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Introduction

Extracting association rules from transactional databases have received intensive research since its introduction by Rakesh Agrawal et al. in [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF]. Initially referring to data analysis, several new application domains have been identified, including among others, bioinformatics, medical diagnosis, networks intrusion detection, web mining, documents analysis, and scientific data analysis. This broad spectrum of applications enabled association analysis to be applied to a variety of datasets, including sequential, spatial, and graph-based data. Interestingly, association patterns are now considered as a building block of several other learning problems such as classification, regression, and clustering.

Most approaches have mentioned that the classical association rules mining task produces too many rules [START_REF] Bastide | Mining minimal non-redundant association rules using frequent closed itemsets[END_REF][START_REF] Fournier-Viger | TNS: mining top-k non-redundant sequential rules[END_REF][START_REF] Gasmi | IGB: A new informative generic base of association rules[END_REF][START_REF] Kryszkiewicz | Representative association rules and minimum condition maximum consequence association rules[END_REF][START_REF] Zaki | Mining non-redundant association rules[END_REF]. The huge size of such set of rules does not help the user to easily retrieve relevant informations. Such observation leads to various definitions of redundancy in order to limit the number of association rules. Thenceforth, many research have focused on eliminating redundant rules while maintaining the set of relevant ones called (minimal) non-redundant association rules. Different kinds of non-redundant rules have been introduced such as the Generic Basis [START_REF] Bastide | Mining minimal non-redundant association rules using frequent closed itemsets[END_REF], the Informative Basis [START_REF] Bastide | Mining minimal non-redundant association rules using frequent closed itemsets[END_REF], the Informative and Generic Basis [START_REF] Gasmi | IGB: A new informative generic base of association rules[END_REF], Minimum Condition Maximum Consequent Rules (MMR) [START_REF] Kryszkiewicz | Representative association rules and minimum condition maximum consequence association rules[END_REF] and the set of representative association rules [START_REF] Kryszkiewicz | Representative association rules[END_REF] that cover all the association rules. To prune out redundant rules, almost approaches share the two following steps: [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF] find the set of minimal generators and closed itemsets, and (2) generate confident rules by considering the two sets already mined in step one.

Recently, declarative approaches have been proposed to tackle several data mining tasks through constraint programming (CP) and propositional satisfiability (SAT) [START_REF] Guns | Itemset mining: A constraint programming perspective[END_REF][START_REF] Guns | k-pattern set mining under constraints[END_REF][START_REF] Järvisalo | Itemset mining as a challenge application for answer set enumeration[END_REF][START_REF] Khiari | Constraint programming for mining n-ary patterns[END_REF][START_REF] Métivier | A constraint language for declarative pattern discovery[END_REF]. In [START_REF] Boudane | A sat-based approach for mining association rules[END_REF], the authors proposed a new framework for mining association rules in one step using propositional satisfiability leading to a competitive approach compared to specialized techniques. Encouraged by these results, we propose in this paper to extend this framework for extracting the minimal non-redundant rules. The redundancy is eliminated elegantly using new constraints combined to some others listed in [START_REF] Boudane | A sat-based approach for mining association rules[END_REF]. We show that two kinds of non-redundant rules can be addressed. Furthermore, a restriction of our encoding can be used to extract the minimal generators.

Preliminaries

Propositional Logic and SAT Problem

We here define the syntax and the semantics of propositional logic. Let Prop be a countably set of propositional variables. We use the letters p, q, r, etc to range over Prop. The set of propositional formulas, denoted Form, is defined inductively started from Prop, the constant ⊥ denoting false, the constant denoting true, and using the logical connectives ¬, ∧, ∨, →. We use V ar(φ) to denote the set of propositional variables appearing in the formula φ. The equivalence connective ↔ is defined by

φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ).
A formula φ in conjunctive normal form (CNF) is a conjunction of clauses, where a clause is a disjunction of literals. A literal is a positive (p) or negated (¬p) propositional variable. The two literals p and ¬p are called complementary. A CNF formula can also be seen as a set of clauses, and a clause as a set of literals.

