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We examine the relation between a stochastic version of the rough path
integral with the symmetric-Stratonovich integral in the sense of regulariza-
tion. Under mild regularity conditions in the sense of Malliavin calculus, we
establish equality between stochastic rough path and symmetric-Stratonovich
integrals driven by a class of Gaussian processes. As a by-product, we show
that solutions of multi-dimensional rough differential equations driven by a
large class of Gaussian rough paths they are actually solutions to Stratonovich
stochastic differential equations. We obtain almost sure convergence rates of
the first-order Stratonovich scheme to rough paths integrals in the sense of
Gubinelli. In case the time-increment of the Malliavin derivative of the in-
tegrands is regular enough, the rates are essentially sharp. The framework
applies to a large class of Gaussian processes whose the second-order deriva-
tive of the covariance function is a sigma-finite non-positive measure on R

2
+

off diagonal.

1. Introduction. Let X be a d-dimensional continuous Gaussian process over a
bounded time interval [0, T ] and equipped with a second-order process X so that X= (X,X)
is a γ-geometric rough path for 1

3 < γ < 1
2 (see e.g Lyons [23] and Gubinelli [19]). Let

DX

(

R
d) be the space of d-dimensional processes Y controlled by X in the sense that there

exists a R
d×d-valued process Y ′ such that

(1) Yt − Ys = Y ′s (Xt −Xs) +As,t,

where a two-parameter process A implicitly defined by (1) satisfies

(2) lim
ǫ→0+

1

ǫ

∫ t

0
〈As,s+ǫ,Xs+ǫ −Xs〉ds= 0 (in probability),

for each t > 0. A typical example of a pair (Y,Y ′) ∈ DX

(

R
d) is a controlled rough path in

the sense of Gubinelli as described in (5). The goal of this paper is to establish equality of
a suitable stochastic version of the rough path integral (in the sense of Gubinelli [19]) with
the symmetric-Stratonovich integral (in the sense of stochastic calculus via regularizations,
see e.g. [29]) for a given pair (Y,Y ′) ∈ DX

(

R
d). In particular, we study the problem of the

(almost sure) convergence rate of the first-order Stratonovich approximation scheme

(3) I0(ǫ, Y, dX)(t) :=
1

2ǫ

∫ t

0

〈

Ys,X(s+ǫ)∧t −X(s−ǫ)∨0

〉

ds

to rough path integrals driven by X of controlled rough paths (Y,Y ′) in the sense of Gubinelli
[19].

Stratonovich integrals play a prominent role in stochastic analysis. Since Wong and Zakai’s
pioneering work [32], we know that the Stratonovich formulation of stochastic differential
equations (SDEs)
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(4) dYt = f(Yt)dXt

has the important interpretation of being approximated by a sequence of ordinary differential
equations driven by smooth approximations Xn for a continuous semimartingale driving
noise X . Lyons establishes the rough path theory in his seminal work [23] and uses a Wong-
Zakai-type argument to establish well-posedness of SDEs (4) driven by rather general noises.
Rough path theory provides a robust pathwise solution which is continuous with respect to
the driving path X . Lyons’s deep insight was to realize that what really controls the dynamics
in (4) is not the path of X but rather a “natural” lift of X to a random rough path X. Gubinelli
[19] observes that, in the regime 1

3 < γ < 1
2 , a consistent integration theory can be formulated

by fixing X and considering integrands of the form (Y,Y ′) satisfying

(5) Yt − Ys = Y ′s(Xt −Xs) +RY
s,t,

where RY
s,t =O(|t− s|r) a.s for r = γ + β, Y ′ is β-Hölder continuous with 2γ + β > 1. In

his approach, the celebrated Sewing lemma (see e.g [12, 19]) plays a fundamental role on the
construction of the rough path integral (Y,Y ′) 7→

(∫

Y dX, Y
)

which is described by

(6)
∫ T

0
YsdXs = lim

‖Π‖→0

∑

ti∈Π

{

〈Yti ,Xti+1
−Xti〉+ Y ′tiXti,ti+1

}

,

almost surely, as the mesh of partitions ‖Π‖ → 0. The role of the underlying probability
measure is totally restricted to the construction of the rough path X and the Sewing lemma
is applied pathwisely.

Another approach in dealing with integrals driven by irregular noises is via regularization
([29]) which is based on integral-type approximations of the form

(7)
∫ t

0
Y d∗Xs = lim

ǫ→0+

1

ǫ

∫ t

0
〈Ys,X(ǫ, s)〉ds, ∗=+,−,0,

where 1
ǫ
X(ǫ, s) encodes a sort of “derivative approximation” of X and convergence (7)

should be interpreted in probability. This gives rise to three different types of stochastic
integrals called backward (+), forward (−) and symmetric-Stratonovich (0) integrals. In
this approach, none higher-order approximation scheme is employed. The connection with
semimartingale theory, Young and Skorohod integrals has been studied over the years by
many authors (see e.g [30], [1], [7], [16]). When the driving noise has very low regularity, it
turns out that symmetric-Stratonovich integral is the correct choice (see e.g [7], [17], [18]).
A one-dimensional theory of symmetric-Stratonovich SDEs is constructed by [10], where
the driving noise is a general finite-cubic variation process (in the sense of [11]) and a semi-
martingale.

Coming back to the rough path theory approach, in one hand, in general, one cannot avoid
the inclusion of the second-order process X in (6). On the other hand, in the case the driv-
ing noise X is an F-continuous semimartingale, the classical Stratonovich stochastic integral
coincides with the stochastic rough path integral (9) driven by a Stratonovich second-order
process X and DX

(

R
d) coincides with the space of F-weak Dirichlet processes. In this direc-

tion, we refer to the recent paper [15] and also Friz and Victoir’s book [section 17.2, [14]]. We
also drive attention to [22] where the authors produce first-order trapezoidal approximations
for (6) in case X belongs to a rather general class of Gaussian processes and Y ′ is also con-
trollable in the sense of [19]. In [26] one shows that the presence of X in (6) can be neglected
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in case X is a “typical price path” with finite quadratic variation, which confirms earlier
considerations in [9]. In the case Y is a gradient system or a solution of a rough differential
equation driven by a class of Gaussian geometric rough paths, then it is known that Skorohod
correction terms can be derived. In this direction, see e.g [20] and [4, 5], respectively.

The above results suggest that the rough path integral of a pair (Y,Y ′) ∈ DX

(

R
d)

driven by Gaussian geometric rough paths can be recast as a purely first-order symmetric-
Stratonovich stochastic integral in the sense of regularization [29]. The main result of this
paper demonstrates that this is almost the case, at least for a large class of Gaussian driv-
ing noises and derivatives Y ′ satisfying weak regularity conditions in the sense of Malliavin
calculus. More precisely, recall that the symmetric-Stratonovich integral, in the sense of reg-
ularization ([29]), it is defined by

(8)
∫ t

0
Ysd

0Xs := lim
ǫ↓0

I0(ǫ, Y, dX)(t) (in probability).

In this article, the rough path integral will be interpreted in the sense of regularization and
the convergence topology will be given in probability rather than almost sure:

(9)
∫ t

0
YsdXs = lim

ǫ→0+

1

ǫ

∫ t

0

(

〈Ys,Xs+ǫ −Xs〉+ Y ′sXs,s+ǫ

)

ds (in probability),

where the area process X is given by

(10) Xs,t =

∫ t

s

(Xr −Xs)d
0Xr,

and by convention we set Xu = XT ;u > T . In this article, we show equivalence between
the two integrals in the following sense. Let D1,p be the Malliavin-Watanabe space associ-
ated with the Malliavin derivative D supported by a probability measure P. The equivalence
is stated below in an informal way. The reader is referred to Theorem 5.1 for the precise
statement of Theorem 1.1 described below.

THEOREM 1.1. Let X be a d-dimensional continuous Gaussian process with covariance

kernel R whose the Schwartz second-order derivative of R is a non-positive sigma-finite

measure dµ = ∂2Rdx which is absolutely continuous w.r.t Lebesgue on [0, T ]2 off diago-

nal. Assume (Y,Y ′) ∈ DX(Rd) and there exist p, q > 2 such that t 7→ Y
′

t is a D
1,p-valued

continuous function and

(11)
∫ T

0

∫ T

v2

sup
s≥v1 or s<v2

‖Dv1Y
′

s −Dv2Y
′

s‖
q
Lq(P)|∂

2R(v1, v2)
∣

∣

q

2 dv1dv2 <∞.

Then, (8) exists, if and only if, (9) exists. Moreover, when (Y,Y ′) ∈DX(Rd) is integrable, we

have
∫ t

0
YsdXs =

∫ t

0
Ysd

0Xs

= lim
ǫ→0+

1

ǫ

∫ t

0

(

〈Ys,Xs+ǫ −Xs〉+ Y ′sSym(Xs,s+ǫ)
)

ds,(12)

in probability, where Sym(X) is the symmetric part of X given by (10).



4

Theorem 1.1 almost immediately implies that solutions of rough differential equations
driven by X= (X,X) (see Example 7) are also solutions to multi-dimensional Stratonovich
SDEs of the form

(13) Yt = Y0 +

∫ t

0
V (Ys)d

0Xs,

for smooth coefficients V . See Corollary 5.1.
The equivalence presented in Theorem 1.1 yields the investigation of the (L2(P) and

almost sure) rate of convergence of the first-order Stratonovich approximation scheme
I0(ǫ, Y, dX)(T ) to a rough path integral. For sake of conciseness, we approach this prob-
lem in the case of the fractional Brownian motion driving noise. In the sequel, we summarize
two major consequences of Theorem 1.1 applied to rough path integrals driven by a fractional
Brownian motion with parameter 1

3 <H < 1
2 .

COROLLARY 1.1. Let X = (X1, . . . ,Xd) be a d-dimensional fractional Brownian mo-

tion with parameter 1
3 <H < 1

2 . Let X= (X,X) be the geometric rough path given by (10).

Assume that f :Rd →R
d ∈C2

b and fix ρ > 0 such that 0< ρ< 2H − 1
2 . Then,

(14)

∣

∣

∣

∣

∣

∫ T

0
f(Xs)dXs − I0(2−n, f(X), dX)(T )

∣

∣

∣

∣

∣

. 2−nρ → 0,

almost surely, as n→+∞.

COROLLARY 1.2. Let X = (X1, . . . ,Xd) be a d-dimensional fractional Brownian mo-

tion with parameter 1
3 <H < 1

2 . Let X= (X,X) be the geometric rough path given by (10)

and V ∈C3
b

(

R
d,L(Rd,Rd)

)

. Let Y be the solution of the rough differential equation

Yt = Y0 +

∫ t

0
V (Ys)dXs; 0≤ t≤ T.

Fix 1
3 < γ <H and ρ such that 0< ρ< γ +2H − 1. Then

(15)

∣

∣

∣

∣

∣

∫ T

0
YsdXs − I0(2−n, Y, dX)(T )

∣

∣

∣

∣

∣

. 2−nρ → 0,

almost surely, as n→+∞.

