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Figure 1: Dealing with complex interactions in multi-object systems usually requires distributing the contact forces through mechanical
coupling. The constraint-based techniques can efficiently solve the contact problem in a constraint space but require assembling a compliance
matrix, while this process is a schur-complement of the system matrix. When simulating the deformable models with detailed discretization,
the large number of mechanical DOFs makes the computation of schur-complement very difficult with traditional solvers. In this paper, our
new methods provide a fast process for the schur-complement while being capable of completing different challenges in various examples
such as simple collision test (Left), complex interaction (Middle), and gripping task (Right).

Abstract

This paper presents a fast method to compute large-scale problems in real-time finite element simulations in the presence of
contact and friction. The approach uses a precondition-based contact resolution that performs a Cholesky decomposition at low
frequency. On exploiting the sparsity in assembled matrices, we propose a reduced and parallel computation scheme to address
the expensive computation of the Schur-complement arisen by detailed mesh and accurate contact response. An efficient GPU-
based solver is developed to parallelize the computation, making it possible to provide real-time simulations in the presence
of coupled constraints for contact and friction response. In addition, the preconditioner is updated at low frequency, implying
reuse of the factorized system. To benefit a further speedup, we propose a strategy to share the resolution information between
consecutive time steps. We evaluate the performance of our method in different contact applications and compare it with typical
approaches on CPU and GPU.

Keywords: Physics-based animation, Real-time Finite Element
simulation, Constraint-based resolution, GPU-based paralleliza-
tion.

1 Introduction

Interactive simulations received strong interest in many developing
research fields such as surgical simulations and robotic simulations.
One of the main requirements is to provide simulations of multi-
object systems with complex interactions, such as contact and fric-

tion in real-time. Many works can be found in Computer Graph-
ics to simulate deformable objects. As gold-standard methods in
the study of physics-based simulations ( [BSK20], [KE20]), ad-
vanced Finite Elements (FE) simulations are very popular in many
applications due to their capacity to predict the complex behavior
of deformable objects, providing relevant information for users in
real-time. For this purpose, real-time FE simulations must meet the
antagonistic requirements of accuracy and fast computation time at
the same time.
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The contact and friction response is always an essential issue in
interactive simulations. A simple contact model using stiff penalty
forces provides fast and approximate resolution but cannot guar-
antee to eliminate the interpenetration within a time step. In con-
trast, constraint-based approaches using Lagrange multipliers have
proven to be robust and accurate for solving coupled contacts.
However, for detailed deformable meshes, such approaches usu-
ally raise costly computations. To address this issue, paralleliza-
tion strategies are usually employed to maintain the computational
expense sufficiently low to account for user interactions. In this
context, general-purpose computing on graphics processing units
(GPGPU) has been widely studied as it provides access to mas-
sively parallel architecture with very low-cost memory transfers
compared to distributed machines. Compared to the sequential
computation on traditional central processing units (CPU), graph-
ics processing units (GPU) operate at lower frequencies but process
far more computation in parallel owing to massive parallel archi-
tecture, boosting performance for many compute-intensive tasks.
Nowadays, more and more GPU-based approaches benefit signifi-
cantly from the high performance of state-of-art GPUs with more
than thousands of cores and ample memory space.

The contributions in the current paper focus on the boost of per-
formance in contact simulations using the constraint-based tech-
nique. Using a precondition-based LDLT solver in constraint reso-
lution, the method isolates the DOFs information in the constraint
matrix. It performs a reduced computation in a constraint space
named isolated DOFs. A GPU-based implementation is developed
based on the isolated DOFs constraints, computing a parallel res-
olution. Moreover, we propose a strategy to share the computation
results in constitutive time steps, furtherly reducing the computa-
tion costs.

The rest of this paper is organized as follows. After reviewing
the related works Section 2, Section 3 presents the relevant model
of contact and friction, as well as the resolution strategy used in this
paper. Section 4 and Section 5 are dedicated to the new proposed
approach to solve the contact equations, which is finally evaluated
Section 6 in different simulation examples.

2 Related works

2.1 Physics-Based Models

In the context of interactive simulations, an important choice is the
time integration scheme. Compared to the fast and simple explicit
schemes [CTA∗08], implicit schemes [Bar96] provide better con-
trol of the residual vector and hence that the external and internal
forces are balanced at the end of the time steps. Although these ad-
vantages come at the cost of solving a set of linear equations at each
time step, implicit integration schemes offer a reasonable trade-off
between robustness, stability, convergence, and computation time,
particularly when combined with a GPU implementation.

There is a considerable volume of works in the area of implicit
simulation of deformable objects. Finite Element (FE) models pro-
vide a good understanding of the mechanisms involved in physio-
logical or pathological cases, mainly because the soft-tissue behav-
ior is directly explained through constitutive relations. However,
reaching real-time performances is very challenging when dealing

with deformable simulations. This problem is critical when using
a complex FE model with a fine mesh discretization and nonlinear
mechanical laws because of the high degrees of freedom and the
integration of the nonlinear mechanics at each step. With the rapid
growth of computational power, FE models have become compat-
ible with real-time and interactivity. First limited to linear elastic
models [BNC96], it was later extended to large displacements with
the co-rotational formulation [Fel00]. [ACF12] proposes a paral-
lel resolution on GPU for a co-rotational model without explicitly
assembling the system matrix. In [KKB18] a novel approach is
proposed for co-rotated FE simulations, splitting the deformation
energy terms to a stretching part which can be solved efficiently
by a pre-computed factorization and a volumetric part correction
which is addressed approximately. This operator-splitting method
shows considerably high performance. FE models are now used
for the simulation of hyperelastic or viscoelastic materials in real-
time [MHC∗10]. However, although some validations of the behav-
ior against real objects have been conducted, these models remain
complex and expensive, and the simulation of realistic boundary
conditions such as interactions between deformable objects is still
an issue.

On the other hand, discrete methods such as Position-Based Dy-
namics (PBD) [MHHR07] provide simple, fast, and robust sim-
ulation. However, for these methods, the material properties can
hardly be involved in their behaviors and the volume conservation
cannot be guaranteed [BMO∗14]. In order to bridge the gap be-
tween the PBD and the continuum mechanics, [BML∗14] proposed
projective dynamics that gives a good trade-off between the per-
formance of PBD and the accuracy of continuum mechanics. This
work is extended in many recent papers, such as [LBK17] for hy-
perelastic materials using a Quasi-Newton method to boost conver-
gence, [WTB∗21] for stable collision response between volumetric
objects, and [LJBBD20] for frictional contacts. Despite being com-
putationally efficient and robust, projective dynamics suffers from
some drawbacks (e.g., the iteration number should be pre-adjusted
to have correct behavior). Finally, meshless methods and Neural
Networks are other strategies to model soft tissues in real-time. A
detailed review of this topic goes far beyond the scope of this arti-
cle, but a survey can be found in [ZZG18]. In many fields such as
bio-mechanical simulations, FE methods still remain gold-standard
approaches to simulate realistic behavior with real material param-
eters.

2.2 Contact and constraint-based resolution

In contact simulations, interactions in multi-objects systems usu-
ally cause discontinuity in the velocities. This can be handled ei-
ther by the event driven scheme or by the time stepping scheme.
The event driven scheme gives accurate results but is restricted
with limited instantaneous contacts. In contrast, the time stepping
scheme involves all contacts during a fixed time step [APS99].