An interpretation I of a propositional formula φ is a function which associates a value I(p) ∈ {0, 1} (0 corresponds to f alse and 1 to true) to the variables p ∈ V ar(φ). A model or an implicant of a formula Φ is an interpretation I that satisfies the formula in the usual truth-functional way. SAT problem consists in deciding if a given CNF formula admits a model or not.

Association Rules

Let Ω be a finite non empty set of symbols, called items. From now on, we assume that this set is fixed. We use the letters a, b, c, etc to range over the elements of Ω. An itemset I over Ω is defined as a subset of Ω, i.e., I ⊆ Ω. We use 2 Ω to denote the set of itemsets over Ω and we use the capital letters I, J, K, etc to range over the elements of 2 Ω .

A transaction is an ordered pair (i, I) where i is a natural number, called transaction identifier, and I an itemset, i.e., (i, Example 1. For instance, let us consider the transaction database D depicted in Table 1. We have C({c, d}, D) = {1, 2, 3, 4, 5} and Supp({c, d}, D) = 5 while Supp({f }, D) = 3. The itemset {c, d} is closed, while {f } is not since Supp({f }, D) = Supp({c, d, f }, D). In this work, we are interested in the problem of mining association rules (M AR). An association rule is a pattern of the form X → Y where X (called the antecedent) and Y (called the consequent) are two disjoint itemsets. In M AR, the interestingness predicate is defined using the notions of support and confidence. The support of an association rule X → Y in a transaction database D, defined as Supp(X → Y, D) = Supp(X∪Y,D)

I) ∈ N × 2 Ω . A

|D|

, determines how often a rule is applicable to a given dataset, i.e., the occurrence frequency of the rule. The confidence of X → Y in D, defined as Conf (X → Y, D) = Supp(X∪Y,D) Supp(X,D) , provides an estimate of the conditional probability of Y given X. When there is no ambiguity, we omit to mention the transaction database D , and we simply note Supp(X → Y ) and Conf (X → Y ).

A valid association rule is an association rule with support and confidence greater than or equal to the minimum support threshold (minsupp) and minimum confidence threshold (minconf) respectively. More precisely, given a transaction database D, a minimum support threshold minsupp and a minimum confidence threshold minconf, the problem of mining association rules consists in computing MAR(D, minsupp, minconf

) = {X → Y | X, Y ⊆ Ω, Supp(X → Y, D) minsupp, Conf (X → Y, D) minconf }
Table 2 illustrates some association rules with their corresponding supports and confidences. For instance, Supp({a} → {b}) = 3 6 and Conf ({a} → {b}) = 1.

SAT-Based Association Rules Mining

In this section, we briefly review the recent approach proposed in [START_REF] Boudane | A sat-based approach for mining association rules[END_REF] for mining association rules through Boolean satisfiability. The basic idea consists in modeling such mining task as a propositional formula whose models corresponds to the required association rules. In this encoding, two sets of Boolean variables are used to represent the items of an association rules X → Y and the transactions. Then, the support and the confidence of an association rule are captured through 0/1 linear inequalities over the Boolean variables associated to transactions. In order to define the SAT-based encoding, we fix, without loss of generality, a set Ω of n items, a transaction database D = {(1, I 1 ), . . . , (m, I m )} where ∀i ∈ {1, m}, I i ⊆ Ω, a minimum support threshold minsupp and a minimum confidence threshold minconf .

In order to capture the two part of each association rule, we associate two Boolean variables to each item a, denoted x a and y a . The variables of the form x a (resp. y a ) are used to represent the antecedent (resp. consequent) of each candidate rule. Then, to represent the cover of X and X ∪ Y , each transaction identifier i ∈ {1, m} is associated with two propositional variables p i and q i . The variables of the form p i (resp. q i ) are used to represent the cover of X (resp. X ∪ Y ). More precisely, given a Boolean interpretation B, the corresponding association rule, denoted r I , is

X = {a ∈ Ω | I(x a ) = 1} → Y = {b ∈ Ω | I(y b ) = 1}, the cover of X is {i ∈ {1, m} | I(p i ) = 1}, and the cover of X ∪ Y is {i ∈ {1, m} | I(q i ) = 1}.
The SAT-based encoding of the problem of enumerating association rules consists in a set of constraints defined as follows.