1.1. Discussion of results and idea of the proofs. In the sequel, we fix a Gaussian process
X satisfying Assumptions A, B, C, D, E and F with a given exponent −4

3 < α<−1 realizing

(16) |∂2R(s, t)|. |t− s|α + φ(s, t),

on [0, T ]2 \D, where D is the diagonal of [0, T ]2. The typical example is the bifractional
Brownian motion with exponents 1

3 <HK < 1
2 , H ∈ (0,1) and K ∈ (0,1]. In this section,

we discuss the main results of this paper, namely, Theorems 5.1, 6.2 and their Corollaries 1.1
and 1.2.

Under the regularity condition (11), Theorem 5.1 implies that if one relax almost sure con-
vergence to convergence in probability, the anti-symmetric part Anti(X) plays no role in the
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convergence of the integral in (12). Moreover, one can compute the stochastic rough inte-
gral (9) through a first-order symmetric-Stratonovich scheme I0(ǫ, Y, dX) without involving
the higher-order term X. Let X = (X,X) be the geometric process defined by (10) and let
Anti(X) be the antisymmetric part of X. The main argument in the proof of Theorem 5.1 is
the verification that the convergence

(17) lim
ǫ→0+

1

ǫ

∫ t

0

〈

Y ′s ,Anti(Xs,s+ǫ)
〉

F

ds= 0 (in probability)

holds true in typical situations for (Y,Y ′) ∈ DX(Rd), where 〈·, ·〉F denotes the Frobenius
inner product on the space of d× d-matrices. The analysis of (17) starts with the represen-
tation of Anti(X) in terms of the divergence operator. In a second step, we provide delicate
estimates on Skorohod integrals involving Y ′ and components of Anti(X). Convergence (17)
(in the sense of Riemann sum) is analyzed by [22], where the authors assume a pathwise
second-order additional decomposition for Y , where Y ′ follows (5) equipped with a second
Gubinelli’s derivative Y ′′. On the one hand, in contrast to [22], none second-order pathwise
expansion of Y is employed in our framework. See Example 8 and Remark 5.2. On the other
hand, we assume Malliavin-type regularity on Y ′. We believe (11) is the natural stochastic
regularity condition to insure (17) and, indeed, (11) it is fulfilled for a large class of examples.

We stress the simplest possible case takes place when (Y,Y ′) ∈ DX(Rd) is a controlled
rough path in the Gubinelli’s sense and Y ′ is symmetric. This case is examined by [13] and
one can reduce the relevant information to the reduced rough path X = (X,Sym(X)). In
this work, we show that this phenomenon takes place in typical situations much beyond the
symmetric case. For instance, when Y ′ is deterministic (see e.g Example 8), condition (11) re-
quires only continuity of t 7→ Y ′t . We stress the equality (12) provided by Theorem 5.1 can fail
outside the class of integrands (Y,Y ′) ∈ DX(Rd). Indeed, in general, limǫ↓0 I

0(ǫ, Y, dX)(t)
does not require the structure (1) and (2) imposed on the set DX(Rd). See Lemma 6.3
for a simple case. We emphasize Theorem 5.1 can be extended to the less regular case
−3

2 < α ≤ −4
3 by working with a corresponding level-3 Stratonovich geometric process.

We postpone this analysis to a future work.
In Theorem 6.2, we further study the precise limiting behavior I0(ǫ, Y, dX)(T ) to a

symmetric-Stratonovich integral in a broader regime −3
2 < α < −1. The rate of conver-

gence to a rough path integral is then obtained by Theorem 5.1 and restricting to the
case −4

3 < α < −1. Theorem 6.2 presents a sufficient condition for the existence of the
symmetric-Stratonovich integral under Malliavin regularity conditions and we explore an
L2(P)-rate of convergence. Although other classes of Gaussian process can also be presented
in Theorem 6.2, for convenience of exposition, we only present the case of the fractional
Brownian motion 1

4 <H < 1
2 so that α = 2H − 2 and φ = 0 in (16). This is the content of

Theorem 6.2. For this purpose, we explore a decomposition of (3) in terms of “Skorohod
component plus a trace term”. This type of approximate decomposition has already appeared
in the seminal work of [25] in the Brownian motion context and also in the fractional Brow-
nian motion context in the works [2, 1]. They both explored undirect density-type arguments
of simple processes which do not allow the obtention of convergence rates. Recently, in the
particular case of rough differential equations, [4, 5] also explore such type of decomposition
without convergence rates. The recent work [31] mixes the Malliavin derivative trace with
Gubinelli’s derivative without the obtention of convergence rates.

In the present work, we obtain the rates based on the regularity of the shifted process Y·+r

when r → 0 (see Proposition 4.1 and Lemma 4.4) and a detailed analysis on Tr(DY )ǫ (see
(64)) in terms of two assumptions. There exist γ > 0 and η > 0 such that 2γ + 2H − 1> 0
and η + 2H − 1 > 0 which realize (40) and (76), respectively. Corollaries 1.1 and 1.2 are
consequences of Theorems 6.2 and 5.1. The L2(P)-convergence rate is given by
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(18) E

∣

∣

∣

∣

∣

∫ T

0
YsdXs − I0(ǫ, Y, dX)(T )

∣

∣

∣

∣

∣

2

. ǫ2γ+2H−1 + ǫ2(η+2H−1),

for every ǫ > 0 sufficiently small. At this point, it is important to discuss the sharpness of
the convergence rates. Typically, in non-trivial situations, we expect 0< γ ≤H . If the time
increment of the Malliavin derivative is regular enough in the sense that η ≥ γ + 1

2 −H in
(76), then the leading term in the right-hand side of (18) is ǫ2γ+2H−1 and the rate becomes
ǫ(4H−1)− as long as γ ↑H . We observe in case γ =H and η ≥ 1

2 , we get the exact rate ǫ4H−1.
In these cases, the rate is essentially sharp considering that the Lévy area diverges when H =
1
4 , see e.g [8]. This can also be viewed in Corollary 1.1. Unfortunately, in case γ+ 1

2 −H > η,
the leading term in the right-hand side of (18) is ǫ2(η+2H−1) and then the L2(P)-rate becomes
ǫ(6H−2)− as long as η ↑H . In this case, it is not sharp. This happens in the case of the rough
differential equation as described in Corollary 1.2. This phenomenon appears due to high
singularity found in the Radon-Nikodym derivative ∂2R(r1, r2) =H(2H − 1)|r1 − r2|

2H−2

on [0, T ]2 \D which, in our strategy, it requires the existence of

∫

0≤r1<r2≤T
tr[Dr1Yr2 −Dr2−Yr2 ]|r1 − r2|

2H−2dr1dr2.

In order to improve the rate ǫ(6H−2)− in the case η ↑H and γ+ 1
2 −H > η, one needs to work

with a distinct decomposition of I0(ǫ, Y, dX)(T ) not involving the trace of the Malliavin
derivative of Y .

The paper is organized as follows. In Section 2, we fix some notation and we define some
basic objects. Section 3 presents the basic elements of the Gaussian space of the driving
noise. Section 4 presents some important tools from Malliavin calculus. Section 5 presents
Theorem 5.1 and some examples. Section 6 presents the proof of Theorem 6.2, Corollaries
1.1 and 1.2. The proof of Theorem 5.1 is given in the Appendix A.

2. Preliminaries. At first, we introduce some notation. In the sequel, finite-dimensional
spaces will be equipped with a norm | · | and T is a finite terminal time. The notation Cα is
reserved for α-Hölder continuous paths defined on [0, T ] for α ∈ (0,1], with values in some
finite-dimensional space. For f ∈ Cα, the usual seminorm is given by

‖f‖α := sup
s,t∈[0,T ]

|fs,t|

|t− s|α
,

where, when convenient, we use the notation fs,t := ft − fs. The sup-norm on the space of
continuous functions will be denoted by ‖ · ‖∞. For a two-parameter function g, we write
g ∈ Cβ

2 if

‖g‖Cβ2 := sup
s,t∈[0,T ]

|gs,t|

|t− s|β
<∞,

for β > 0. We further write a . b for two positive quantities to express an estimate of the
form a ≤ Cb. By convention, any continuous function f defined on [0, T ] will be extended
(when necessary) to the real line R as

f(t) :=

{

f(0); if t≤ 0
f(T ); if t≥ T.



ROUGH PATHS AND SYMMETRIC-STRATONOVICH INTEGRALS 7

Throughout this article, we are given a reference continuous Rd-valued stochastic process
X equipped with a second-orderRd×d-valued stochastic process X which satisfies the Chen’s
relation

(19) Xs,t −Xs,u −Xu,t =
(

Xi
s,uX

j
u,t

)

1≤i,j≤d
,

for every (s,u, t)∈ [0, T ]3. We then write X= (X,X). Let us consider

Xs,t =
1

2

(

X
i,j
s,t +X

j,i
s,t

)

+
1

2

(

X
i,j
s,t −X

j,i
s,t

)

; 1≤ i, j ≤ d,

=: Sym(Xs,t) + Anti(Xs,t).

Throughout this paper, all stochastic processes are defined on a given probability space
(

Ω,F ,P
)

.

DEFINITION 2.1. We say that a pair X= (X,X) is a geometric process if

Sym(Xs,t) =
1

2
[(Xt −Xs)⊗ (Xt −Xs)]

:=
1

2
(Xi

t −Xi
s)(X

j
t −Xj

s ) ; 1≤ i, j ≤ d, s, t ∈ [0, T ].(20)

DEFINITION 2.2. Given a reference process X , we say that an L(Rd,Rn)-valued
stochastic process Y is stochastically controlled by X if there exists an L(Rd,L(Rd,Rn))-
valued stochastic process Y ′ so that the remainder term RY given implicitly by the relation

(21) Yt − Ys = Y ′sXs,t +RY
s,t,

is orthogonal to X , i.e.,

(22) lim
ǫ→0+

1

ǫ

∫ t

0
RY

s,s+ǫXs,s+ǫds= 0,

in probability for each t ∈ [0, T ].

This defines the set DX(L(Rd,Rn)) of all stochastically controlled processes (Y,Y ′) sat-
isfying (21) and (22). When n= 1, we write DX(Rd) :=DX(L(Rd,R)).

REMARK 2.1. Clearly, the concept of stochastically controlled processes does not de-

pend on a Gaussian structure for the driving noise. In fact, if F is a filtration and X is a

continuous F-local martingale, then the class of stochastically controlled processes coin-

cides with the class of continuous F-weak Dirichlet processes, see Prop 3.7 in [15].

Next, we illustrate the fundamental role played by the notion of cubic (resp. strong cubic)
variation introduced by [11], see Section 2.1.

EXAMPLE 1. Let X be a d-dimensional continuous process whose coordinates are finite
strong cubic variation processes and at least one component has a zero cubic variation. The
typical example is fractional Brownian motion with parameter 1

3 ≤ H < 1. Let f : Rd →

R
d ∈C2. Then, f(X) ∈DX(Rd). For details, see Example 3.6 in [15].
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Inspired by Gubinelli [19], let us now give the definition of the integral in the sense of
regularization.