In the time stepping scheme, the interactions between objects
are detected in each time step (often at the beginning) by a colli-
sion detection process that defines potential constraint pairs for dis-
cretized systems. A typical collision detection method searches the
closest distances between elements on the mesh surface. [AFC∗10]
presents a novel method to define constraints based on the volume
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of interpenetration, using a GPU-based implementation to perform
fast collision detection for complex meshes.

Once the contacts are defined, one can solve the dynamic system
with different contact models that dominate the motion of inter-
acting objects. As the earliest method, the penalty methods apply
approximate forces on contact points depending on the interpene-
tration and a problem-dependent parameter named penalty value.
A larger penalty value enforces a more limited interpenetration but
also leads to a worse conditioned problem. Consequently, the meth-
ods only give an approximate solution and can hardly handle sta-
ble contacts. Being very simple to be implemented and fast, the
penalty method is still very popular in many applications of fast
simulations [BML∗14], [LBK17], [KKB18].

On the other hand, the constraint-based methods using Lagrange
multipliers ( [Jea99], [Ren13]) solve the contact problem in a cou-
pled way, addressing the limitation in the penalty methods. Such
methods provide accurate and robust solutions in contact mechan-
ics for large time steps, where interpenetration is entirely elimi-
nated at the end of time steps. The Lagrange multipliers meth-
ods can be naturally used to impose displacement (bilateral con-
straints [GOM∗06]), but interactions between multiple objects usu-
ally lead to define unilateral constraints. To address the problem,
the methods are commonly formulated as a linear complementarity
problem (LCP).

In the constraint resolution, different numerical methods can be
used to address the LCPs in physics-based animations [Erl13]. Di-
rect methods such as pivoting methods give exact resolution, but
they are not computationally efficient. In contrast, iterative meth-
ods have been more widely applied in large-scale simulations,
especially for those who require to perform real-time computa-
tions. Being simple to implement, projected Gauss-Seidel (PGS)
( [DDKA06], [CA09], [MMC16]) is able to handle the friction re-
sponse with the Coulomb’s friction cone combined in the LCP for-
mulation. However, the algorithm is not efficient for ill-conditioned
problems due to the slow convergence. In order to solve this lim-
itation, [MEM∗19] proposes using a Newton method to solve the
nonsmooth functions that are reformulated from complementarity
problems. A complementarity preconditioner is used to boost the
convergence of a conjugate residual (CR) algorithm for the con-
straint resolution. Although being very robust and efficient for in-
teractive simulations, the method is introduced in a context with
fewer degrees of freedom (DOFs) than constraints.

In physics-based animations with constrained dynamics, one ef-
ficient solution is to formulate the Schur-complement of the aug-
mented system, allowing this way to solve the problem in the con-
straint space that usually has a much smaller size than the aug-
mented system. The Schur-complement results in a compliance ma-
trix (also called Delasus operator) in the constraint space. As dis-
cussed in [AE21], the computation of Schur-complement tends to
be costly when dealing with soft-body since it implies to solve a
linear system with multiple right-hand sides. In such system, the
discretization of FE models determines the problem size (mechani-
cal DOFs) and the constraints determines the right-hand sides. We
would like to note here that although the geometrically motivated
methods (PBD and projective dynamics) also process constraint
resolution, they meet different challenges from the FE methods in

the system resolution. Building the Delasus operator is not neces-
sary for projective dynamics as the internal and external constraints
are solved locally in each element then coupled in a global solver.
But in FE simulations, the Delasus operator is important to couple
contact forces in the resolution and enables stable simulations with
complex interactions.

Many methods have been proposed to efficiently process
the Schur-complement in interactive FE simulations. [SDCG08]
presents a compliance warping to pre-compute a factorized sys-
tem in initialization and to apply correction in online simula-
tion according to the co-rotational formulation. Unfortunately,
the method is restricted with small deformation. [SG06] and
[PSLG14] present respectively a fast factorization method and a
fast Schur-complement computation using an augmented factor-
ization method. Both the two methods are parallelized in CPU
threads and integrated into Pardiso solver project, giving a fast
CPU-based resolution for linear systems and Schur-complement.
Updating Cholesky factor is suitable for FE simulations since the
deformations are usually limited in consecutive time steps. This
technique becomes very efficient by reusing factorization on sub-
meshes [HA18] and is extended to dimension addition cases (e.g.,
mesh cutting) in [HSH20]. However, even with highly optimized
methods, factorizing large-scale systems remains highly expensive
and makes it hard to be applied in real-time simulations. These
CPU-based methods suffer from a very costly factorization for de-
tailed meshes, making it hard to perform real-time simulations.
Since factorization remains a critical obstacle in real-time appli-
cations, [CADC10] proposed an asynchronous method to compute
a preconditioner for iterative method, moving the factorization of
the system into a parallel thread. This work is extended to the con-
tact simulation in [CAK∗14] to compute an approximate solution
of Schur-complement, using a highly parallelized solver on GPU.
The method enables real-time simulations with up to 2000 nodes
with 300 constraints but the computation of the Schur-complement
is dominant in the time integration.

Based on the work in [CAK∗14], the current paper aims to
improve the performance of the Schur-complement in the sim-
ulations where contact and friction constraints are handled with
precondition-based technique. Our work enables real-time simula-
tion for large-scale problems with 10000 to 20000 nodes. We pro-
pose to reformulate the Schur-complement by isolating the DOFs
information in the constraint matrix at the right-hand side. The
transformed contact matrix and the sparse system matrix allow us
to perform a significantly reduced computation, fitting into GPU-
based parallel computation. To benefit from the nature of the asyn-
chronous scheme, we also propose a strategy to reuse the compu-
tation results in consecutive time steps. All these methods finally
result in a high-speed Schur-complement computation.

3 Background

The current method is based on a general background for de-
formable simulations using implicit integration, where a constraint-
based approach solves the coupled contacts between multiple ob-
jects.
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3.1 Implicit time integration

For any time step t, the general way to describe the physical be-
havior of a deformable objective problem can be expressed using
Newton’s second law:

Mq̈ = p−F(q, q̇)+ c (1)

where M is the mass matrix, q̈ the vector of the derivative of the
velocity, p the external forces, and F(q, q̇) the function represents
the internal forces. c represents the contact and friction forces con-
tribution. A backward Euler method is used to integrate the time
step. The implicit scheme can be expressed as follows, where h is
the length of time interval [t, t +h]:

q̇t+h = q̇t +hq̈t+h

qt+h = qt +hq̇t+h
(2)

As F(q, q̇) is a non-linear function, a first-order Taylor ex-
pansion is performed to linearize the problem [Bar96]. This lin-
earization corresponds to the first iteration of the Newton-Rapson
method. The incomplete approximation may cause numerical er-
rors of the dynamic behavior, but they lean towards decreasing at
equilibrium. The internal forces are expanding as following:

F(qt+h, q̇t+h) = ft +
∂F(q, q̇)

∂q
hq̇t+h +

∂F(q, q̇)
∂q̇

hq̈t+h (3)

with ft = F(qt , q̇t).