( a∈Ω xa) ∧ ( a∈Ω ya) (1) 
a∈Ω

(¬xa ∨ ¬ya) (2) 
i∈1..m ¬pi ↔

a∈Ω\I i xa (3) i∈1..m ¬qi ↔ ¬pi ∨ ( a∈Ω\I i ya) (4) i∈1..m qi m × minsupp (5) i∈1..m qi i∈1..m pi minconf (6) 
The two clauses of Formula 1 express that X and Y are not empty sets. Formula (2) allows to express X ∩ Y = ∅. It is simply defined by imposing that x a and y a are not both true for every item a. The third constraint is used to represent the cover of the itemset corresponding to the left part of the candidate association rule. Given an itemset X, we know that the transaction identifier i does not belong to C(X, D) if and only if there exists an item a ∈ X such that a / ∈ I i . This property is represented by constraint (3) expressing that p i is f alse if and only if X contains an item that does not belong to the transaction i. In the same way, the formula (4) allows to capture the cover of X ∪ Y .

To specify that the support of the candidate rule has to be greater than or equal to the fixed threshold minsupp (in percentage), and the confidence is greater than or equal to minconf , we use the constraints ( 5) and ( 6) expressed by 0/1 linear inequalities.

To extend the mining task to the closed association rules, the following constraint is added to express that X ∪ Y is a closed itemset [START_REF] Jabbour | The top-k frequent closed itemset mining using top-k sat problem[END_REF]:

a∈Ω (( i∈1..m q i → a ∈ I i ) → x a ∨ y a ) (7) 
This formula means that, for all item a ∈ Ω, if we have

C(X ∪ Y, D) = C(X ∪ Y ∪ {a}, D)
, which is encoded with the formula i∈{1,m} q i → a ∈ I i , then we get a ∈ X ∪ Y , which is encoded with x a ∨ y a .

Minimal Non-Redundant Association Rules

In this section, we present our encoding of the problem of extracting nonredundant rules into propositional satisfiability. First, we focus on the interesting representation that corresponds to the minimal non-redundant association rules (MNRs in short) [START_REF] Kryszkiewicz | Representative association rules and minimum condition maximum consequence association rules[END_REF][START_REF] Bastide | Mining minimal non-redundant association rules using frequent closed itemsets[END_REF].

Definition 1. An association rule r : X → Y is a minimal non-redundant rule iff there is no association rule r : X → Y different from r s.t. (i) Supp(r) = Supp(r ), (ii) Conf (r) = Conf (r ) and (iii) X ⊆ X and Y ⊆ Y .
Example 2. Consider again the association rules given in Table 2. In this set of rules, r 2 : {a} → {b, c, d} is a minimal non-redundant rule while r 1 : {a} → {b} is not.

In the following proposition, we point out that all the minimal non-redundant association rules are closed.

Proposition 1. If r : X → Y is a minimal non-redundant association rule in a transaction database D then X ∪ Y is a closed itemset D. Proof. Assume that X ∪ Y is not a closed itemset. Then, there exists an item a / ∈ X ∪ Y s.t. Supp(X ∪ Y, D) = Supp(X ∪ Y ∪ {a}, D)
. Consider now the rule r : X → Y ∪ {a}. Clearly, we get Supp(r) = Supp(r ) and Conf (r) = Conf (r ) since Supp(X ∪ Y, D) = Supp(X ∪ Y ∪ {a}, D). Thus, r is not a minimal nonredundant association rule and we get a contradiction.

In other words, the minimal non-redundant association rules are the closed rules in which the antecedents are minimal w.r.t. set inclusion. Using this property, the authors of [START_REF] Bastide | Mining minimal non-redundant association rules using frequent closed itemsets[END_REF] provided a characterization of the antecedents of the minimal non-redundant rules, called minimal generators.

Definition 2 (Minimal Generator). Given a closed itemset X in a transaction database D, an itemset X ⊆ X is a minimal generator of X iff Supp(X , D) = Supp(X, D) and there is no X ⊆ X s.t. X ⊂ X and Supp(X , D) = Supp(X, D).