DEFINITION 2.3. For a given R
d-valued reference process X = (X,X), we say that

(Y,Y ′) ∈DX(Rd) is rough stochastically integrable if

(23)
∫ t

0
YsdXs := lim

ǫ→0+

1

ǫ

∫ t

0

(

YsXs,s+ǫ + Y ′sXs,s+ǫ

)

ds

exists in probability for each t ∈ [0, T ].

We observe Y ′ can be viewed as an L(Rd×d,R)-valued process via the canonical injec-
tion L(Rd,L(Rd,R)) →֒ L(Rd×d,R). Moreover, we make an abuse of notation: we omit the
dependence of the integral on Y ′ which in general affects the limit but it is usually clear from
the context.

The next result is a simple consequence of the Sewing Lemma in the context of geometric
rough paths (see e.g [19, 13, 23, 14]).

LEMMA 2.4. Let X= (X,X) be a random γ-geometric rough path in the sense of [19],

where X ∈ Cγ and X ∈ C2γ
2 a.s with 1

3 < γ < 1
2 . Let (Y,Y ′) be a controlled rough path

in sense of [19], i.e., Y is an R
d-valued process with γ-Hölder continuous paths, Y ′ is an

L(Rd,L(Rd,R))-valued process with γ-Hölder continuous paths so that the remainder term

RY given implicitly by relation

(24) Yt − Ys = Y ′sXs,t +RY
s,t

satisfies RY ∈ C2γ
2 a.s. Then, (Y,Y ′) ∈DX(Rd) and the limit

lim
ǫ→0+

1

ǫ

∫ ·

0

(

Ys(Xs+ǫ −Xs) + Y ′sXs,s+ǫ

)

ds

exists almost surely and uniformly on [0, T ]. Moreover, it coincides with the rough path inte-

gral as described in [19].

For a proof of Lemma 2.4, see Proposition 6.1 in [15].

3. The structure of the Gaussian space. In this section, we describe the class of the
Gaussian driving noises that we will consider in this article. In the sequel, W is a (zero
mean) real-valued Gaussian continuous process such that W0 = 0 a.s. Let us denote

R(s1, s2) := E[Ws1Ws2 ]; (s1, s2) ∈R
2
+.

A priori, R is only continuous on R
2
+ and hence ∂2R := ∂2R

∂s1∂s2
will be interpreted in the

sense of distributions. We denote

D := {(s1, s2) ∈R
2
+; s1 = s2}

and to shorten notation, sometimes the elements of R2
+ \D will be denoted by v= (v1, v2). A

priori, ∂uR(u, v), ∂vR(u, v) and ∂2R(u, v) are Schwartz distributions. We explore regularity
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of R outside the diagonal D. Throughout the paper, the following assumptions will be in
force.

Assumption A For every s ∈ [0, T ], R(dx; s) is a non-negative finite measure absolutely
continuous w.r.t Lebesgue.

Assumption B We suppose the product of the distribution ∂2R with the smooth function
(s1 − s2)

∂2R(s1, s2)(s1 − s2)

is a regular distribution on R
2
+ which is a real Radon measure that we denote by µ̄.

Assumption C

(i) ∂2R is a sigma-finite non-positive measure and absolutely continuous w.r.t Lebesgue
on R

2
+ \D. With a slight abuse of notation, we denote it by dµ = ∂2Rdx on R

2
+ \D. We

assume that the Radon-Nikodym derivative satisfies

(25)
∣

∣∂2R(s1, s2)
∣

∣.
(

|s1 − s2|
α + φ(s1, s2)

)

,

for (s1, s2) ∈ [0, T ]2 \D, where −3
2 < α<−1 and there exists L > 1 such that φ : [0, T ]2 \

D→R is a symmetric p-integrable function over [0, T ]2 \D for every p ∈ (1,L). Of course,
the Radon-Nikodym derivative ∂2R has support on [0, T ]2 \D.

(ii) Var
(

Wt−Ws

)

. |t−s|α+2, where −3
2 <α<−1 is the exponent given in Assumption

C(i).

Of course, C(ii) and the Gaussian property imply that W has γ-Hölder continuous paths
for any 1

4 < γ < α
2 + 1. Under Assumption B, one can check the total variation measure |µ|

is absolutely continuous w.r.t the total variation measure |µ̄| with Radon-Nikodym derivative
given by 1

|y−x| .

Assumption D Let φ and α be respectively the symmetric function and the exponent which
appear in Assumption C. There exists a non-increasing integrable function ϕ : [0, T ]→ R+

such that

1.
∫ b

a
|φ(r1, r2)|dr1 . |b− a|

α+2

2 ϕ(r2)

2.
∫ d

c
ϕ(y)dy . |d− c|

α+2

2

3. s
α+2

2 ϕ(s) ∈L1[0, T ], for every a, b, c, d in [0, T ].
4.

∣

∣R(v1, T )−R(v2, T )
∣

∣. |v1 − v2|
α+2

for every v1, v2 ∈ [0, T ]2 \D.

EXAMPLE 2. Let W be a fractional Brownian motion with exponent 0<H < 1
2 . Then,

R(s1, s2) =
1

2

(

s̃2H1 + s̃2H2 − |s̃2 − s̃1|
2H
)

; (s1, s2) ∈R
2
+,
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where s̃i = si ∧ T for i= 1,2. Assumptions A, B and C are fulfilled. Indeed, s1 7→R(s1; s)
is absolutely continuous for each s ∈R+, where

∂s1R(s1, T ) =

{

H[s2H−11 + (T − s1)
2H−1] if s1 < T

0 if s1 > T.

Moreover,

µ̄(ds1ds2) =H(2H − 1)|s1 − s2|
2H−1sgn(s1 − s2)1[0,T ]2\D(s1, s2)ds1ds2

and

∂2R(s1, s2) =H(2H − 1)|s1 − s2|
2H−2

1[0,T ]2\D(s1, s2),

for (s1, s2) ∈R
2
+ \D. Assumption D is fulfilled for 1

4 <H < 1
2 and φ= 0.

EXAMPLE 3. Let W = BH,K be a bifractional Brownian motion with parameters H ∈
(0,1),K ∈ (0,1). It is known (see e.g [28])

R(s1, s2) = 2−K
[

(s̃2H1 + s̃2H2 )K − |s̃1 − s̃2|
2HK

]

,

where s̃i = si ∧ T . One can easily check

∂s1R(s1, s2) = 2HK2−K
[

(s2H1 + s2H2 )K−1s2H−11 − |s1 − s2|
2HK−1sign(s1 − s2)

]

for s1, s2 ∈ (0, T ). Then,

∂2R(s1, s2) = 2−K
[

(4H2K(K−1))(s2H1 +s2H2 )K−2(s1s2)
2H−1+2HK(2HK−1)|s1−s2|

2HK−2
]

,

for (s1, s2) ∈ [0, T ]2 \D,

∂s1R(s1,∞) =

{

2HK2−K
[

(s2H1 + T 2H)K−1s2H−11 + (T − s1)
2HK−1

]

; if s1 ∈ (0, T )

0; if s1 > T,

and

µ̄(ds1ds2) = 1[0,T ]2(s1, s2)2
−K
[

4H2K(K − 1)(s2H1 + s2H2 )K−2(s1s2)
2H−1(s1 − s2)

2

+ 2HK(2HK − 1)|s1 − s2|
2HK

]

ds1ds2.

Since 2K−2(s1s2)
H(K−2) ≥ (s2H1 + s2H2 )K−2, then, we notice the existence of a positive

constant C(H,K,T ) such that

(26) ∂s1R(s1,∞)≤C(H,K,T )
{

s2H−11 + (T − s1)
2HK−1

}

for every s1 > 0,

(27)
∣

∣∂2R(s1, s2)
∣

∣≤C(H,K,T )
{

(s1s2)
HK−1 + |s1 − s2|

2HK−2
}

,
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for every (s1, s2) ∈ [0, T ]2 \D. The function, φ(s1, s2) = (s1s2)
HK−1 is p-integrable over

[0, T ]2 \D for every 1< p< 1
1−HK

. Therefore, Assumptions A, B, C and D are fulfilled for
1
4 <HK < 1

2 . We observe bifractional Brownian motion does not have stationary increments
for K < 1, it is HK-self similar with γ-Hölder continuous paths for γ < HK. See e.g [28]
for details.

3.1. Reproducing kernel Hilbert space and related properties. In this section, we set the
basic elements of the reproducing kernel Hilbert space associated with R.

Throughout this section, X = (X1, . . . ,Xd) is a d-dimensional centered process with iid
components satisfying Assumptions A, B, C and D. In the sequel, let C1

0 (R+,R
d) be the

space of Rd-valued C1-functions with compact support in R+ and 〈·, ·〉 is the standard inner
product on R

d. We also denote ej ; j = 1, . . . , d as the canonical basis of Rd and 1=
∑d

ℓ=1 eℓ.
Let I : C1

0 (R+,R
d)→ L2(P) be the linear mapping defined by

I(f) :=

∫ ∞

0
fsdXs := 〈f(+∞),X∞〉 −

∫ +∞

0
〈Xs, df(s)〉.

Let L̃R(R
d) be the linear space of all Borel functions f :R+ →R

d such that

i
∫∞
0 |f |2(s)|R|(ds,∞)<∞,

ii
∫

R
2
+\D

|f(s1)− f(s2)|
2|µ|(ds1ds2)<∞,

where µ = ∂2Rdx is a sigma-finite non-positive measure with support on [0, T ]2 \D. For
f ∈ L̃R(R

d), we define

(28) ‖f‖2LR(Rd) :=

∫ ∞

0
|f(s)|2R(ds,∞)−

1

2

∫

R
2
+\D

|f(s1)− f(s2)|
2µ(ds1ds2).

It is possible to show L̃R(R
d) is a Hilbert space w.r.t the inner-product associated with (28)

and

(29) E|I(f)|2 = ‖f‖2LR(Rd),

for every f ∈ C1
0 (R+,R

d). Let LR(R
d) be the closure of C1

0 (R+,R
d) w.r.t ‖ · ‖LR(Rd) as a

subset of L̃R(R
d). If d= 1, we will write LR = LR(R). Then, I :C1

0 (R+,R
d)→ L2(P) can

be uniquely extended to a linear isometry

(30) I : LR(R
d)→ L2(P).

One can check LR(R
d) is a separable Hilbert space, bounded variation functions with

compact support belong to LR(R
d) and

(31)
∫ ∞

0
ϕdX =−

∫ ∞

0
〈X,dϕ〉,

for every bounded variation function ϕ with compact support. This implies that

(32) R(s, t) = 〈1[0,t],1[0,s]〉LR
; s, t ∈ [0, T ].

See Propositions 6.18, 6.14, 6.22, 6.32 and 6.33 in [21] for the proof of these results. For
obvious reasons, we call I as the Paley - Wiener integral associated with X . We denote
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I(f) :=

∫ ∞

0
fdX;f ∈LR(R

d).

There is a connection between the Paley-Wiener integral introduced above and integrals
via regularization [29].