During a time integration, the force function is considered as
constant and the partial derivative terms could be expressed as ma-
trices: ∂F

∂q̇ at (qt , q̇t) is the damping matrix B and ∂F
∂q at (qt , q̇t) is

the stiffness matrix K. By integrating Equations (1), (2) and (3) we
obtain the dynamic equation:[

M+hB+h2K
]

︸ ︷︷ ︸
A

∆q̇t+h︸ ︷︷ ︸
x

= (hpt −hft)−h2Kq̇t︸ ︷︷ ︸
b

+hc (4)

with ∆q̇ = hq̈.

3.2 Contact and friction

The response of contact and friction can be defined by Sig-
norini’s law and Coulomb’s friction law, respectively. Signorini’s
law presents the complementarity relationship along the constraint
direction n for each potential contact:

0≤ δn ⊥ λn ≥ 0 (5)

where the δn is the distance of the contact points between the inter-
acting objects and the λn is the constraint force along the constraint
direction n. The model describes a non-interpenetration physical
behavior where the constraint force is eliminated if the points are
not in contact.

The friction response is completed by Coulomb’s friction law
that describes the behavior in tangent contact space:

δ̇T = 0⇒ ||fT ||< µ||fn|| (stick)

δ̇T 6= 0⇒ fT =−µ||fn||
δ̇T

||δ̇T ||
=−µ||fn||T (slip)

(6)

where µ is the coefficient of friction and T is the motion direction in

the tangential space. In a 3D problem with dynamic friction, each
potential contact is along with two tangential directions. The model
of Coulomb’s friction law adds a non-linearity into the complemen-
tarity state in Signorini’s law.

In order to associate the contact points (usually defined on the
surface of the object with the Degrees of Freedom) at the beginning
of the time step, a mapping function J (q) can be built to link the
contacts and mechanical motion space. For two colliding objects
1 and 2, we have the interpenetration on contact pairs defined in
collision detection:

δ(t) = J1(q1(t))−J2(q2(t)) (7)

With the implicit integration (Equation (2)), the mapping functions
are linearized with a first-order Taylor expansion:

J (qt+h)≈ J (qt)+h
∂J (q)

∂q
q̇t +h

∂J (q)
∂q

∆q̇ (8)

Once the collision information is available, all the constraint
equations are then evaluated along with the collision information
that is assumed constant for the rest of the time step (see Figure
2). This leads to several simplifications: First of all, H ≈ ∂J (q)

∂q at
t the beginning of each time step , known as the constraint Jaco-
bian, can be defined, providing the constraint directions (blue and
orange arrows in Figure 2). The dimension of H is c×n, where c is
the number of discretized constraints, and n is the number of DOFs.
Similarly, the discretized violation of the constraints J (qt)≈ Hqt
is evaluated along the same constraint directions. With these sim-
plification and replacing (7) in (8) the violation of the constraint at
the end of the step can be rewritten as:

δ
t+h = δ

t +hH1∆q̇1−hH2∆q̇2 (9)

with δ
t = (H1qt

1 +hH1q̇t
1)− (H2qt

2 +hH2q̇t
2) the interpenetration

at the beginning of the time step. On the other hand, the contact
Jacobian transforms the forces λ in the contact space to the contact
forces c in the motion space:

c1 = H1
T

λ c2 =−H2
T

λ (10)

where λ is applied in two opposite ways for the two objects. We
note that each constraint group involves contact constraint n and
frictional constraint T . Consequently, Hn and HT are grouped in H;
δn and δT are grouped in δ; λn and λT are grouped in λ. Combining
Equations (4), (9) and (10), a Karush-Kuhn-Tucker (KKT) system
is assembled as follows:

A1x1−hH1
T

λ = b1

A2x2 +hH2
T

λ = b2

hH1x1−hH2x2 +δ
t = δ

t+h

(11a)

(11b)

(11c)

In addition, δ
t+h and λ at the end of time steps should satisfy the

complementarity according to Signorini’s law (Equation (5)) and
Coulomb’s law (Equation (6)).
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Figure 2: In practice, the evaluation and the linearization of the
constraints equations are difficult. To simplify the solving pro-
cess, collision detection is performed providing a set of discretized
constraints between both objects (gree lines). The number of dis-
cretized constraints usually depends on the resolution of the colli-
sion mesh and/or the collision detection method itself (for instance,
by filtering constraints afterward).

3.3 Constraint resolution

By eliminating the unknowns x1 and x2 in Equation (11c), we have:

δ
t+h = δ

t +h[H1 A−1
1 b1︸ ︷︷ ︸
xfree

1

−H2 A−1
2 b2︸ ︷︷ ︸
xfree

2

]

+h2 [H1A−1
1 H1

T +H2A−1
2 H2

T]︸ ︷︷ ︸
W

λ

(12)

where W is the Schur-complement (also called compliance matrix
or delassus operator in constrained dynamics) that project the sys-
tem matrix A in the motion space to the contact space. We process
a first step called free motion that computes the temporary motion
xfree, which mathematically corresponds to physics dynamics with-
out considering the constraints of contact and friction:

xfree = A−1b (13)

With implicit integration we may note that:

δ
t +h[H1xfree

1 −H2xfree
2 ] = [H1qfree

1 −H2qfree
2 ]︸ ︷︷ ︸

δ
free

(14)

where the free interpenetration δ
free is computed directly with the

free position qfree (integrated with xfree). Once W and δ
free are as-

sembled, a complementarity system with constraint dimension can
be formulated:

δ
t+h = δ

free +h2Wλ (15)

The unknown λ is solved by a projected Gauss-Seidel algorithm
[DDKA06] during the successive iterations (i):

δα−h2Wααλ
(i)
α =

α−1

∑
β=1

h2Wαβλ
(i)
β

+
c

∑
β=α+1

h2Wαβλ
(i−1)
β

+δ
free
α

(16)
where Wαβ is a local matrix of W that couples the contact α and β.
The complementarity problem for each contact group α is solved
in the local solution while following Signorini’s law for unilateral
contact response and Coulomb’s law for frictional response. As a
Gauss-Seidel-like algorithm, after solving each contact α, the cor-
rection on λα is immediately propagated to all the following con-

tacts. In this way, the contact forces are coupled by the compliance
matrix during the constraint resolution.

Once the λ is solved, a corrective motion is processed to integrate
the final motion xt+h:

xt+h
1 = xfree

1 +hA−1
1 H1

T
λ

xt+h
2 = xfree

2 −hA−1
2 H2

T
λ

(17)

3.4 Factorization

A primary challenge in real-time simulation is computing the
Schur-complement in Equation (12). This involves the large sys-
tem matrix A with a dimension size corresponding to the number
of mechanical DOFs. Inverting such large a system is highly expen-
sive, especially with multiple right-hand sides (RHS) in the contact
Jacobian H with a size corresponding to the number of constraints.
Processing an exact factorization for A in each time step can be
used in small scale problems but becomes prohibitive when deal-
ing with detailed soft bodies. To address the problem, many works
are dedicated to find a good approximation of the factorized system,
such as incomplete factorization ( [SG06] implemented in Pardiso
solver project), updating Cholesky factor ( [HA18], [HSH20]) and
asynchronous preconditioning strategy ( [CADC10]). In the current
paper, our main contribution relies on an hypothesis that the solver
is able to obtain a good approximation of factorization. Our work
is based on the asynchronous preconditioning strategy that releases
the computing expense in the main simulation loop. Let At be the
matrix built in a specific time t. Following [CADC10], a precon-
ditioner P can be built from an asynchronous LDLT factorization:

P = A−1
t = (LDLT)−1 (18)

where D is a diagonal matrix and L is a sparse lower triangular ma-
trix. The factorized matrices will be available after the factorization
is done, usually several time steps after time t, and used as a pre-
conditioner with the assumption that P remains a relatively good
approximation to the inverse of the current matrix At+n. Accord-
ing to [CADC10], the method is very efficient because the LDLT

factorization requires only few simulation steps (usually n < 5) to
update. The nested dissection algorithm is used to reduce the filling
of the matrix pattern, recursively dividing the mesh into two parts
with the nearly same number of vertices while keeping the divider
part at a small scale [Geo73]. Consequently, L is reordered and
partitioned into sub-domains with the indices given by the nested
dissection algorithm.