Usual algorithms use the set of frequent closed itemsets together with minimal generators to extract the set of minimal non-redundant association rules. Then, most existing approaches to mine minimal association rules proceed in two steps. In our approach, we propose to extend the SAT-based encoding proposed in [START_REF] Boudane | A sat-based approach for mining association rules[END_REF] to retrieve the minimal non-redundant association rules in one step.

In order to define a SAT-based encoding of the problem of generating the minimal non-redundant association rules, we only need to extend the encoding described in Section 3 with a formula that forces each antecedent to be a minimal generator. To this end, we use a formula that represents the fact that if Supp(X → Y, D) = Supp(X \ {a} → Y, D), then a has to be excluded from X, i.e., a / ∈ X. However, we write the contraposition of this property. Indeed, the following formula expresses that, for all item a, if a belongs to X then the support of X is smaller than the support of X \ {a}:

( a∈Ω x a → (i∈1..m, a ∈Ii) ( b / ∈Ii∪{a} ¬x b )) ∨ ( b∈Ω x b = 1) (8) 
We use E M N R (D, minsupp, minconf ) to denote the encoding ( 1)

∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8).
The soundness of E M N R (D, minsupp, minconf ) comes directly from the following proposition: Proposition 2. The association rule r : X → Y is a minimal non-redundant rule iff r is a closed association rule, and |X| = 1 or, for all item a ∈ X, Supp(X, D) > Supp(X \ {a}, D).

Proof. Part ⇒. Using Proposition 1, we know that r is a closed association rule. Assume now that there exists an item a ∈ X s.t. Supp(X, D) = Supp(X \ {a}, D). Then, r : X \ {a} → Y ∪ {a} is a closed association rule s.t. Supp(r, D) = Supp(r , D) and Conf (r, D) = Conf (r , D). Thus, we get a contradiction since r is a minimal non-redundant association rule. Part ⇐. Using the fact that r is a closed association rule, we know that there is no association rule r : X → Y s.t. X ∪Y ⊂ X ∪Y and Supp(r, D) = Supp(r , D). Moreover, knowing that Supp(X, D) > Supp(X \{a}, D) for every a ∈ X, we get Conf (X \ {a} → Y ∪ {a}, D) < Conf (r, D) for every a ∈ X. As a consequence, r is a minimal non-redundant association rule. Proof. It come from the soundness of the encoding (1)∧(2)∧(3)∧(4)∧( 5)∧( 6)∧(7) w.r.t. the problem of generating closed association rules, Proposition 2 and the fact that [START_REF] Guns | k-pattern set mining under constraints[END_REF] expresses that Supp(X, D) > Supp(X \ {a}, D) for every a ∈ X.

Let us note that the constraint ( 8) is not a CNF formula. In order to avoid the blow up in terms of the number of clauses resulting from the transformation of (8) into CNF, new additional variables can be added to present the subformulas of the form b / ∈Ii∪{a} ¬x b i.e., z i ↔ b / ∈Ii∪{a} ¬x b . Nonetheless, using this transformation, the number of resulting clauses from constraint ( 8) is in O(m × |Ω| 2 ) which may make the model enumeration much more harder. To limit the number of clauses, we propose the following transformation which is equivalent to the property captured by [START_REF] Guns | k-pattern set mining under constraints[END_REF].

( a∈Ω (x a → (i∈1..m, a ∈Ii) ¬z i )) ∧ ( i∈1..m (¬z i → b / ∈Ii x b ≤ 1)) ∨ ( b∈Ω x b = 1) (9)
In fact, this transformation comes from the fact that ( b / ∈Ii∪{a} ¬x b ) is equivalent to ( b / ∈Ii x b ≤ 1) in the case where I i does not contain a. As a consequence, (9) expresses exactly the requirements of (8). The additional variables z i allow to obtain an efficient encoding.