DEFINITION 3.1. Let Y be an R
d-valued process with locally integrable paths. Let

I0(ǫ, Y, dX)(t) :=
1

2ǫ

∫ t

0
〈Ys,Xs+ǫ −Xs−ǫ〉ds; 0≤ t≤ T.

We set

∫ t

0
Y d0X := lim

ǫ↓0
I0(ǫ, Y, dX)(t) (P− probability); 0≤ t≤ T.

The random variable
∫ t

0 Y d0X is called the symmetric-Stratonovich integral of Y w.r.t X
when exists.

REMARK 3.1. We observe the symmetric-Stratonovich integral (if it exists) is the limit in

probability of

(33)
∫ t

0
Y d0X = lim

ǫ↓0

1

2ǫ

∫ t

0
〈Yu+ǫ + Yu,Xu+ǫ −Xu〉du; 0≤ t≤ T.

See Remark 3.2 in [11].

LEMMA 3.2. Let f : R+ → R
d be a cadlag and bounded function and suppose the exis-

tence of Vf :R+ →R+ such that Vf (0) = 0,

(34) |f(s1)− f(s2)| ≤ Vf (s1 − s2); s1, s2 ≥ 0,

and

(35)
∫

R
2
+

V 2
f (s1 − s2)|µ|(ds1ds2)<∞.

Then,

(36)
∫ ∞

0
fsd

0Xs =

∫ ∞

0
fsdXs.

In particular,
∫∞
0 fd0X exists.

For a proof of Lemma 3.2 when d= 1, see Prop. 6.34 in [21]. The same arguments apply
to the multidimensional case.

EXAMPLE 4. If f : [0, T ]→R
d is θ-Hölder continuous where θ satisfies 2θ+α+1> 0,

where α is the exponent in Assumption C, then
∫ ·
0 fd

0X exists.



ROUGH PATHS AND SYMMETRIC-STRATONOVICH INTEGRALS 13

3.2. Doubled Paley-Wiener integrals. In this section, we introduce the doubled Paley-
Wiener associated with X . For this purpose, we select the pair (X1,X2) from X and we
make use the Hilbert tensor product L2,R := LR ⊗LR of LR equipped with the norm

‖h‖2L2,R
:=

∫ ∞

0
‖h(·, r)‖2LR

R(dr,∞)

−
1

2

∫

R
2
+\D

‖h(·, r1)− h(·, r2)‖
2
LR

µ(dr1dr2)(37)

for h :R2
+ →R ∈L2,R.

For an elementary tensor of the form g = g1 ⊗ g2 for g1, g2 ∈LR, we define

I2(g) :=

∫ ∞

0
g1dX1

∫ ∞

0
g2dX2.

A routine computation allows us to state that I2 can be extended to a linear isometry between
L2,R and L2(P) and we denote

I2(g) :=

∫

R
2
+

g(s1, s2)dX
1
s1
dX2

s2
,

for g ∈ L2,R. The operator I2 will be called the doubled Paley-Wiener integral of g ∈ L2,R

w.r.t (X1,X2).

LEMMA 3.3. Under Assumptions A, B, C, we have:

1. X1 ∈ L2(Ω,LR)
2. If h(s1, s2) = 1[0,s1∧T ](s2), then

∫

R
2
+

h(s1, s2)dX
1
s1
dX2

s2
=

∫ ∞

0
X2

s dX
1
s .

For a proof of Lemma 3.3 when d= 1, see Prop. 6.48, Corollary 6.49 in [21] and notice
that Assumption C implies condition (6.35) in [21], namely

∫

R
2
+

Var(X1
t1+r −X1

t2+r)|µ|(dt1dt2)<∞.

The same arguments apply to the multidimensional case.

4. Malliavin calculus tools. With the Paley-Wiener integral (30) at hand, it is natural to
construct a Malliavin calculus based on LR(R

d). Let SRd be the set of cylindrical random
variables of the form

(38) F = f

(

∫ ∞

0
φ1dX, . . . ,

∫ ∞

0
φmdX

)

,

where f ∈ C∞b (Rm)(f is a smooth real-valued function on R
m where f and all its partial

derivatives are bounded), φ1, . . . , φm ∈C1
0 (R+,R

d) and m≥ 1. One can prove that SRd is a
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dense subset of L2(P) (see the proof of Th 7.4 in [21]). For a cylinder random variable of the
form (38), we then define

DtF =

m
∑

j=1

∂if

(

∫ ∞

0
φadX, . . . ,

∫ ∞

0
φndX

)

φi(t); t≥ 0.

One can check that D : SRd → L2(P) is a densely defined and closable operator satisfy-
ing the classical properties of the Gross-Sobolev-Malliavin derivative on the Gaussian space
(

(Ω,F ,P);LR(R
d)
)

. For details, we refer the reader to Section 8 in [21].

The Malliavin-Watanabe spaces associated with LR(R
d) are given by D

1,p for p > 1
equipped with the norms

‖F‖1,p :=

[

E|F |p +E‖DF‖p
LR(Rd)

]
1

p

.

Let SLR(Rd) be the set of smooth d-dimensional stochastic processes of the form

F =

n
∑

j=1

Fjvj, vj ∈LR(R
d), Fj ∈ SRd .

It is a standard procedure in Malliavin calculus to consider D as a closable operator
from SLR(Rd) ⊂ Lp(Ω;LR(R

d)) into Lp(Ω;L2,R(R
d×d)), where L2,R(R

d×d) := LR(R
d)⊗

LR(R
d) is the Hilbert tensor product of LR(R

d) equipped with the natural norm associated
with (37). Let D1,p(LR(R

d)) be the completion of SLR(Rd) w.r.t

‖F‖1,p,LR(Rd) :=

[

E‖F‖p
LR(Rd)

+ E‖DF‖p
L2,R(Rd×d)

]
1

p

,

for p≥ 1.
Next, we present some key elementary properties.

LEMMA 4.1. Under Assumptions A, B, C and D, we have X ∈ D
1,2(LR(R

d)) and

Dt2X
i
t1 = 1[0,T∧t1](t2) for each i= 1, . . . , d.

LEMMA 4.2. Let ρ be a finite Borel measure on R+, a :R
2
+ →R be a Borel function and

Y be a R
d-valued stochastic process. We suppose the following.

1. a(s, ·) ∈LR for a.a s w.r.t ρ.

2.
∫∞
0 ‖a(s, ·)‖2LR

ρ(ds)<∞

3. t 7→ Yt ∈D
1,2(Rd) is continuous and bounded on supp ρ.

Then, the process

Zt =

∫ ∞

0
a(s, t)Ysρ(ds)

belongs to D
1,2(LR(R

d)) and

DτZt =

∫ ∞

0
a(t, s)DτYsρ(ds), τ ≥ 0.
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For proofs of these results when d= 1, see Prop. 9.7 and 9.14 in [21]. The same arguments
apply to the multidimensional case.

The Gross-Sobolev-Malliavin derivative operator
(

D,D1,2
)

admits an adjoint which is
a densely defined closable linear operator

(

δ,dom δ
)

, where D
1,2(LR(R

d)) ⊂ dom δ ⊂

L2(Ω,LR(R
d)).

DEFINITION 4.3. If u1[0,t] ∈ dom δ for every t≥ 0, then we define

∫ t

0
usδXs := δ(u1[0,t]); t≥ 0.

Of course, if u ∈LR(R
d), then

∫ t

0 usδXs = I(u1[0,t]) for every t≥ 0.

For a given Y ∈D
1,2(LR(R

d)), we denote

Ȳ ǫ
u :=

1

2ǫ

∫ T−ǫ

ǫ

Ys1[u−ǫ,u+ǫ](s)ds,

for 0 ≤ u ≤ T and 2ǫ < T . We observe if Y ∈ D
1,2(LR(R

d)) and t 7→ Yt ∈ D
1,2(Rd) is

continuous, then one can check (see the proof of Proposition 4.1) that Ȳ ǫ ∈ D
1,2(LR(R

d)).
Fubini’s theorem and the multiplication rule of random variables with Skorohod integrals
allow us to write

1

2ǫ

∫ T−ǫ

ǫ

〈Ys,Xs+ǫ −Xs−ǫ〉ds=

∫ T

0
Ȳ ǫ
s δXs

+
1

2ǫ

∫ T−ǫ

ǫ

d
∑

i=1

〈DY i
s , ei1[s−ǫ,s+ǫ]〉LR(Rd)ds.

If, in addition, there exists q > 2 such that sup0≤t≤T E|Yt|
q <∞, then Assumption C(ii),

Jensen and Hölder’s inequality yield

1

2ǫ

∫ T

0
〈Ys,Xs+ǫ −Xs−ǫ〉ds=

∫ T

0
Ȳ ǫ
uδXu(39)

+
1

2ǫ

∫ T−ǫ

ǫ

d
∑

i=1

〈DY i
s , ei1[s−ǫ,s+ǫ]〉LR(Rd)ds

+OL2(P)(ǫ
α+2).

Next, we obtain the convergence rate of
∫ T

0 (Ȳ ǫ
u − Yu)δXu. For this purpose, we will

impose the following assumption: In the sequel, α ∈ (−3
2 ,−1) is the exponent of Assumption

C.

Assumption SK: There exists γ ∈ (0,1] such that

(40) ‖Yt − Ys‖
2
D1,2(Rd) . |t− s|2γ ,

where 2γ + α+1> 0.
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LEMMA 4.4. Let X = (X1, . . . ,Xd) be a d-dimensional Gaussian process satisfying

Assumptions A, B and C. Let α ∈ (−3
2 ,−1) be the exponent of Assumption C. Assume Y ∈

D
1,2(LR(R

d)) satisfies Assumption SK with 2γ + α+1> 0. Then, Y satisfies

‖Y·+r − Y ‖2
D1,2(LR(Rd)) . |r|2γ+α+1,

for every |r| ∈ (0,1).

PROOF. Fix −3
2 < α < −1. Recall that ∂R(·, T ) is a finite non-negative measure whose

support is [0, T ] and |µ| is a sigma-finite positive measure whose support is [0, T ]2 \ D.
We observe we can write D

1,2(LR(R
d)) as the tensor product D1,2(LR(R

d)) = D
1,2(Rd)⊗

LR(R
d). Therefore, for a given −1< r < 1, we may write

‖Y·+r − Y·‖
2
D1,2(LR(Rd)) =

∫ ∞

0
‖Yt+r − Yt‖

2
D1,2(Rd)∂R(t, T )dt

+
1

2

∫

R
2
+\D

‖(Yt+r − Yt)− (Ys+r − Ys)‖
2
D1,2(Rd)|∂

2R(s, t)|dsdt

. r2γ +
1

2

∫

R
2
+\D

‖(Yt+r − Yt)− (Ys+r − Ys)‖
2
D1,2(Rd)|∂

2R(s, t)|dsdt,

where |µ|(dv1dv2) = |∂2R(v1, v2)|dv1dv2 and R(dt,T ) =R(dt,∞) = ∂R(t, T )dt. At first,
one can easily check Assumption SK yields

(41) ‖Yt+r − Yt − Ys+r + Ys‖
2
D1,2(Rd) .min

{

|t− s|2γ , |r|2γ
}

,

for 0≤ s < t≤ T and |r| ∈ (0,1). Having said that, the idea is to split the region

{(s, t) ∈R
2
+; 0≤ s < t <∞}= {(s, t); 0≤ s < t < s+ |r|} ∪ {(s, t); 0≤ s < s+ |r| ≤ t}.