In free motion, the resolution in Equation (13) is solved with
a preconditioned Conjugate Gradient (CG) algorithm. In each CG
iteration, the application of preconditioner P implies to solve sparse
triangular systems (STS) with a vector at right-hand side:

z = Pr = L−TD−1L−1r (19)

where r is the vector of residual and z the residual applied with the
preconditioner in CG. Usually, the preconditioner is very efficient
because the preconditioner P remains a good approximation to the
inverse of the current system matrix. In practice, only 2 to 5 pre-
conditioned CG iterations are necessary to converge. However, this
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step is difficult to parallelize on a GPU due to numerous data de-
pendencies. As the triangular matrices are sparse, the solution can
easily be implemented with a Gauss elimination on the CPU.

In constraint resolution, [CAK∗14] presents a precondition-
based approach for contact problems. The asynchronous precon-
ditioner P is reused as a close approximation of the inverse of the
factorization of the current system matrix A. As a result, the com-
pliance matrix is approximately built as:

W = ∑HA−1HT ≈∑HPHT = ∑H(LDLT)−1HT (20)

with the summation of contribution of all the contacting objects.

ALGORITHM 1: Approximate computation of the Schur-
complement with the system factorized in asynchronous thread

1 S = L−1HT

2 W = ∑STD−1S

The contribution accumulation of each object on the compliance
is processed in column independently with Algorithm 1: the first
step is the resolution of multiple STS, which is usually the most
expensive task and tends to be very costly while processed sequen-
tially on CPU. [CAK∗14] proposes an efficient GPU-based solution
for multiple STS using a two-level parallelization: each right-hand
side in HT is computed in parallel multiprocessors. Since the reso-
lution of each triangular system involves numbers of dependencies,
the left-hand side L is fully processed and the result S is stored in
a dense matrix. The second step consists of matrix-matrix multipli-
cations and can be efficiently processed on GPU. Despite the fact
that the method already provides a significant speedup compared to
the sequential computation on CPU, the building of contact compli-
ance matrix still remains the most expensive process, taking a ratio
of more than 70% in time integration. Accelerating this process is
an important issue that will be addressed in the following sections 4
and 5. It has been proved in [CAK∗14] that the asynchronous pre-
conditioning strategy provides a good approximation to the actual
W (assembled with A−1), allowing to efficiently couple the contact
forces in constraint resolution.

3.5 Compliance assembly

An iterative method like Equation (16) can be performed either
with explicitly assembled W, or with an unbuilt form since pro-
cessing each iteration only requires an operation of matrix-vector
multiplication:

z = Wy = ∑(HA−1HT)y = ∑HA−1(HTy) (21)

where HTy leads to a vector, avoiding to apply the multiple right
hand sides (A−1HT). However, the possibility to not build explic-
itly W is popular as long as A−1 is sparse and easy to be com-
puted. This is the case for instance for rigid objects with a diagonal
matrix, or beam elements with a block-tridiagonal matrix where
Thomas algorithm used in [XL18] can be used to invert the system.
In these cases, the unbuilt version is known to be faster. However,
this assumption does not apply to FE models with large unstruc-
tured matrices.

Following the context in Section 3.4, as long as an approximation

of factorization can be fast obtained, the matrix-multiplication in
unbuilt scheme (Equation (21)) actually requires solving a LDLT

system:

z = ∑HA−1(HTy)≈∑H(LDLT)−1(HTy) (22)

Algorithm 2 implements the resolution of the LDLT system in
Equation (22).

ALGORITHM 2: Unbuilt scheme: implementation of the STS res-
olution (Equation 22) in iterations of relaxation methods. v1, v2, and
v3 are temporary vectors

1 v1 = L−1(HTy)
2 v2 = D−1v1
3 v3 = (LT)−1v2
4 z = Hv3

This leads to extra cost in each iteration. When dealing with large
scale problems, the LDLT resolution becomes costly. Such an ad-
dition operation in iterations will result in enormous extra compu-
tation cost. In Section 6.2.9 we will compare the cost of unbuilt
scheme and assembling W in different cases.

4 Reformulating the Schur-complement

4.1 Exploit the sparsity of constraint Jacobian matrix

The constraint Jacobian matrix H describes how the contact con-
straints are applied to mechanical degrees of freedom (DOFs).
Since the contacts are often limited in local areas, the size of con-
straint dimension c is usually far more smaller than the dimension
of mechanical DOFs n. Coupled with the fact that each constraint
is linked to limited mechanical DOFs, H is very sparse in many
cases. Based on this observation, we propose eliminating empty
columns in H and formulating a "compressed" matrix Ĥ. The re-
lation between the two matrices can be actually expressed by a
matrix-matrix multiplication (see also Figure 3):

H = ĤĪ (23)

where Ī is a "partial identity" matrix that is formulated with the
indices of non-zero columns in H. By formulating Ī we actually
isolate the indices information of mechanical DOFs that receive
contributions from the constraints from H. This generates a new
dimension "isolated DOFs" (also abbreviated to "isodof "). The ma-
trix Ī is also called as "isodof Jacobian". Compared to the constraint
dimension c, the isodof dimension k may be larger or smaller. Now,
with Equation (23), computing the Schur-complement in Equation
(20) is reformulated as:

W = ∑Ĥ ĪA−1ĪT︸ ︷︷ ︸
W̄

ĤT (24)

where W is built with Ĥ and W̄ that is called "isodof compliance
matrix".

Following Equation (20), we propose to compute with the asyn-
chronous preconditioner (A ≈ LDLT) in Algorithm 3. Step 1 is
processed by analyzing the sparse pattern of H; Step 2 involves
solving multiple STS; Step 3 and Step 4 consist of matrix-matrix
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Figure 3: The constraint Jacobian H is usually very sparse and con-
tains many empty columns. By eliminating these empty columns,
we formulate a "compressed" matrix Ĥ and a "partial identity" ma-
trix Ī that contains one element in each row that corresponds to a
non-zero column in H. The relation between matrices can be ex-
pressed by a matrix-matrix multiplication: H = ĤĪ (transposed for-
mat illustrated in the figure)

multiplications that can be efficiently computed on GPU. We un-
derline that Algorithm 3 computes the same result as in Algorithm
1 (i.e., the resolution proposed in [CAK∗14]). The only approxi-
mation comes from using a delayed system that is factorized in an
asynchronous thread.