Note that ( 9) can be encoded in O(m × |Ω|) rather than O(m × |Ω| 2 ) of the previous formulation. A linear constraint of the form n i=1 x i ≤ 1, commonly called AtMostOne constraint, can be encoded in a linear way [START_REF] Sinz | Towards an optimal CNF encoding of boolean cardinality constraints[END_REF] using additional variables as follows.

(¬x 1 ∨ s 1 ) ∧ (¬x n ∨ ¬s n-1 ) ∧ 1<i<n (¬x i ∨ s i ) ∧ (¬s i-1 ∨ s i ) ∧ (¬x i ∨ ¬s i-1 ) (10)
Thus, the constraint (¬y → n i=1 x i ≤ 1) can be obtained by adding y to each clause of [START_REF] Jabbour | Decomposition based SAT encodings for itemset mining problems[END_REF]. However, this can slow down the unit propagation process. In fact, when more than one x i is assigned to true, y is not deduced to be true directly by unit propagation. To increase the power of unit propagation, one need to add y only on negatives binary clauses of [START_REF] Jabbour | Decomposition based SAT encodings for itemset mining problems[END_REF] as shown in [START_REF] Järvisalo | Itemset mining as a challenge application for answer set enumeration[END_REF].

(¬x 1 ∨s 1 )∧(y∨¬x n ∨¬s n-1 )∧ 1<i<n (¬x i ∨s i )∧(¬s i-1 ∨s i )∧(y∨¬x i ∨¬s i-1 ) (11)
It is worth noting that one can use some of the constraints above to enumerate all the minimal generators. As mentioned before, the minimal generators are the antecedents of the minimal non-redundant rules. As a consequence, the encoding (3)∧(5)∧(9) (restricted to X) allows us to get all the minimal generators.

Another notion of non-redundant rules has been defined in the work of M. Zaki [START_REF] Zaki | Mining non-redundant association rules[END_REF]. It is slightly different from representative rules defined in [START_REF] Kryszkiewicz | Representative association rules[END_REF]. It consists in mining association rules, called the most general rules (MGR in short), that have the shortest antecedent and consequent (in terms of inclusion) in an equivalent class of rules (with the same confidence and support). Definition 3. [START_REF] Zaki | Mining non-redundant association rules[END_REF] An association rule r : X → Y is a non-redundant rule iff there is no association rule r :

X → Y different from r s.t. (i) Supp(r) = Supp(r ), (ii) Conf (r) = Conf (r ) and (iii) X ⊆ X and Y ⊆ Y .
Unlike the non-redundant notion in Definition 1, the closure constraint on X ∪ Y in Zaki's notion is obviously omitted.

Example 3. Considering again the association rules of Table 2. The rule r 1 : {a} → {b} is non-redundant while r 2 : {a} → {b, c, d} is not.

Proposition 4 provides a characterization of Zaki's non-redundant association rules.

Proposition 4. Given an association rule r : X → Y in a transaction database D, r is a non-redundant rule iff (i) |X| = 1 or ∀a ∈ X, Supp(X \ {a}, D) > Supp(X, D); and (ii

) |Y | = 1 or ∀b ∈ Y , Supp(X ∪ Y ) < Supp(X ∪ Y \ {b}).
Proof. Part ⇒. Assume that |X| > 1 and there exists a ∈ X such that Supp(X \ {a}, D) = Supp(X, D). Then, Supp(X \ {a} → Y, D) = Supp(r, D) holds. Moreover, we have Supp(X ∪ Y \ {a}, D) = Supp(X ∪ Y, D). Thus, we have Conf (X \ {a} → Y, D) = Conf (r, D). As a consequence, we get a contradiction since r is non-redundant rule, and we obtain the property (i).

Assume now that there exists b

∈ Y such that |Y | > 1 and Supp(X ∪ Y \ {b}, D) = Supp(X ∪ Y, D). Then, Conf (X → Y \ {b}, D) = Conf (X → Y, D)
holds. Moreover, we have Supp(X → Y \ {b}, D) = Supp(X → Y, D). Thus, using the fact that r is a non-redundant rule, we get a contradiction, and then we obtain the property (ii). Part ⇐. Assume that r is a redundant rule. Then, there exists a ∈ X ∪ Y s.t.