By symmetry and using Assumption SK and (41), we shall write

(42)
∫

R
2
+\D

‖(Yt+r − Yt)− (Ys+r − Ys)‖
2
D1,2(Rd)|∂

2R(s, t)|dsdt

.

∫

0≤s<t<s+|r|
|t− s|2γ |∂2R(s, t)|dsdt

+|r|2γ
∫

0≤s<s+|r|≤t
|∂2R(s, t)|dsdt.

By assumption C,

|∂2R(s, t)|. |t− s|α + φ(s, t); (s, t) ∈ [0, T ]2 \D,

where φ is integrable over [0, T ]2 \D. Fir this reason, without any loss of generality, we may
assume φ= 0. A direct computation yields

(43)
∫

0≤s<t<s+|r|
|t− s|2γ |∂2R(s, t)|dsdt. |r|2γ+α+1,
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for every |r| ∈ (0,1). We also have,

(44)
∫

0≤s<s+|r|≤t
|∂2R(s, t)|dsdt.

∫ T−|r|

0

∫ T

s+|r|
(t− s)αdtds. |r|α+1,

for every |r| ∈ (0,1). Summing up, (42), (43) and (44), we have

‖Y·+r − Y ‖2
D1,2(LR(Rd)) . |r|2γ+α+1,

for every |r| ∈ (0,1) and we conclude the proof.

PROPOSITION 4.1. Let X be a Gaussian process satisfying Assumption A, B, C and D

with −3
2 <α<−1. Assume Y ∈D

1,2
(

LR(R
d)
)

satisfies Assumptions SK with 2γ+α+1>
0 and γ ≤ α

2 +1. Then,

E

∣

∣

∣

∣

∣

∫ T

0

(

Ȳ ǫ
s − Ys

)

δXu

∣

∣

∣

∣

∣

2

. ǫ2γ+α+1,

for every ǫ < T
4 ∧ 1.

PROOF. Assumption SK implies t 7→ Yt ∈ D
1,2(Rd) is continuous and hence Lemma 4.2

allows us to state Ȳ ǫ ∈D
1,2(LR(R

d)). We may assume ǫ < T
4 ∧ 1, where ǫ ↓ 0. Let us denote

A1(ǫ) := [2ǫ, T − 2ǫ], A2(ǫ) := [0,2ǫ) and A3(ǫ) := (T − 2ǫ, T ].

By the continuity of δ w.r.t D1,2(LR(R
d))-topology, we have

E

∣

∣

∣

∣

∣

∫ T

0

(

Ȳ ǫ
s − Ys

)

δXu

∣

∣

∣

∣

∣

2

. ‖Ȳ ǫ − Y ‖2
D1,2(LR(Rd))

= E‖Ȳ ǫ − Y ‖2LR(Rd) +E
∥

∥D
(

Ȳ ǫ − Y
)
∥

∥

2

L2,R(Rd×d)
,

for every ǫ < T
4 ∧ 1. In order to shorten notation, let us denote

f ǫ
t =

1

2ǫ

∫ ǫ

−ǫ

[

Yt+r − Yt

]

dr; 0≤ t≤ T.

We observe f ǫ
t = Ȳ ǫ

t − Yt for t ∈ A1(ǫ) and by applying Lemma 4.2, we have f ǫ ∈
D
1,2(LR(R

d)) for every ǫ < T
4 ∧ 1. We observe

(45) Ȳ ǫ
t =

1

2ǫ

∫ t+ǫ

ǫ

Yrdr; t ∈A2(ǫ) and Ȳ ǫ
t =

1

2ǫ

∫ T−ǫ

t−ǫ
Yrdr; t ∈A3(ǫ).

Clearly,

∫

A2
1(ǫ)\D

E|(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)|
2|∂2R(s, t)|dsdt

≤

∫

[0,T ]2\D
E|f ǫ

t − f ǫ
s |

2|∂2R(s, t)|dsdt. E‖f ǫ‖2LR(Rd).
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By using Jensen’s inequality on the Bochner integral (see e.g [27]) and Lemma 4.4, we get

E‖f ǫ‖2LR(Rd) = E

∥

∥

∥

∥

∥

1

2ǫ

∫ ǫ

−ǫ
[Y·+r − Y·]dr

∥

∥

∥

∥

∥

2

LR(Rd)

≤
1

2ǫ
E

∫ ǫ

−ǫ
‖Y·+r − Y·‖

2
LR(Rd)dr . ǫ2γ+α+1.

This shows

(46)
∫

A2
1(ǫ)\D

E|(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)|
2|∂2R(s, t)|dsdt. ǫ2γ+α+1,

for every ǫ < T
4 ∧ 1. Next, we observe

sup
ǫ<T

4
∧1

sup
(s,t)∈Ac

1(ǫ)×A1(ǫ)\D
E|(Ȳ ǫ

t − Yt)− (Ȳ ǫ
s − Ys)|

2 . sup
0≤r≤T

E|Yr|
2 <∞,

where

∫ 2ǫ

0

∫ T−2ǫ

2ǫ
(t− s)αdtds+

∫ T

T−2ǫ

∫ T−2ǫ

2ǫ
(s− t)αdtds. ǫα+2.

Therefore,

(47)
∫

A1(ǫ)×Ac
1(ǫ)\D

E|(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)|
2|∂2R(s, t)|dsdt. ǫα+2,

for every ǫ < T
4 ∧ 1. By applying Jensen’s inequality, using (45) and Assumption SK, we get

E
∣

∣(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)
∣

∣

2
≤ (t− s)E

∫ t+ǫ

s+ǫ

∣

∣

∣
Yr

1

2ǫ
−

(Yt − Ys)

t− s

∣

∣

∣

2
dr

.
(t− s)2

4ǫ2
sup

0≤r≤T
E|Yr|

2 + (t− s)2γ ; 0≤ s < t < 2ǫ.

Therefore,

∫

A2
2(ǫ)\D

E|(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)|
2|∂2R(s, t)|dsdt.

1

ǫ2

∫ 2ǫ

0

∫ t

0
(t− s)α+2dsdt

+

∫ 2ǫ

0

∫ t

0
(t− s)2γ+αdsdt

. ǫα+2,

for every ǫ < T
4 ∧ 1. Similarly, by applying Jensen’s inequality, using (45) and Assumption

SK, we get

E
∣

∣(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)
∣

∣

2
≤ (t− s)E

∫ t−ǫ

s−ǫ

∣

∣

∣
Yr

1

2ǫ
+

(Yt − Ys)

t− s

∣

∣

∣

2
dr

.
(t− s)2

4ǫ2
sup

0≤r≤T
E|Yr|

2 + (t− s)2γ ;T − 2ǫ < s < t≤ T.
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Therefore,

∫

A2
3(ǫ)\D

E|(Ȳ ǫ
t − Yt)− (Ȳ ǫ

s − Ys)|
2|∂2R(s, t)|dsdt.

1

ǫ2

∫ T

T−2ǫ

∫ t

T−2ǫ
(t− s)α+2dsdt

+

∫ T

T−2ǫ

∫ t

T−2ǫ
(t− s)2γ+αdsdt

. ǫα+2,(48)

for every ǫ < T
4 ∧ 1. By using (45), one can easily check

sup
t∈A2(ǫ)∪A3(ǫ)

E|Ȳ ǫ
t |

2 ≤ sup
0≤r≤T

E|Yr|
2 <∞.

Therefore, by using Assumption D and Jensen’s inequality on the Bochner integral, we have

E

∫ T

0
|Ȳ ǫ

t − Yt|
2∂R(t, T )dt=

3
∑

i=1

E

∫

Ai(ǫ)
|Ȳ ǫ

t − Yt|
2∂R(t, T )dt

. E‖f ǫ‖2LR(Rd) + ǫα+2

.
1

2ǫ

∫ ǫ

−ǫ

∥

∥Y·+r − Yr

∥

∥

2

D1,2(LR(Rd))
dr+ ǫα+2

. ǫ2γ+α+1,(49)

for every ǫ < T
4 ∧ 1. Summing up (46), (47), (48) and (49), we get

E‖Ȳ ǫ − Y ‖2LR(Rd) . ǫ2γ+α+2,

for every ǫ < T
4 ∧ 1. Next, we investigate

E
∥

∥D
(

Ȳ ǫ − Y
)
∥

∥

2

L2,R(Rd×d)
= E

∫ T

0

∥

∥D
(

Ȳ ǫ
t − Yt

)
∥

∥

2

LR(Rd)
∂R(t, T )dt

+
1

2
E

∫

[0,T ]2\D

∥

∥D
(

Ȳ ǫ
t − Yt

)

−D
(

Ȳ ǫ
s − Ys

)
∥

∥

2

LR(Rd)
|∂2R(s, t)|dsdt.

The analysis is similar to the first part so we omit some details. Indeed, by using (45) jointly
with Jensen’s inequality on the Bochner integral and Lemma 4.4, we get

E

∫

A2
1(ǫ)\D

∥

∥D
(

Ȳ ǫ
t − Yt

)

−D
(

Ȳ ǫ
s − Ys

)∥

∥

2

LR(Rd)
|∂2R(s, t)|dsdt

≤ ‖f ǫ‖2
D1,2(LR(Rd)) =

∥

∥

∥

1

2ǫ

∫ ǫ

−ǫ
[Y·+r − Y·]dr

∥

∥

∥

2

D1,2(LR(Rd))

(50) ≤
1

2ǫ

∫ ǫ

−ǫ
‖Y·+r − Y·‖

2
D1,2(LR(Rd))dr . ǫ2γ+α+1,

for every ǫ < T
4 ∧ 1. Moreover,
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(51) sup
ǫ<T

4
∧1

sup
0≤t≤T

E‖DȲ ǫ
t ‖

2
LR(Rd) + sup

0≤t≤T
E‖DYt‖

2
LR(Rd) . T 2γ + ‖Y0‖

2
D1,2(Rd),

(52) E
∥

∥D
(

Ȳ ǫ
t − Yt

)

−D
(

Ȳ ǫ
s − Ys

)
∥

∥

2

LR(Rd)
.

(t− s)2

ǫ2
+ (t− s)2γ ,

for 0≤ s < t < 2ǫ or T − 2ǫ < s < t≤ T . The estimates (50), (51), (52) and Assumption SK
yield

E
∥

∥D
(

Ȳ ǫ − Y
)
∥

∥

2

L2,R(Rd×d)
. ǫ2γ+α+1,

for every ǫ < T
4 ∧ 1. This concludes the proof.

In the sequel, we define

Tr (DY ) := lim
ǫ↓0

1

2ǫ

∫ T−ǫ

ǫ

d
∑

i=1

〈DY i
s , ei1[s−ǫ,s+ǫ]〉LR(Rd)ds

when exists in L2(P). The following relation is a simple consequence of (39) and Proposition
4.1.