ALGORITHM 3: Approximate computation of the Schur-
complement with the system factorized in asynchronous thread

1 Build Ī, Ĥ from H
2 S̄ = L−1 ĪT

3 W̄ = S̄TD−1S̄
4 W = ∑ ĤW̄ĤT

4.2 STS resolution strategy

The step 2 of Algorithm 3 remains a difficult task to be parallelized
on the GPU due to the data dependencies in triangular systems.
However, the isodof scheme leads to a special resolution. Each
right-hand side is no more the combination of various values (in
HT) but only contains one element with value "1" on a specific col-
umn (in ĪT). An important consequence is related to the fact that,
for each column of ĪT, only a subset value needs to be computed,
leading to a sparse resolution of the triangular system (see Figure
4). Therefore the density of S̄ is significantly reduced compared
to S (i.e., dealing with HT). In addition, the dependencies can for-
mally be expressed with an elimination tree. Given that the matrix
pattern of L only depends on the mesh topology, the elimination
tree can be pre-computed, and the sparse matrix storage of the re-
sult is predictable for every column index, as long as the topology
is not changed.

While processing the STS resolution, it can be either processed
in the "row-major" or the "column-major" (see Figure 5). When as-
suming the solutions as dense vectors (as in [CAK∗14]), process-
ing the "row-major" is more efficient because it does not cause data
writing conflict in parallel resolution. However, as the structure of

Figure 4: Resolution of one RHS in LS̄ = ĪT (the elimination tree
(top-right) helps visualize the structure of dependency in L): Each
right-hand side contains one element with value "1" on a column
index i, locating on a branch on the elimination tree. During the
resolution, only this branch with index i and its parent branches
need to be processed (red nodes on the elimination tree). Reflected
on the matrix pattern, only the red elements in L need to be pro-
cessed. This sparse resolution is very efficient compared to process
the full matrix L.

Figure 5: The STS can either be solved in the "row-major" (Top)
or in the "column-major" (Bottom). In the "row-major", using the
CSR format requires processing data in L continuously on each
row, leading to many unnecessary accumulations to the result with
zero contributions. Using the "column-major" scheme with CSC
format can naturally address this problem. When dealing with a
column i, the result on the line i is fully solved (red), but the rest
lines remain unsolved (blue) and require to pre-accumulate the con-
tributions on the lines: res[ j] = res[ j]− res[i]∗Li, j.

S̄ is very sparse, it accumulates zero contributions, causing a large
amount of unnecessary computation cost. Although the "column-
major" requires pre-accumulating the data on the positions where
the result is not yet solved (see below), it can naturally avoid this
unnecessary accumulation.
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4.3 GPU-based implementation

To implement Algorithm 3, Step 1 requires to build Ī and Ĥ. Ac-
cording to the illustration in Figure 3, Ī can be stored in a vector
that contains the non-zero columns in H. As a "compressed refor-
mulation", Ĥ have the same data sequence of H. This means that,
when stored in Compressed Row Sparse (CSR) format, they have
the same vectors of row index and values, while the vector of col-
umn index of Ĥ is built as "compressed indices".

The GPU-based implementation of STS resolution in Step 2 is
inspired from the block-row parallelization strategy in [CAK∗14].
Each right-hand side of S̄ is assigned to an independent multipro-
cessor since the multiple RHS are independent of each other (see
Algorithm 4).

ALGORITHM 4: Algorithm to address Sparse Triangular System
with multiple right-hand sides of isolated DOFs using column-major

Result: columns res in S̄ solved by multiprocessors in parallel
Initialization: compute sub-domains to be processed and their

indices in offline : subDomain, startInd, endInd ;
i = 0 ;
bx = isodo f ; // First sub-domain begins with
isodof index

end = endIndex[subDomain[i]] ;
while i < subD.size do

while bx < end do
copy_into_shared_memory(diag) ;
local_synchronization ;
solve_bloc_diagonal(diag,res) ; // see [CAK∗14]
local_synchronization ;
pre_accumulate_contributions(res) ; // Figure 5
local_synchronization ;
bx = bx+ t ; // next t columns

end
i = i+1 ;
bx = startInd[subDomain[i]] ;
end = endInd[subDomain[i]] ; // next sub-domain

end

To perform the sparse resolution in Figure 4 for each right-hand
side, we pre-compute offline the pattern to be processed for every
index. Each pattern is composed of sub-domains, with their indices
given by the reordering algorithm. As illustrated in Figure 6, within
each sub-domain, we process t columns simultaneously by using
a group of t × t threads. For each t columns, the block diagonal
(diag) is firstly processed as a dense problem; then, the off-diagonal
data is accumulated into the result. The parallel accumulations may
cause data writing conflicts, which can be handled with the atomic
function.

As S̄ and Ĥ are stored in the sparse format, once the STS resolu-
tion is processed, Step 3 and 4 in Algorithm 3 can be implemented
with the following operations:

X1 = D−1S̄ (Diag−Sparse) (25a)

W̄ = S̄TX1 (Sparse−Sparse) (25b)

X2 = W̄ĤT (Sparse−Dense) (25c)

W = ĤX2 (Sparse−Dense) (25d)

Figure 6: The STS with isodof Jacobian is solved in column-major.
Each right-hand side is assigned to an independent multiproces-
sor, and for each one, t× t threads (represented by different colors)
are used to process the resolution simultaneously. The off-diagonal
contributions are pre-accumulated to the results in parallel threads.

where Operation (25a) is a diagonal matrix-sparse matrix multi-
plication, resulting in a temporary matrix X1 with sparse format.
Operation (25b) is a sparse matrix-sparse matrix multiplication,
where the sparse structure of S̄T and X1 can be pre-computed. Op-
erations(25c), and (25d) are sparse matrix-dense matrix multiplica-
tions (SpMM) with normal or transposed format, resulting in ma-
trices with dense format. As we process the sparse computation, an
important consequence is that the operations in Step 2 and 3 in Al-
gorithm 3 are independent of the mechanical DOF dimension n. As
a result, the isodof method can be very efficient even with highly
detailed mesh.

5 Reuse of solutions in consecutive time steps

In this section, by exploiting the isodof scheme and the asyn-
chronous preconditioning scheme, we present a "reuse isodof
scheme" to benefit a further speedup.

Using the asynchronous preconditioning scheme implies that the
solvers in the main simulation loop keep using the factorized sys-
tem (LDLT) until a new factorization is done. In this case, we have
the STS resolution with the isodof scheme in two consecutive time
steps t and t + i:

S̄t = L−1Īt
T

S̄t+i = L−1Īt+i
T

(26)

where t + i represents the consecutive time steps while the factor-
ized system is not yet updated.