Supp(X \ {a} → Y, D) = Supp(r, D) if a ∈ x, and Conf (X → Y \ {a}, D) = conf (r, D) otherwise. Thus, we get Supp(X \ {a}, D) = Supp(X, D) if a ∈ X,
and Supp(X ∪ Y ) = Supp(X ∪ Y \ {b}) otherwise. As a consequence, using the properties (i) and (ii) we get a contradiction. Therefore, r is non-redundant.

Using the characterization provided in Proposition 4, we only need to add to the encoding E M N R (D, minsupp, minconf ) without the closeness constraint a new constraint representing the property (ii) to get an encoding for mining Zaki's non-redundant rules. Our definition of such constraint is as follows:

a∈Ω y a → ( (i∈1..m, a ∈Ii) (p i ∧ b / ∈Ii∪{a} ¬y b )) ∨ ( b∈Ω y b = 1) (12) 
It is worth noting that the constraint ( 12) is very similar to [START_REF] Guns | k-pattern set mining under constraints[END_REF]. Indeed, the difference is in the fact that we use the variables p i to reason about the cover of X ∪ Y and not only Y . Furthermore, one can easily see that [START_REF] Khiari | Constraint programming for mining n-ary patterns[END_REF] can be encoded into a CNF formula in the same way as [START_REF] Guns | k-pattern set mining under constraints[END_REF].

Experiments

In this section, we present a comparative experimental evaluation of our proposed approach with specialized association rules mining algorithms. We consider the minimal non redundant (MNR) association rules mining task.

To enumerate the set of models of the resulting CNF formula, we follow the approach of [START_REF] Boudane | A sat-based approach for mining association rules[END_REF]. The proposed model enumeration algorithm is based on a backtrack search DPLL-like procedure. In our experiments, the variables ordering heuristic, focus in priority on the variables of respectively X and Y to select the one to assign next. The main power of this approach consists in using watched literals structure to perform accurately the unit propagation. Let us also note that the constraint ( 5) and ( 6) dedicated to frequency and confidence are managed without translation into CNF form, leading to an hybrid SAT-CSP model enumeration algorithm. Indeed, the linear inequalities ( 5) and ( 6) are managed and propagated on the fly as usually done in constraint programming. Each model of the propositional formula encoding the association rules mining task, corresponds to an association rule obtained by considering the truth values of the propositional variables encoding the antecedent (X) and the consequent (Y ) of this rule.

In the experiments, SAT4MNR indicates our SAT based solver for mining the minimal non redundant association rules. In addition we consider SAT4MNR-D that partition the search as in [START_REF] Jabbour | Decomposition based SAT encodings for itemset mining problems[END_REF]. This is done as follows: Let Ω = {a 1 , . . . , a n }, we transform the problem into n mining problem where each one encodes rules X → Y s.t. {a 1 . . . , a i-1 } ⊂ X and a i ∈ X. Moreover, we denote by SAT4MGR our SAT based solver for mining most general rules (Definition 3).

To assess the performance of our constraint based encoding for minimal nonredundant rules, we compare our solver to two specialized association rules mining solvers namely CORON1 and SPMF2 [START_REF] Fournier-Viger | Spmf: a java open-source pattern mining library[END_REF]. CORON and SPMF are two multi-purpose data mining toolkits, impemented in Java, and which incorporate a rich collection of data mining algorithms. For minimal non redundant association rules, we compare our approach to the ZART algorithm implemented in CORON and SPMF toolkits, which is one of the recent and the most efficient state-of-the-art algorithms for enumerating minimal non redundant association rules [START_REF] Szathmary | ZART: A multifunctional itemset mining algorithm[END_REF]. Let us recall that ZART finds the minimal non redundant associations rules in two steps. Firstly, the set of all frequent closed itemsets and the minimal generators are extracted rapidly. Second, the identification of non-redundant rules is then performed. This two steps-based procedure is more time consuming.