LEMMA 4.5. Let Y be an R
d-valued process which satisfies: There exists q > 2 such

that sup0≤t≤T E|Yt|
q <∞, Assumption SK and Tr (DY ) exists. Then, the symmetric integral

∫ t

0 Y d0X exists and it is equal to

(53)
∫ T

0
Ysd

0Xs =

∫ T

0
YsδXs + (TrDY ).

PROPOSITION 4.2. Assume X is a d-dimensional Gaussian process (with iid compo-

nents), where Assumptions A, B, C and D are fulfilled. Then, the R
d×d-valued two-parameter

process

X
ij
s,t =

{∫ t

s
(Xi

r −Xi
s)d

0X
j
r ; if i 6= j

1
2(X

i
t −X

j
s )2; if i= j.

is geometric, it satisfies the Chen’s relation and we have the representation

(54) X
ij
s,t =

{

δ
(

Xi
s,·1[s,t]ej

)

; if i 6= j
1
2(X

i
t −X

j
s)2; if i= j.

PROOF. Let us fix s < t and let X1, . . . ,Xd independent copies of a Gaussian process
satisfying Assumptions A, B, C and D. We may assume that Xi

r =Xi
t if r > t for 1≤ i≤ d.

In order to define X outside the diagonal, one has to be careful. Let us take gst(si, sj) =
1[s∧si,si∧t](sj) = 1[0,si∧t](sj)− 1[0,si∧s)(sj). By (31), we have

∫ ∞

0
1[a,b]dX

j =−

∫ ∞

0
Xjd1[a,b] =X

j
b −Xj

a,
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for every a < b. By Assumption C, we may apply Lemma 3.3 to get

I
ij
2 (g) =

∫ t

0

(

∫ t

0
gst(si, sj)dX

j
sj

)

dXi
si
=

∫ t

0

(

X
j
si∧t −X

j
si∧s

)

dXi
si

=

∫ t

s

(

Xj
si −Xj

s

)

dXi
si

for every i 6= j. Since Xj is independent of Xi for i 6= j and the sample paths of X satisfies
(34) and (35), we can apply Lemma 3.2 to state that

∫ t

s

(

Xj
si −Xj

s

)

dXi
si =

∫ t

s

(

Xj
si −Xj

s

)

d0Xi
si a.s.

We then set

X
ij
s,t =

∫ t

s

(

Xj
r −Xj

s

)

d0Xi
r a.s

for i 6= j. The Chen’s relation is obvious because Stratonovich integrals (in the sense of [29])
are constructed by regularization via limits of Riemann’s integrals. A simple integration by
parts arguments yields X is geometric. Finally, for i 6= j, we set

f ij,ǫ
· =

1

2ǫ

∫ (·+ǫ)∧T

(·−ǫ)∨0
(Xi

r −Xi
s)1[s,t](r)drej .

By Lemmas 4.1 and 4.2, f ij,ǫ ∈D
1,2(LR(R

d)). Independence of (Xi,Xj) yields

〈

D·(X
i
r −Xi

s)1[s,t](r),1[(r−ǫ)∨0,(r+ǫ)∧T ](·)ej

〉

LR(Rd)
= 0 a.s,

for r ∈ [0, T ]. Therefore, multiplication rule of Skorohod integral and Fubini’s theorem yield

1

2ǫ

∫ +∞

0
(Xi

r −Xi
s)1[s,t](r)

(

X
j
(r+ǫ)∧T −X

j
(r−ǫ)∨0

)

dr = δ(f ij,ǫ).

Assumption A, B, C, D and and Lemma 4.1 yield Y = (Xi
· −Xi

s)1[s,t](·) ∈ D
1,2(LR(R

d))

and ‖Y·+r − Y ‖2
D1,2(LR(Rd)) → 0 as r → 0. Therefore, by applying Th 13.5 in [21], we get

(54) for i 6= j.

In order to integrate a controlled rough path in the sense of [19], one has to check X ∈ C2γ
2

a.s. Next, we give two examples in this direction. In the sequel, if g is an E-valued two-
parameter continuous function, α> 0 and p≥ 1, we write

Uα,p(g) :=

[

∫ T

0

∫ T

0

|gs,t|
p

|t− s|αp+2
dsdt

]
1

p

.

In order to estimate E[Up
2γ,p(X)]<∞ for p > 1, one may use the fundamental inequality

of the Skorohod operator (for i 6= j)
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‖Xij
s,t‖Lp(Ω) =

∥

∥δ
(

Xi
s,·1[s,t]ej

)∥

∥

Lp(Ω)

. ‖E
(

Xi
s,·1[s,t]ej

)

‖LR(Rd) +
∥

∥D
(

Xi
s,·1[s,t]ej

)
∥

∥

Lp(Ω;L2,R(Rd×d))

=
∥

∥D
(

Xi
s,·1[s,t]ej

)∥

∥

Lp(Ω;L2,R(Rd×d))
.(55)

See e.g Prop 1.5.8 in [24] and (115). Based on (55), one can easily get the following example.

EXAMPLE 5. If X is a d-dimensional fractional Brownian motion with exponent 1
4 <

H < 1
2 , then X given by (54) satisfies

E[Up
2γ,p(X)].

∫

[0,T ]2

|t− s|2pH

|t− s|2γp+2
dsdt <∞,

whenever 0 < γ < H and p > 1
2H−2γ . By [[19]; Th 3.1], this implies X ∈ C2γ

2 a.s for every

γ < H . If X is a bifractional Brownian motion with parameter 1
4 <HK < 1

2 , then X given
by (54) satisfies

E[Up
2γ,p(X)].

∫

[0,T ]2

|t− s|2pKH

|t− s|2γp+2
dsdt <∞,

whenever 0< γ <HK and p > 1
2HK−2γ . This implies X∈ C2γ

2 a.s for every γ <HK.

5. Equivalence of stochastic rough path and symmetric-Stratonovich integral. We
are now in position to state the following result. The proof of Theorem 5.1 is presented in
Appendix A.

THEOREM 5.1. Let X be a Gaussian process satisfying assumptions A, B, C and D

with −4
3 < α < −1. Let X = (X,X) be the geometric process given by (54). Assume that

(Y,Y ′) ∈DX(Rd), where Y ′ satisfies the properties below.

1. s 7→DvY
′
s is continuous a.s on (0, T ) \ {v} for Lebesgue a.a v.

2. There exist p, q > 2 such that t 7→ Y
′

t is a D
1,p-valued continuous function and

(56)
∫ T

0

∫ T

v2

sup
s≥v1 or s<v2

‖Dv1Y
′

s −Dv2Y
′

s ‖
q
Lq(P)|∂

2R(v1, v2)
∣

∣

q

2 dv1dv2 <∞.

3. There exists p > 2 such that

(57) sup
0≤t≤T

E|Y
′

t |
p + sup

0≤t,r≤T
E|DtY

′
r |

p <∞.

Then, (Y,Y ′) ∈ DX(Rd) is rough (stochastically) integrable if, and only if, Y is

symmetric-Stratonovich integrable and, in this case, both integrals coincide

(58)
∫ t

0
YsdXs =

∫ t

0
Ysd

0Xs; 0≤ t≤ T.

REMARK 5.1. Under assumptions (1), (2) and (3) for a pair (Y,Y ′) ∈DX(Rd) in The-

orem 5.1, the symmetric-Stratonovich integral behaves like a stochastic rough path integral

driven by a reduced geometric process X= (X,Sym(X)). See (105) for details.
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EXAMPLE 6. If f : Rd → R
d ∈ C2

b and X is a Gaussian process satisfying assumptions
A, B, C and D with −4

3 < α <−1. Then, (f(X),∇f(X)) ∈ DX(Rd) satisfies the assump-
tions in Theorem 5.1.

EXAMPLE 7. Assume that V ∈ C3
b (R

d,L(Rd,Rd)), ξ ∈ R
d and let X be a Gaussian

process satisfying Assumptions A, B, C and D with −4
3 < α < −1. In addition, we assume

the second order process (54) satisfies X ∈ C2γ
2 a.s ( 13 < γ < α

2 + 1) and R has finite two-
dimensional ρ-variation for 1 ≤ ρ < 3

2 (see e.g Def. 5.50 in [14]). Let Y be the solution of
the rough differential equation

(59) Yt = ξ +

∫ t

0
V (Ys)dXs; 0≤ t≤ T.

Then, Y satisfies the assumptions in Theorem 5.1.

PROOF. Let V = (V 1, . . . , V d) where V i : Rd → R
d are C3

b (R
d;Rd) vector fields. It is

known that Y ′t = V (Yt) (see e.g Prop 8.3 in [13]) and hence chain rule yields DV (Yt) =
(

DV 1(Yt), . . . ,DV d(Yt)
)

=
(

∇V 1(Yt) ◦DYt, . . . ,∇V d(Yt) ◦DYt

)

. It is well-known (see
e.g [3]) that DsYt = Jt ◦ J

−1
s ◦ V (Ys)1[0,t](s), where Jt denotes the Jacobian of the solution

Yt where Y0 = ξ. Here, J−1s is the inverse of the matrix-valued Jacobian Js. We fix 1
3 < γ <

α
2 + 1. Then,

sup
s≥v1∨v2 or s<v1∧v2

|Dv1Y
′

s −Dv2Y
′

s | ≤ max
1≤i≤d

‖∇V i(Y )‖∞‖J·‖∞‖J−1‖γ‖V (Y )‖∞|v1 − v2|
γ

+ max
1≤i≤d

‖∇V i(Y )‖∞‖J·‖∞‖J−1· ‖∞‖V (Y )‖γ |v1 − v2|
γ

for 1
3 < γ < 1

2 . By using [6], we know that

(

‖J‖p−var ,‖J
−1‖p−var

)

∈
⋂

q≥1

Lq(P)

for 2< p< 3. Here, ‖ · ‖p−var denotes the p-variation norm. If R has finite two-dimensional
ρ-variation, it is actually possible to prove (see e.g Remark 7.3 in [3])

(60)
{

‖J‖∞,‖J−1‖∞,‖J‖ 1

p

,‖J−1‖ 1

p

}

⊂
⋂

q≥1

Lq(P).

Under Assumption C, assumptions (56) and (57) hold true. Indeed, since −4
3 < α<−1 and

1
3 < γ < 1

2 , then −1
γ+α

2

> 3 so that pγ + αp
2 + 1> 0 as long as 2< p< −1

γ+α

2

.

Theorem 5.1 and Example 6 implies the following existence result for stochastic differ-
ential equations driven by Gaussian processes satisfying Assumptions A, B, C and D with
−4

3 < α < −1. In short, solutions Y of rough differential equations driven by X = (X,X)

with X ∈ C2γ
2 a.s for 1

3 < γ < α
2 + 1 are actually solutions of Stratonovich differential equa-

tions. The proof of Corollary 5.1 follows by routine arguments based on chain rule and ap-
plication of Theorem 5.1 to V (Y ), so we omit details.
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COROLLARY 5.1. Assume the same hypotheses of Example 7. Let Y be the solution of

the rough differential equation in the sense of [19]

Yt = ξ +

∫ t

0
V (Ys)dXs; 0≤ t≤ T.

Then, Y is a solution to the Stratonovich differential equation interpreted in the sense of

[29]

(61) Yt = ξ +

∫ t

0
V (Ys)d

0Xs; 0≤ t≤ T.