Moreover, the mechanical DOFs that are impacted by the contact
constraints directly depend on the local mesh area where contact
occurs. Figure 7 reveals that, in real-time simulations, consecutive
time steps usually share a part of contact area, so as the isodofs
impacted. Reflected on the matrices, the isodof Jacobian in con-
secutive time steps (Īt

T and Īt+i
T) share a part of same right-hand
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Figure 7: The evolution of contact space in a contact simulation between a deformable liver mesh and a rigid plane: The points on the mesh
show the isolated DOFs that appear in the previous time steps (blue) and the new isodofs (red). It is revealed that the consecutive time steps
usually shares same isodofs, which is relected on the isodof Jacobian matrix Ī.

sides. Consequently, while L is not updated, the results S̄t+i share
the corresponding solutions with S̄t , which are computed in previ-
ous time step t. Therefore, the following time step t + i only needs
to solve those that have not been shared:

S̄new = L−1Īnew
T (27)

where Īnew consists of new isodofs that emerges in Īt+1. Compared
to the standard isodof scheme presented in Section 4, we have a
smaller dimension to deal with, implying a further speedup.

To benefit speedup from the reuse scheme, we propose a hybrid
implementation illustrated in Figure 8:

1. standard scheme While a new factorization is done in the asyn-
chronous thread, the solver follows the operations in Algorithm
3.

2. reuse scheme While the factorized system is not updated, the
solver performs a "reuse scheme" (see the implementation be-
low).

In the "reuse scheme", a first step compares the current Ī with
the previous one Īold, outputting the new isodofs stored in a matrix
Īnew. To formulate the relation between Īold, Īnew and Ī, we use
a function π, which is a actually partial permutation and can be
represented by a matrix Pπ:

Ī = Pπ

[
Īold
Īnew

]
(28)

Following Algorithm 3 and Equation (28), W̄ in the current time
step is built as:

W̄≈ Ī(LDLT)−1ĪT

= Pπ

[
Īold
Īnew

]
(LDLT)−1 [Īold

T Īnew
T]Pπ

T

= Pπ

[
S̄TD−1S̄ S̄TD−1S̄new

S̄new
TD−1S̄ S̄new

TD−1S̄new

]
Pπ

T

= Pπ

[
W̄old S̄TD−1S̄new

(S̄TD−1S̄new)
T S̄new

TD−1S̄new

]
︸ ︷︷ ︸

W̄extend

Pπ
T

(29)

with S̄ = L−1Īold and S̄new = L−1Īnew. The former has been com-
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Figure 8: Scheme of standard/reuse scheme of isodof method:
While a new factorization is done in the asynchronous thread, the
solver performs a "standard scheme", storing the isodof Jacobian
Īold, the STS solution S̄, and the isodof delasus W̄old in GPU mem-
ory. While the solver keeps using the same factorized system of the
previous time steps, it performs a "reuse scheme".
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puted in previous time steps and the latter is to be solved in the
current time step. To finally build the current W̄, we have an "ex-
tended" matrix W̄extend to build, where the diagonal and the off-
diagonal parts are formulated as:

W̄diag = S̄new
TD−1S̄new (30a)

W̄off = S̄TD−1S̄new (30b)

The detail implementation of the "reuse scheme" is illustrated
in Figure 8. Although the number of operations is increased com-
pared to the "standard scheme", the operations (i.e., STS resolution,
SpMM...) are very efficient since they usually have much smaller
isodof dimension. Therefore, based on the isodof method presented
in Section 4, the "reuse scheme" benefit a further speedup on per-
formance from reducing the isodof dimension size. We still under-
line that the "reuse scheme" computes the same resolution as in
Algorithm 1 and Algorithm 3.

6 Results

In this section we evaluate the computation cost of the isodof
method presented in Section 4 as well as the reuse isodof method
in Section 5. The simulation tests are conducted in the open-source
SOFA framework with a CPU AMD@ Ryzen 9 5950X 16-Core at
3.40GHz with 32GB RAM, and a GPU GeForce RTX 3080 10GB.

The deformable meshes are modeled with the co-rotational for-
mulation (although it should be compatible with other materials as
proposed in [CADD15] for hyperelastic materials). Our methods
are dedicated to assembling the Delasus operator and are compat-
ible with various methods in the other steps. The free motion is
solved with a preconditioned Conjugate Gradient (PCG), and the
constraint resolution uses a projected Gauss-Seidel (PGS).

6.1 Evaluation of computation cost of the Schur-complement

In this section, we evaluate the performance of our methods in var-
ious conditions. We simulate the collision between a deformable
raptor mesh and a rigid plane mesh, using a proximity-based
method for the collision detection: The potential constraint pairs
are defined by searching the closest elements between surface tri-
angle meshes of contacting objects.

By simulating the simple collision between a deformable raptor
mesh and a rigid plane (see Figure 1, Left), the tests are executed
in conditions of various numbers of mechanical DOFs and con-
tact constraints. We compare the performance of our methods of
isodof /Reuse isodof to the method proposed in [CAK∗14] that cur-
rently provides the fastest contact resolution in SOFA framework.

In Figure 9, the isodof method shows an average speedup
of 47.42× compared to [CAK∗14] and the reuse isodof shows
a further speedup of 2.81× compared to the standard isodof
and 133.31× compared to [CAK∗14]. Our methods efficiently
limit the computation cost: with 367 constraints (326 mechanical
DOFs impacted) the isodof method takes 1.08ms; with 1860 con-
straints (1376 mechanical DOFs impacted) the isodof method takes
5.73ms, while the reuse isodof method takes 2.03ms by reusing
99.8% of the isodofs.
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In Figure 10 we show the performances of our methods accord-
ing to different mesh dimensions. The method in [CAK∗14] reveals
a quadratic function according to the number of mechanical DOFs
as the discretization of the mesh has an impact on the searching of
contact pairs in the proximity collision detection. When the prob-
lem size is increased, [CAK∗14] (dense resolution) suffers from ex-
tremely large computation cost, while this cost is limited with our
new methods (10.05ms for the isodof method and 2.32ms for the
reuse isodof method). The speedup from [CAK∗14] to the isodof
is averagely 50.55× and it is enlarged up to 133.57× for the reuse
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Method Performance (in ms)
Free Motion Build W Build + Fac. Free Motion Build W Trans. GS Corr. Time step

Pardiso-16 1129.72 37.7 57.49 57.46 26.32 1308.69
PCG + LDLT [CAK∗14] 41.45(10#it) 554.15 27.09 48.06 3.60 674.35
PCG + LDLT isodof 42.20(10#it) 13.53 26.97 47.55 3.83 134.08
PCG + LDLT reuse isodof 42.45(10#it) 6.56 26.22 46.58 3.82 125.63

Table 1: Collision simulation between a rigid plane and a deformable raptor with 59 529 mechanical DOFs and 2250 contact constraints.
Performance of various methods: system assembly + analysis for Pardiso + factorization (Build + Fac.), free motion resolution, Schur-
complement (Build W), transfer W from GPU to CPU (Trans.), Gauss-Seidel (GS) for constraint resolution, corrective motion (Corr.) as
well as the entire time step (Step). For the implementation in Pardiso (processed in 16 parallel threads), an augmented system with the
constraint Jacobian is factorized, while the factorized system is used in the resolutions of the free motion, the Schur-complement, and the
corrective motion.

isodof. As expected, our method is poorly sensitive to the mesh di-
mension while the cost of method in [CAK∗14] goes far beyond
the real-time computation with large mesh dimensions.