To compare the performances of our proposed approach, for each data we proceed by varying the support from 5% to 100% with an interval of size of 5%. The confidence is varied in the same way. Then, for each data, a set of 400 configurations is generated. All the experiments were done on Intel Xeon quadcore machines with 32GB of RAM running at 2.66 Ghz. For each instance, we fix the timeout to 15 minutes of CPU time.

Results: Table 3 describes our comparative results. We report in column 1 the name of the data and its characteristics in parenthesis: number of items (#items), number of transactions (#trans) and density. For each algorithm, we report the number of solved configurations (#S), and the average solving time (avg.time in seconds). For each unsolved configuration, the time is set to 900 seconds (time out). In the last row of Table 3, we provide the total number of solved configurations and the global average CPU time in seconds.

According to such results, SAT4MNR outperforms the two specialized solvers CORON and SPMF. It solves 488 configurations more than CORON and 920 We can also remark that for Lymph data SAT4MNR-D solves all the configurations in an average time of 7s where CORON and SPMF cannot solve all the configurations and they take a lot of time compared to SAT4MNR-D. More generally, the higher the density of the data, the better are the performances of SAT4MNR. Interestingly enough, partitioning the mining, allows to push further the performances of SAT4MNR.

In fact, SAT4MNR-D allows us to obtain better performances i.e., 168 more solved instances and the average time solving is improved from 235.15 to 215.31. Unsurprisingly, SAT4MGR, solves less configurations than SAT4MNR. In fact, the set of minimal non-redundant rules is known to be reduced related to most general non-redundant ones.

Figure 1 depicts the behavior of the considered association rules mining approach on two representative data, Anneal and kr -vs -kp. The results are obtained by varying one parameter, while maintaining the others fixed. When the minimum support decreases, the time needed to find all the rules increases. Let us remark that for CORON and SPMF the time increases rapidly compared to SAT4MNR-D. For anneal data SPMF (resp. CORON) is not able to provide all non redundant rules when the minimum support is lower than 85%(resp. 65%). In contrast, with SAT4MNR and SAT4MNR-D it is possible to obtain all rules for all values in the minimum support range. For kr-vs-kp it is important to note that the time needed to extract rules increases drastically for SPMF and CORON even if the confidence is higher. For instance, when the minimum sup- port goes from 100% to 80% the time is multiplied by at least 10. Such increasing is very limited for SAT4MNR and SAT4MNR-D. Finally, in Table 4, we provide the variation of the ratio between the number of classical (pure) rules, closed, generalized non redundant rules, and the minimal non-redundant rules for kr-vs-kp data. As we can observe, the number of minimal non-redundant association rules is smaller than those of generalized ones. The latter is smaller than closed association rules that is itself smaller than pure ones especially. For instance, when minimum support is equal to 40, the minimal nonredundant association rules presents 2.85% from all the classical association rules where the generalized ones is about 3.90%. 

Conclusion and perspectives

In this paper we proposed a novel approach for discovering non-redundant association rules. We show that non-redundant rules with minimum antecedent and maximum consequences can be captured by modeling this problem into propositional satisfiability. We demonstrated that our approach is highly declarative and flexible. Indeed, we have shown that minimal generators can be extracted using similar kind of constraints. We have also shown how to catch the non-redundant rules with minimum antecedent and minimum consequences. The experimental evaluation shows that our proposed approach achieves better performance than specialized mining techniques. As a future work, we plan to address the question of mining most general rules having adjacent itemsets [START_REF] Zaki | Mining non-redundant association rules[END_REF] using satisfiability to have a compact representation of the set of most general non-redundant rules.

  transaction database D is defined as a finite non empty set of transactions (D ⊆ N × 2 Ω ) where each transaction identifier refers to a unique itemset. Given a transaction database D and an itemset I, the cover of I in D, denoted C(I, D), is defined as {i ∈ N | (i, J) ∈ D and I ⊆ J}. The support of I in D, denoted Supp(I, D), corresponds to the cardinality of C(I, D), i.e., Supp(I, D) = |C(I, D)|. An itemset I ⊆ Ω such that Supp(I, D) 1 is a closed itemset if, for all itemsets J with I ⊂ J, Supp(J, D) < Supp(I, D).

