for the whole half-diallel) broad-
sense heritability for genotype-entry means (modified
from Schmidt et al. [45]) as:

H2 = σ 2
C + σ 2

G

σ 2
C + σ 2

G + σ2
C:Y+σ2

G:Y+σ2
x:Y+σ2

y:Y
nyear

+ σ2
x +σ2

y +σ2
x:y+σ2

ε

nyear×nrep.year

with genotype (G) and cross (C) variances at the numer-
ator. Random variance components involving year (Y)
were divided by the mean number of years (nyear). Other
random variance components involving spatial effects
or residuals were divided by the mean number of years
times the mean number of replicates per year (nrep.year).

We also estimated broad-sense heritability per cross
(thereafter used to name half-diallel full-sib family). For
that, we applied the same selected model, but removed
all effects involving cross. Then, we estimated variance
components within each cross, and heritability with the
same formula, after removing variances involving cross.

All information on analyses of phenotypic data and
heritability of the half-diallel is detailed in Table S1.

Diversity panel

We used the genotypic values previously estimated in
Flutre et al. [26] with a similar statistical procedure to the
one described above for the half-diallel. All phenotypic
analysis information is provided in Table S3 of Flutre
et al. [26].

For each of the two populations, genotypic BLUPs were
scaled to a variance of 1, allowing comparison among
traits.

Genomic prediction statistical methods
Marker effects were estimated using two methods to
take into account varying genetic architecture among the
traits studied. Ridge regression (RR) [46], best adapted
to many minor QTLs, shrinks marker effects towards 0.
Least Absolute Shrinkage and Selection Operator (LASSO)
[47], best adapted to a few major QTLs, applies a L1 norm
on allelic effects, thus forcing some to be exactly 0. Both
methods were implemented with R/glmnet package [48]
and the amount of shrinkage, controlled by λ parameter,
was calibrated by five-fold inner cross-validation within
each training set, using cv.glmnet function.
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Genomic prediction scenarios
We assessed prediction within half-diallel crosses under
three different training scenarios (Figure 2; Table S6):

• Scenario 1a: whole half-diallel prediction. We applied
random outer 10-fold cross-validation over the whole
half-diallel population. In each fold, 90% of the phe-
notyped offspring were used as the training set (TS)
and the remaining 10% as the validation set (VS).
Cross-validation was replicated ten times.

• Scenario 1b: half-sib prediction. For each half-diallel
cross used as VS, we trained the model with the
three half-sib crosses of each parent in turn, thus
predicting each cross twice.

• Scenario 2: across-population prediction. We used
the whole diversity panel as TS and each half-diallel
cross as VS. We also tested a variation of this scenario
by using only genotypes from WW subpopulation
as TS.

Predictive ability assessment
In order to account for the effect of genetic architecture,
we applied both RR and LASSO methods for each trait
and cross and kept the best PA, for both cross mean and
within cross individual prediction.

Prediction of cross mean

Cross mean PA was assessed as Pearson’s correlation
between the average value of observed total genotypic
values (sum of genotype and cross BLUPs for each off-
spring) for each cross, and the mean predicted genotypic
value per cross, calculated in two ways, as:

• average predicted value over all offspring of the cross.
In scenario 1a, each offspring was predicted 10 times,
thus we also averaged the predicted value over the 10
replicates.

• predicted value for the parental average genotype,
defined at each locus and for each cross as the mean
allelic dosage according to the expected segregation
pattern based on parents’ genotypes (Table S2).

Genotypic values predicted with these two modalities
were highly correlated (above 0.98) in the three scenarios
and for the two methods (partly shown in Figure S16).
Therefore, in subsequent analyses, we used only predic-
tion with parental average genotypes.

Pearson’s correlation between observed and predicted
values was calculated on all cross x trait combinations
(overall PA), for each trait (per-trait PA) and for each cross
(per-cross PA).

Within-cross individual prediction

We measured PA within each cross in each scenario as
Pearson’s correlation between observed total genotypic
values and predicted genotypic values.

Test of variables affecting predictive ability
We tested the effect of several variables on within-cross
individual PA, in each scenario. We built a multiple linear
regression model with PA per trait x cross combina-
tion as the response variable and as predictors, a set
of variables common to all three scenarios plus specific
variables for scenarios 1b and 2. Common variables were:
the proportion of non-segregating markers in the cross
(Table S7), overall and per-cross broad-sense heritability,
the distance between the parents of the cross measured
either as the additive relationship or as the distance on
the first or first two axes of the panel PCA (Figure 1a)
and the proportion of genetic variance due to differences
between crosses (σ 2

C/
(
σ 2

C + σ 2
G

)
ratio). A specific variable

for scenarios 1b and 2 was the mean additive relationship
between training and validation sets. In scenario 2, it was
calculated for each trait only with phenotyped individ-
uals. Specific variables for scenario 2 were: broad-sense
heritability in the diversity panel (retrieved from Flutre et
al. [26] and Table S1) and the percentage of trait variance
explained by the subpopulation factor (see below). After
fitting the overall model, we applied a forward-backward
stepwise regression, with the AIC criterion to select the
best explanatory model. Then, we estimated the rela-
tive importance of each variable selected in this model
with the pmvd method [49], which allows to decom-
pose the R2 of correlated regressors with the R-package
relaimpo [50].

The percentage of trait variance within the diversity
panel explained by subpopulation (WW, WE or TE) was
evaluated by fitting for each trait the following linear
model: G = P + ε, where G is the genotypic (BLUP) value
within the diversity panel, P is a fixed subpopulation
effect, and ε a random residual term. The percentage of
variance due to differences between subpopulations was
then estimated as the coefficient of determination (R2) of
the model.

Training set optimization
We tested three methods for optimizing TS in scenario
2, for both cross mean and within-cross individual pre-
diction. We used the STPGA R-package [51] to implement
Prediction Error Variance (PEVmean) and CDmean (based
on the coefficient of determination) [10]. Moreover, we
computed the mean relationship criterion (MeanRel), as
the mean additive relationship between each genotype
in TS and all genotypes in VS. Each optimized TS was
specific to a cross. The realized additive relationship
based on marker data was estimated using the rrBLUP R-
package [52] with the A.mat function implementing the
formula from VanRaden et al. [53]. For each of these three
optimization methods, we tested five TS sizes (50, 100,
150, 200, 250). PA values obtained with each optimized
TS were compared with those obtained with a random
sample of genotypes of the same size, repeated 10 times.
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