Next, it is instructive to compare our analysis with the recent work [22].

REMARK 5.2. In [22], if one restricts the analysis to a γ-Hölder geometric rough path

X= (X,X) for 1
3 < γ < 1

2 and a first-order controlled process (Y,Y ′) with remainder RY ∈

C2γ
2 in the sense of [19], then the authors decompose

1

2
〈Ytk + Ytk+1

,Xtk,tk+1
〉= 〈Ytk ,Xtk,tk+1

〉+ Y ′tkXtk,tk+1

− 〈Y ′tk ,Anti (Xtk,tk+1
)〉+

1

2
〈RY

tk,tk+1
,Xtk,tk+1

〉.

The key point in [22] is the convergence

(62)
∑

tk∈Π

〈Y ′tk ,Anti (Xtk,tk+1
)〉 → 0,

in probability as the mesh of partitions |Π| → 0. In [22], in order to show (62), the authors

make a fundamental use of Lemma 3.9 in [22] which, in the context of the case 1
3 < γ < 1

2 ,

requires a higher-order expansion

(63) Y ′s,t = Y
′′

s Xs,t + rs,t, Ys,t = Y ′sXs,t +RY
s,t,

where Y,Y ′, Y
′′

∈ Cγ and RY , r ∈ C2γ
2 .

EXAMPLE 8. We give an example of a pair (Y,Y ′) ∈ DX(Rd), where Y ′ is not a con-
trolled rough path in the sense of [19]. Let X be a d-dimensional fractional Brownian motion
with parameter 1

3 < H < 1
2 . Let f : [0, T ] → R

d×d be an arbitrary deterministic β-Hölder

continuous function such that β + 2H − 1 > 0. By Lemma 3.2, Yt =
∫ t

0 fsd
0Xs is a well-

defined Gaussian process. One can check

Rs,t = Yt − Ys − fs(Xt −Xs)

satisfies

E

∣

∣

∣

∣

∣

1

ǫ

∫ t

0

〈

Rs,s+ǫ,Xs+ǫ −Xs

〉

ds

∣

∣

∣

∣

∣

. ǫβ+2H−1 → 0,

as ǫ → 0+ and (Y, f) ∈ DX(Rd) fulfills the assumptions of Theorem 5.1. In particular, if
1− 2H < β ≤ 1

3 < γ < H and f is at best β-Hölder continuous, then it is not possible the
existence of a path g ∈ Cθ such that Rs,t =O(|t− s|θ+γ) and

ft − fs = gs(Xt −Xs) +Rs,t; s < t≤ T.
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6. The trace component. In this section, although it is possible to present a complete
analysis on Tr(DY ) under the general assumption C, in order to keep presentation simple,
we restrict the analysis to the concrete case of the fractional Brownian motion 1

4 <H < 1
2 .

In this section, we study

(64) Tr
(

DY
)

ǫ
:=

1

2ǫ

∫ T−ǫ

ǫ

d
∑

i=1

〈DY i
s , ei1[s−ǫ,s+ǫ]〉LR(Rd)ds.

For simplicity, we assume that Y is adapted. Therefore, we can decompose

Tr
(

DY
)

ǫ
=

1

2ǫ

∫ T−ǫ

ǫ

tr[Ds−Ys]
〈

1[0,s],1[s−ǫ,s+ǫ]

〉

LR
ds

+
1

2ǫ

∫ T−ǫ

ǫ

〈

tr[(DYs −Ds−Ys)]1[0,s],1[s−ǫ,s+ǫ]

〉

LR

ds

=: Tr1
(

DY
)

ǫ
+ Tr2

(

DY
)

ǫ
.(65)

LEMMA 6.1. Assume that X be a d-dimensional fractional Brownian motion 1
4 <H <

1
2 . Assume that

(66) sup
0≤s≤T

E|tr[Ds−Ys]|
2 <∞.

Then, there exists a constant C which depends on (66) and T such that

(67) E

∣

∣

∣
Tr1(DY )ǫ −

∫ T

0
tr[Ds−Ys]dvs

∣

∣

∣

2
≤Cǫ

6H−1

2

for every ǫ > 0 such that ǫ0.75 + 2ǫ < T , where v(s) = s2H ; s≥ 0.

PROOF. Let us denote v(s) = s2H ; s≥ 0. We observe it satisfies the following properties:
s 7→ v(s) is a C3(0, T ) non-decreasing map and s 7→ |v(3)(s)| is non-increasing. In addition,
there exists β ∈ (0,1) such that |v(3)(ǫβ)|ǫ2 → 0 and ǫβ(2H+1)−1 → 0 as ǫ → 0+. Indeed,
v(3)(s) = cHs2H−3 for a positive constant cH and notice

1

1 + 2HK
<

2

3− 2HK

for H > 1
6 . Therefore, we can take any β realizing

(68) 0<
1

1 + 2H
< β <

2

3− 2H
< 1,

and for any such choice, we have ǫβ(2H−3)+2 → 0, ǫβ(2H+1)−1 → 0, as ǫ→ 0+. Having
said that, we can write

1

2ǫ

∫ T−ǫ

ǫ

〈

tr[Ds−Ys]1[0,s],1[s−ǫ,s+ǫ]

〉

LR

ds=

∫ T−ǫ

ǫ

tr
[

Ds−Ys

]

dFǫ(s),
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where

Fǫ(x) =
1

2ǫ

∫ x

0
〈1[0,r],1[r−ǫ,r+ǫ]〉LR

dr

=
1

2

∫ x

0

[v(r+ ǫ)− v(r− ǫ)

2ǫ

]

dr;x≥ 0.

We denote

Vǫ(s) =
v(s+ ǫ)− v(s− ǫ)

2ǫ
− v(1)(s); ǫ < s < T − ǫ.

Taylor formula and mean value theorem yield

(69) Vǫ(s) =
ǫ2

6
v(3)(a(s, ǫ)),

where a(s, ǫ) ∈ (s− ǫ, s+ ǫ) and ǫ < s < T − ǫ. Fix 0< β < 1 according to (68). We split

∫ T−ǫ

ǫ

tr
[

Ds−Ys

]

[

F (1)
ǫ (s)−

1

2
v(1)(s)

]

ds=
1

2

∫ T−ǫ

ǫβ+ǫ

tr
[

Ds−Ys

]

Vǫ(s)ds

+
1

2

∫ ǫβ+ǫ

ǫ

tr
[

Ds−Ys

]

Vǫ(s)ds,

where we may assume ǫβ +2ǫ < T . By (69), we observe

(70)
∣

∣Vǫ(s)
∣

∣=
ǫ2

6
|v(3)(a(s, ǫ))|. ǫ2|v(3)(ǫβ)|,

for every s ∈ (ǫβ + ǫ, T − ǫ). By applying Jensen’s inequality, (66) and (70), there exists a
constant C which depends on T such that

(71) E

∣

∣

∣

∣

∣

1

2

∫ T−ǫ

ǫβ+ǫ

tr[Ds−Ys]Vǫ(s)ds

∣

∣

∣

∣

∣

2

≤C
(

ǫ2|v(3)(ǫβ)|
)2

→ 0,

as ǫ→ 0+. Fubini’s theorem and (66) yield

E

∣

∣

∣

∣

∣

∫ ǫβ+ǫ

ǫ

tr[Ds−Ys]Vǫ(s)ds

∣

∣

∣

∣

∣

2

= E

∫ ǫβ+ǫ

ǫ

∫ ǫβ+ǫ

ǫ

tr[Ds−Ys]tr[Dt−Yt]Vǫ(s)Vǫ(t)dsdt

≤C

∫ ǫβ+ǫ

ǫ

∫ ǫβ+ǫ

ǫ

|Vǫ(s)||Vǫ(t)|dsdt

(72) ≤Cǫ2[β(2H+1)−1],
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for every ǫ > 0 sufficiently small. By (66), we have

(73) E

∣

∣

∣

∫ T

T−ǫ
tr
[

Ds−Ys

]

dvs

∣

∣

∣

2
+ E

∣

∣

∣

∫ ǫ

0
tr
[

Ds−Ys

]

dvs

∣

∣

∣

2
. ǫ4H ,

for every ǫ sufficiently small. Summing up the estimates (71), (72) and (73), we obtain

(74) E

∣

∣

∣
Tr1(DY )ǫ −

∫ T

0
tr[Ds−Ys]dvs

∣

∣

∣

2
≤C

{

(

ǫ2v(3)(ǫβ))2 + ǫ2[β(2H+1)−1]
}

,

for every ǫ > 0 such that ǫβ + 2ǫ < T . Now, we will optimize the righ-hand side of (74). Let
us consider the following bound for the right-hand side of (74):

ǫ2
(

2βH+2−3β
)

+ ǫ2
(

2βH+β−1
)

≤ 2max
{

ǫ2
(

2βH+2−3β
)

, ǫ2
(

2βH+β−1
)

}

,

where β ∈ ( 1
1+2H , 2

3−2H ). Next, we aim to compute

(75) arg min
β∈
(

1

1+2H
, 2

3−2H

)

max
{

ǫ

(

2βH+2−3β
)

, ǫ

(

2βH+β−1
)

}

.

We observe

1

2
<

1

1 + 2H
<

2

3
< 0.80<

2

3− 2H
< 1,

and

2βH +2− 3β ≥ 2βH + β − 1,

whenever 1
1+2H < β ≤ 0.75< 2

3−2H and

2βH +2− 3β < 2βH + β − 1,

whenever 0.75< β < 2
3−2H . Moreover,

2βH − 3β + 2= 2βH + β − 1⇐⇒ β = 0.75.

The fact that β 7→ 2βH − 3β + 2 is strictly decreasing and the constant C which appears
in (67) does not depend on β allow us to choose β∗ = 0.75 and this is the optimal choice
realizing (75). Therefore,

ǫ2
(

2βH+2−3β
)

+ ǫ2
(

2βH+β−1
)

≤ 2ǫ2
(

2×0.75H+0.75−1
)

= 2ǫ
6H−1

2 .

This concludes the proof.

Next, we devote our attention to the component Tr2
(

DY
)

ǫ
.

PROPOSITION 6.1. Let α = 2H − 2 with 1
4 < H < 1

2 . Assume there exists η > 0 such

that η+ α+1> 0 and

(76) E
∣

∣tr[Dr1Ys −Dr2Ys]
∣

∣

2
. |r2 − r1|

2η,
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for every 0< r1 < r2 ≤ s≤ T . Assume that tr[D·Ys] has continuous paths on [0, s] for every

s≤ T . Then,

E

∣

∣

∣
Tr2(DY )ǫ −

∫

0≤r1<r2≤T
tr[Dr1Yr2 −Dr2−Yr2 ]∂

2R(r1, r2)dr1dr2

∣

∣

∣

2
. ǫ2(η+α+1) → 0,

as ǫ→ 0+.