  The soundness of our encoding means that a Boolean interpretation I is a model of E M N R (D, minsupp, minconf ) if and only if X = {a ∈ Ω | I(x a ) = 1} → Y = {b ∈ Ω | I(y b ) = 1} is a minimal non-redundant association rule. Proposition 3. The encoding E M N R (D, minsupp, minconf ) is sound.

Fig. 1 .

 1 Fig. 1. Results highlights: Anneal and kr-vs-kp

Table 1 .

 1 A Transaction Database D

	Name Asso. Rules	Support Confidence
	r1 {a} → {b}	3/6	1
	r2 {a} → {b, c, d}	3/6	1
	r3 {c} → {d}	5/6	5/6
	r4 {c, d} → {e, f, g} 2/6	2/5

Table 2 .

 2 Some association rules

Table 3 .

 3 Non-Redundant Associations Rules: SAT4MNR vs CORON vs SPMF more than SPMF. SAT4MNR-D is the best on all the data in terms of the number of solved configurations and average CPU time, Except for mushroom data where CORON is better in term of time but SAT4MNR-D solves all the configurations. Let us remark that for mushroom data, the number of minimal non redundant association rules is very limited. This explains why SAT4MNR is worse than CORON on this data. For instance, on anneal data, SAT4MNR is remarkably efficient. It solves about 100 configurations more than CORON and about 200 configurations more than SPMF.

		SAT4MNR-D SAT4MNR	CORON	SPMF	SAT4MGR
			avg.		avg.		avg.	avg.	avg.
	data (#items, #trans, density)	#S time(s) #S time(s) #S time(s) #S time(s) #S time(s)
	Audiology (148, 216, 45%)	21 854,82	21 854.87	20 855.01	20 855.00	20 855.00
	Zoo-1 (36, 101, 44%)	400	0.23 400	0.27 400	1.35 373 108.60 400	0.71
	Tic-tac-toe (27, 958, 33%)	400	0.34 400	0.14 400	0.24 400	0.20 400	0.61
	Anneal (93, 812, 45%)	279 337.25 248 405.82 160 591.39	80 724.46 221 461.05
	Australian-credit (125, 653, 41%)	298 265.74 278 309.32 251 352.01 220 417.94 263 358.40
	German-credit (112, 1000, 34%)	354 149.03 328 212.58 321 206.34 278 294.45 304 272.88
	Heart-cleveland (95, 296, 47%)	331 200.28 317 235.79 271 307.57 240 368.21 286 289.28
	Hepatitis (68, 137, 50%)	360 140.69 343 170.89 286 284.09 260 331.57 315 228.13
	Hypothyroid (88, 3247, 49%)	150 615.13 126 649.22 104 681.52	80 751.23 109 676.03
	kr-vs-kp (73, 3196, 49%)	198 504.62 172 556.85 168 552.04 140 627.64 158 583.25
	Lymph (68, 148, 40%)	400	6.78 400 19.21 357 131.07 280 316.78 395 37.15
	Mushroom (119, 8124, 18%)	400 146.87 389 77.02 400	3.81 360 97.25 354 181.89
	Primary-tumor (31, 336, 48%)	400	2.08 400	4.61 400	4.15 379 87.66 400	8.11
	Soybean (50, 650, 32%)	400	0.36 400	0.20 400	0.61 380 48.51 400	2.26
	Vote (48, 435, 33%)	400	5.43 400 30.46 364 87.56 380 84.82 372 111.06
	Total	4790 215.31 4622 235.15 4302 270.58 3870 340.94 4397 271.05

Table 4 .

 4 kr-vs-kp : Pure vs Closed vs MNR vs MGR

	minimum support (%)	40	45	50	55	60	65	70
	#P ures/#Closed	7.67	5.68	3.64	2.99	2.46	1.95	1.67
	#Closed/#M GR	2.40	2.16	1.95	1.78	1.61	1.46	1.35
	#M GR/#M N R	1.94	1.83	1.73	1.63	1.54	1.45	1.38

Coron: http://coron.loria.fr/site/system.php

SPMF: http://www.philippe-fournier-viger.com/spmf/