Other
18%

Build W
82%

BEFORE

Other
95%

Build W
5%

NOW

Figure 11: From [CAK∗14] to our methods, change of contribution
of the Schur-complement in the entire time step

In Table 1 we evaluate the entire time step for a real-time ap-
plication. We compare our methods with the solvers in Pardiso
project, which is a popularly used library for linear algebra due to
its efficiency, especially while processing in parallel CPU threads.
For direct solvers in Pardiso, a factorization process is necessary
before the free motion resolution and the Schur-complement. Al-
though the Pardiso for the Schur-complement (i.e., the method in
[PSLG14]) is very fast, it requires a prerequisite augmented factor-
ization. Computing the factorization depends directly on the dimen-
sion of mechanical DOFs, making it very difficult to achieve real-
time computation for large-scale problems. On the other hand, the
asynchronous preconditioner (i.e., the method in [CADC10] (PCG)
for the free motion, and the method in [CAK∗14] for the Schur-
complement) removes the costly building and factorization stage
out of the main simulation loop, showing a significant speedup
compared to the direct solvers. Although this method gains signif-
icant speedup, it becomes prohibitive in large-scale contact prob-
lems in real-time applications (building W takes 554.15ms and
82.18% in a time step). With the isodof and reusing isodof meth-
ods, we succeed to limit the Schur-complement within a very low
computation cost that is 13.53ms (10.09%) for isodof method and
6.56ms (5.22%) for reuse isodof method (see Figure 11)

6.2 Applications

In this section, we apply our methods to different examples. To
perform fast collision detection, we use the GPU-based method
[AFC∗10] that relies on volume interpenetration. The tests are ex-
ecuted in the following examples, with various deformable meshes
and challenges (detailed meshes, multi-objects, complex interac-
tions, heterogeneous materials...).

6.2.1 Complex interaction: Pass Torus

Figure 12: Pass a deformable armadillo through a torus. The zoom
figure shows the detailed mesh discretization with arrows that rep-
resent the constraints of contact and friction.

Figure 12 shows complex interactions between a rigid ico-
sphere, a fixed rigid torus, and a deformable armadillo that has a
detailed discretization with 31302 mechanical DOFs. The contact
from the sphere is on the center of the armadillo, pushing it through
the torus. On the other hand, the stiffness and the contacts on arms
and legs generate the forces resisting against sphere’s movement.
It is, therefore, necessary to efficiently discretize contacts with me-
chanical coupling to compute and distribute the contact forces.
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Figure 13: Collision between multiple deformable torus. The zoom
figure shows the detailed mesh discretization with arrows that rep-
resent the constraints of contact and friction.

6.2.2 Multi-objects

Our methods are compatible with multi-object systems, such as a
scenario of multi-torus (see Figure 13). In the test we simulate 10
deformable torus with 3357 mechanical DOFs for each one. Each
deformable torus is contacting with the others and the fixed pil-
lars. Although we solve smaller mechanical problems in this sce-
nario, the contact forces are transmitted among the objects, forming
a complex multi-object system. Beyond the fact that the methods
also provide speedup in multi-body contact simulations, building
the Delasus operator is crucial to take into account the mechanical
coupling of the system.

6.2.3 Dynamic contact: Rolling

To better evaluate the reuse isodof method, we design a "dynamic
test" where the contacting area keeps shifting and numbers of new
isolated DOFs appear in each time step (Figure 14). Although the
contact area keeps changing, more than 89% of isodofs are reused.
The reuse isodof method has an additional speedup of 1.5× com-
pared to the standard isodof method (7.58ms→ 5.06ms). In this
case, the reuse isodof method still receives interest since the isod-
ofs are efficiently reused between the consecutive time steps even
when the contact area is constantly varying.

Figure 14: Rolling cylinder: a dynamic contact test for the reuse
isodof method. The zoom figure shows the detailed mesh dis-
cretization with arrows that represent the constraints of contact and
friction.

Figure 15: Heterogeneous material: the red parts are 10× stiffer
than the blue parts, while the green parts are fixed. The zoom figure
shows the detailed mesh discretization with arrows that represent
the constraints of contact and friction.

6.2.4 Heterogeneous material

Our methods are compatible with heterogeneous materials. In Fig-
ure 15, we simulate the collision between a rigid ico-sphere and
a deformable armadillo of heterogeneous material with 31302 me-
chanical DOFs. The main difficulty of this example is related to the
fact that the sphere applies contact forces on stiffer parts (in red),
whereas softer parts (arms and legs in blue) should deform more
obviously. By formulating the Delasus operator, the contacts are
solved with mechanical coupling and contact forces are efficiently
distributed in heterogeneous material while enforcing fast compu-
tation time.

6.2.5 Needle Insertion

Figure 16: Needle insertion. The zoom figure shows the detailed
mesh discretization with arrows that represent the constraints of
contact and friction.

Besides contact constraints (unilateral constraints), our methods
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are also compatible with other constraint types. We apply our meth-
ods in a scenario of needle insertion, which is a popular topic in
medical simulations [AGDC19]. Figure 16 shows a process of in-
serting a needle into a deformable liver mesh (highly detailed, with
31566 mechanical DOFs). Our methods are compatible with the
needle constraints (bilateral constraints) that only impact the me-
chanical DOFs nearby the insertion trajectory, making the isodof
method very efficient. Moreover, the reuse isodof method can ben-
efit a significant speedup from reusing the isodofs nearby the inser-
tion trajectory.

6.2.6 Rich contact

Figure 17: Rich contact.

We apply our methods in a scenario where a soft pad is cover-
ing on a rigid sphere. The contact area is very large and 1200-1300
contact constraints are generated while about 900 out of 6561 me-
chanical DOFs are impacted by the constraint. The ratio of con-
straints/DOFs in this scenario is about 0.2, which is significantly
higher than other examples (less than 0.02). Our methods remain
efficient in such rich contact cases: building W takes 2.03ms with
the reuse isodof method, providing a speedup of 14.98× compared
to the method in [CAK∗14].

6.2.7 Stacking problem

Figure 18: Stacking problems. Top: assembling W allows to couple
the forces between stacking boxes with increasing masses which
are represented by gradient blues. Bottom: assembling W is espe-
cially important for the stability in a heterogeneous stacking sce-
nario with different stiffness (the blue pads are 10× stiffer than the
red pads).

We apply our methods in a stacking problem, which is similar to

the example in [MEM∗19]. In the first scenario, the stacking boxes
are modeled with FEM and large young modulus to have a behav-
ior near to rigid bodies. With increasing masses of the boxes, PGS
can still handle the problem when the total mass ratio is of 256:1.
When dealing with a mass ratio of 4096:1, the problem becomes
very poorly conditioned and difficult to be solved with PGS. How-
ever, by assembling W, our methods allows to formulate a stan-
dard complementarity (linear system in Equation (15) combined
with complementarity conditions in Equation (5) and (6)) discussed
in [Erl13], making it flexible to be solved by different methods (e.g.
pivoting methods to handle such a ill-conditioned problem).

Besides the homogeneous stacking, our methods are also tested
in a heterogeneous stacking problem. In the second scenario, the
stacking soft pads are modeled with different stiffness. Such a test
will be failed when the contact forces are not coupled (W is di-
agonal) as the system is extremely unstable, which is discussed
in [AE21]. In this test, the coupling of contact forces is very com-
plex since the interaction on each contacting faces has impact on
the other objects. Therefore, building the compliance matrix is very
important to propagate the forces over different objects. Our meth-
ods allow to efficiently address this problem by fast building W that
correctly couples the contact forces.

6.2.8 Gripping raptor

Figure 19: Grip a raptor with friction constraints. The zoom figure
shows the detailed mesh discretization with arrows that represent
the constraints of contact and friction.

Figure 20: A pick-and-place task with Soft-Robot
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Assembly scheme Unbuilt scheme
Example Mecanical DOFs Constraints Overhead (Build W) Solving LDLT PGS ite. Extra cost

Pass Torus 31302 227.7 2.19 1.61
10 16.1

200 322.0

Rich Contact 6561 1328.4 2.03 0.61
10 6.1

200 122.0
Table 2: Comparison of the additional computation cost (in ms) between the assembly scheme and the unbuilt scheme. Since the choice of
scheme will not impact the PGS performance, we can compare the overhead/extra cost in different schemes. The unbuilt scheme requires an
extra cost of solving LDLT (see Algorithm 2) in each PGS iteration. Hence, the total extra cost scales linearly with the number of iterations.
In contrast, the assembly scheme with our new method only requires a small overhead of building W and will not cause any extra cost in the
iterations.

We apply our methods on a gripping test. In a first scenario (see
Figure 19), we use a soft gripper [Dur13] with two fingers to com-
press a deformable raptor mesh with 30033 mechanical DOFs. In
a second scenario (see Figure 20), we fetch the raptor and deal
with a pick-and-place task. This scenario implies comprehensive
challenges: The deformable raptor is highly detailed, and the soft
fingers are also deformable models (with 474 mechanical DOFs
for each one). While gripping (compressing) the raptor, the fingers
and the raptor are deformed to fit the contacting surface, generating
numbers of contact constraints. Lifting, rotating, and moving the
raptor by the fingers are complex operations where friction con-
straints are necessary. Moreover, the fingers, the raptor, the rigid
plane, and the torus are grouped into a multi-object system, requir-
ing efficient distribution of contact forces through mechanical cou-
pling.

6.2.9 Assembling compliance vs. unbuilt scheme

As discussed in Section 3.5, when using a relaxation method such
as PGS, the unbuilt scheme can be an option to solve the problem.
In Table 2, we compare the additional computational cost between
the unbuilt scheme and the assembly scheme (building W). We col-
lect the data from two of our examples in the current section to
compare the methods in both limited (Pass Torus) and rich contact
(Rich Contact) cases. According to different contact cases, PGS
will need several iterations to hundreds of iterations to converge. As
illustrated in the table, for both limited/rich contact cases, the extra
cost of applying LDLT in each iteration overcomes the overhead of
building the compliance matrix after several PGS iterations. With

ten iterations, building W with our methods is already more effi-
cient than the unbuilt scheme. This gap tends to be extremely large
when the relaxation method needs hundreds of iterations to con-
verge. We note that we use the same LDLT factorization with the
same reordering technique for the different schemes in this test. For
the unbuilt scheme, the LDLT resolution process in Algorithm 2 is
optimized on GPU using a domain-decomposition technique in the
forward/backward substitutions: The patterns of L/LT matrices are
partitioned into sub-blocks that correspond to the branches on the
elimination tree (see Figure 4). We can parallelize the resolution
of branches for those who have no data dependency between each
other. Following the structure of the elimination tree, such parallel
resolution can be processed recursively until the root.

6.2.10 Evaluation

In these scenarios, we meet various challenges: The complex in-
teractions usually require to efficiently distribute the contact forces
through the mechanical coupling, such as the cases in multi-object
systems and in the problems with heterogeneous materials; The
needle insertion operation necessitates simulating both the unilat-
eral constraints for contacts and bilateral constraints for needle in-
sertion at the same time; The pick-and-place task is even more chal-
lenging with different requirements. Moreover, all the scenarios
simulate highly detailed meshes, raising large-scale problems. In
this case, typical CPU-based or GPU-based approaches suffer from
high computation costs to assemble the system W for the constraint
resolution. However, our methods can complete the challenges with
limited costs to build the compliance matrix. In Table 3 we evaluate

Example Mecanical DOFs Constraints Time Step Build W % Speedup
Pass Torus 31302 227.7 109.2 2.19 2.01 % 12.89×
Multi-torus 3357 × 10 323.28 89.81 8.83 9.83 % 3.87×

Rolling 26082 537.99 36.56 5.06 13.84 % 14.27×
Hetero-Material 31302 270.96 156.17 2.14 1.37 % 19.84×
Needle Insertion 12555 96.84 25.56 3.29 12.87 % 1.86×

Rich Contact 6561 1235.40 24.95 2.03 8.14 % 14.98×
Stacking 30240 163.26 121.54 4.00 3.29 % 1.00×

Hetero-Stacking 2205 240.0 18.86 1.69 8.96 % 1.04×
Catch Raptor 30033 486.59 144.76 0.73 0.50 % 64.00×

Table 3: Performance (in ms) in various examples: we evaluate the computation cost of the Schur-complement (Build W with the reuse
isodof method), its percentage in a time step, and the speedup compared to the method in [CAK∗14].
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the computation cost of the Schur-complement as well as its con-
tribution in an entire time step. Although in different applications,
our methods have different performances, we succeed in limiting
the cost of building the Delasus operator within less than 10ms
in all the examples. Consequently, with our methods, the Schur-
complement process in constraint-based resolutions is no more a
critical obstacle in real-time simulations.

7 Conclusion and future work

In this paper, we presented a fast approach for constraint resolu-
tion in large-scale FE simulations. Our methods are founded on
precondition-based contact resolution. The isodof method refor-
mulates the Schur-complement by isolating the mechanical DOFs
in the constraint Jacobian matrix. This reformulation allows us to
perform a sparse resolution that is also suitable for parallelizing
on GPU. The reuse isodof method further decreases the problem
dimension size, making it more efficient to compute the Schur-
compelement. Even in the case where number of constraints and
number of mechanical DOFs are highly raised, our methods are
capable of limiting the computation costs, making the Schur-
complement process no more an obstacle in the real-time simu-
lations (see Figure 11). Furthermore, our methods mathematically
compute the same result with the method in [CAK∗14]. As a result,
we enable the possibility to compute large-scale real-time simula-
tions in the presence of contact and friction.

In our experimentation set, the simulations are only tested with
co-rotational models that rely on a GPU-based matrix-free solver
[ACF11]. However, such GPU implementation is not available for
other hyperelastic models in SOFA. A CPU-based implementation
for hyperelastic models becomes extremely prohibitive for large-
scale problems we are addressing. Therefore, we did not show the
results with these models because the model will be dominant in
terms of computation time (while our methods are compatible with
hyperelastic models, as demonstrated in [CADD15]). Parallelizing
such models is not in the scope of the paper. But one of our future
works is to implement such a GPU-based implicit solver and to
enable real-time computation for hyperelastic models.

The fast computation brings about a limitation for asynchronous
preconditioners: The computation cost in the main simulation loop
is significantly reduced; In contrast, the factorization in asyn-
chronous thread remains very costly; the number of simulation
steps that are necessary to update the asynchronous factorization is
considerably increased. Using a slowly updated matrix may cause
significant errors in case of large deformations. An efficient so-
lution may be to process the asynchronous factorization on GPU,
which requires performing asynchronous multi-GPU computation.
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