PROOF. Since both ∂2R and hǫ are symmetric functions and ∂2R≤ 0, then we shall write

Tr2(DY )ǫ =
1

2ǫ

∫ T−ǫ

ǫ

∫ ∞

0
tr[DrYs −Ds−Ys]1[0,s](r)1[s−ǫ,s+ǫ](r)∂rR(r,T )drds

(77) −
1

2ǫ

∫ T−ǫ

ǫ

∫

∆1

hǫ(r1, r2; s)∂
2R(r1, r2)dr1dr2ds=: I1,ǫ + I2,ǫ,

where ∆1 = {(a, b) ∈R
2
+ \D;a < b} and

hǫ(r1, r2; s) :=
{

tr[Dr1Ys −Ds−Ys]1[0,s](r1)− tr[Dr2Ys −Ds−Ys]1[0,s](r2)
}

×
{

1[s−ǫ,s+ǫ](r1)− 1[s−ǫ,s+ǫ](r2)
}

.

We can write

I1,ǫ =
1

2ǫ

∫ T−ǫ

ǫ

∫ s

s−ǫ
tr[DrYs −Ds−Ys]∂rR(r,T )drds.

Jensen’s inequality and (76) yield

E

∣

∣

∣

∣

∣

1

2ǫ

∫ T−ǫ

ǫ

∫ s

s−ǫ
tr[DrYs −Ds−Ys]∂rR(r,T )drds

∣

∣

∣

∣

∣

2

.

∫ T−ǫ

ǫ

1

ǫ

∫ s

s−ǫ
(s− r)2η|∂R(r,T )|2drds

(78) . ǫ2(η+α+1) → 0,

as ǫ→ 0+.
Now, we deal with the second term in (77). In case ǫ≤ s, we observe

(79) hǫ(r1, r2; s) =







−tr
[

Dr1Ys −Dr2Ys

]

; if 0< r1 < s− ǫ, s− ǫ≤ r2 ≤ s

−tr
[

Dr1Ys −Ds−Ys

]

; if 0< r1 < s− ǫ, s < r2 ≤ s+ ǫ

tr
[

Dr1Ys −Ds−Ys

]

; if 0< s+ ǫ < r2, s− ǫ≤ r1 ≤ s.

As a result, we can write I2,ǫ as

−1

2ǫ

∫ T−ǫ

ǫ

∫

∆1

hǫ(r1, r2; s)∂
2R(r1, r2)dr1dr2ds
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=
1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s+ǫ

s

tr[Dr1Ys −Ds−Ys]∂
2R(r1, r2)dr2dr1ds

+
1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
tr[Dr1Ys −Dr2Ys]∂

2R(r1, r2)dr2dr1ds

−
1

2ǫ

∫ T−ǫ

ǫ

∫ ∞

s+ǫ

∫ s

s−ǫ
tr[Dr1Ys −Ds−Ys]∂

2R(r1, r2)dr1dr2ds

=: I2,ǫ,1 + I2,ǫ,2 + I2,ǫ,3.

At first, we estimate I2,ǫ,3. By using (76), Fubini’s theorem and Cauchy-Schwarz’s inequality,
we have

E|I2,ǫ,3|
2 .

(

1

ǫ

∫ T

ǫ

∫ T

s+ǫ

∫ s

s−ǫ
(s− r1)

η(r2 − r1)
αdr1dr2ds

)2

.

A direct computation shows that

1

ǫ

∫ T

ǫ

∫ T

s+ǫ

∫ s

s−ǫ
(s− r1)

η(r2 − r1)
αdr1dr2ds. ǫη+α+1.

Therefore,

(80) E|I2,ǫ,3|
2 . ǫ2(η+α+1).

We now investigate

I2,ǫ,1 −
1

2

∫ T

0

∫ s

0
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds

+I2,ǫ,2 −
1

2

∫ T

0

∫ s

0
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds.

It is convenient to split it as

1

2

∫ T

0

∫ s

0
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds=

=
1

2

∫ ǫ

0

∫ s

0
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds

+
1

2

∫ T−ǫ

ǫ

∫ s−ǫ

0
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds

+
1

2

∫ T−ǫ

ǫ

∫ s

s−ǫ
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds
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+
1

2

∫ T

T−ǫ

∫ s

0
tr[Dr1Ys −Ds−Ys]∂

2R(r1, s)dr1ds

=: J1,ǫ + J2,ǫ + J3,ǫ + J4,ǫ.

At first, we observe Fubini’s theorem, assumption (76) and Cauchy-Schwartz’s inequality
yield

E|J3,ǫ|
2 .

(

∫ T−ǫ

ǫ

∫ s

s−ǫ
(s− r1)

η|∂2R(r1, s)|dr1ds
)2

.
(

∫ T

ǫ

∫ s

s−ǫ
(s− r1)

η+αdr1ds
)2

. ǫ2(η+α+1),(81)

as ǫ→ 0+. Similarly,

E|J1,ǫ|
2 ≤

(

∫ ǫ

0

∫ s

0
(s− r1)

η|∂2R(r1, s)|dr1ds
)2

. ǫ2(α+η+2)(82)

and

E|J4,ǫ|
2 ≤

(

∫ T

T−ǫ

∫ s

0
(s− r1)

η|∂2R(r1, s)|dr1ds
)2

. ǫ2(α+η+2).(83)

Now, we observe we can write

I2,ǫ,1 − J2,ǫ =
1

2

∫ T−ǫ

ǫ

∫ s−ǫ

0
tr[Dr1Ys −Ds−Ys]gǫ(r1, s)dr1ds

where we denote gǫ(r1, s) :=
1
ǫ

∫ s+ǫ

s
∂2R(r1, r2)dr2 − ∂2R(r1, s) for 0 ≤ r1 < s − ǫ. By

Fubini’s theorem and using assumption (76) jointly with Cauchy-Schwartz’s inequality, we
have

E|I2,ǫ,1 − J2,ǫ|
2 = E

∫

Qǫ×Qǫ

tr[Dr1Ys −Ds−Ys]tr[Dv1Yz −Dz−Yz]gǫ(r1, s)

× gǫ(v1, z)dr1dsdv1dz

.

(

∫

Qǫ

(s− r1)
η|gǫ(r1, s)|dr1ds

)2

,

where Qǫ = {(x, y); 0≤ x < y− ǫ, ǫ < y < T − ǫ}. By using the fact that s 7→ ∂3R
∂s2∂r

(r1, s) is
continuous on (r1, T ), we can make use of Taylor expansion to estimate gǫ. We observe for
each r1 < s < s+ ǫ, there exists s̄ǫ with r1 < s < s̄ǫ < s+ ǫ realizing

gǫ(r1, s) =
1

2

∂3R

∂s2∂r1
(r1, s̄ǫ)ǫ; r1 < s < s̄ǫ < s+ ǫ < T.
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The function (· − r1)
α−1 is decreasing and hence

|gǫ(r1, s)| ≤
1

2

∣

∣

∣

∂3R

∂s2∂r1
(r1, s̄ǫ)

∣

∣

∣
ǫ. (s− r1)

α−1ǫ,

for every (r1, s) ∈Qǫ. Therefore,

(84) E|I2,ǫ,1 − J2,ǫ|
2 .

(

ǫ

∫

Qǫ

(s− r1)
η+α−1dr1ds

)2

. ǫ2(η+α+1),

for every ǫ > 0 sufficiently small. In view of (78), (80), (81), (82), (83) and (84), it remains
to estimate I2,ǫ,2 − J2,ǫ. For this purpose, we write

I2,ǫ,2 =
1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
tr[Dr1Ys −Dr2Ys]

{

∂2R(r1, r2)− ∂2R(r1, s)
}

dr2dr1ds

+
1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
tr[Dr1Ys −Dr2Ys]∂

2R(r1, s)dr2dr1ds.

Mean value theorem yields

∂2R(r1, s)− ∂2R(r1, r2) =
∂3R

∂s2∂r1
(r1, r̄)(s− r2),

on r1 < s− ǫ < r2 < r̄ < s. Therefore,

(85) |∂2R(r1, s)− ∂2R(r1, r2)| ≤
∣

∣

∣

∂3R

∂s2∂r1
(r1, r̄)

∣

∣

∣
ǫ. ǫ(r2 − r1)

α−1,

on r1 < s − ǫ < r2 < r̄ < s. Denote ∆(r1, r2, s) = ∂2R(r1, s) − ∂2R(r1, r2). Therefore,
assumption (76) and (85) allow us to apply Fubini’s theorem and we get

E

∣

∣

∣

∣

∣

1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
tr[Dr1Ys −Dr2Ys]∆(r1, r2, s)dr2dr1ds

∣

∣

∣

∣

∣

2

.

(

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
(r2 − r1)

η+α−1dr2dr1ds

)2

(86) . ǫ2(η+α+1),

as ǫ→ 0+. Next, we observe

1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
tr[Dr1Ys −Dr2Ys]∂

2R(r1, s)dr2dr1ds− J2,ǫ

(87) =
1

2

∫ T−ǫ

ǫ

∫ s−ǫ

0

{

tr[Ds−Ys]−
1

ǫ

∫ s

s−ǫ
tr[Dr2Ys]dr2

}

∂2R(r1, s)dr1ds.

By mean value theorem, we can write
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(88) tr[Ds−Ys]−
1

ǫ

∫ s

s−ǫ
tr[Dr2Ys]dr2 = tr[Ds−Ys]− tr[Ds′ǫYs],

on r1 < s− ǫ < s′ǫ < s. By (87), (88) and again by using Fubini’s theorem and assumption
(76), we arrive at

E

∣

∣

∣

∣

∣

1

2ǫ

∫ T−ǫ

ǫ

∫ s−ǫ

0

∫ s

s−ǫ
tr[Dr1Ys −Dr2Ys]∂

2R(r1, s)dr2dr1ds− J2,ǫ

∣

∣

∣

∣

∣

2

(89) .

(

ǫη
∫ T−ǫ

ǫ

∫ s−ǫ

0
(s− r1)

αdr1ds

)2

. ǫ2(η+α+1),

as ǫ→ 0+. The estimates (86) and (89) show

(90) E|I2,ǫ,2 − J2,ǫ|
2 . ǫ2(α+η+1) → 0,

as ǫ → 0+. The estimates (78), (80), (81), (82), (83), (84), (90) allow us to conclude the
proof.

We are now able to present the main abstract result concerning the symmetric-Stratonovich
integral. It is a consequence of Propositions 4.1 and 6.1, Lemma 6.1 and decomposition (39).
The final connection with the rough path integral is established by Theorem 5.1.

THEOREM 6.2. Let X be a d-dimensional fractional Brownian motion with 1
4 < H <

1
2 . Assume Y ∈ D

1,2(LR(R
d)) is adapted w.r.t X and it satisfies the following regularity

conditions.

• There exists q > 2 such that sup0≤t≤T E|Yt|
q <∞.

• tr[D·Ys] has continuous paths on [0, s] for every s≤ T .

• There exists η > 0 such that η+2H − 1> 0 and (76) is fulfilled.

• Assumption SK is fulfilled for 0< γ ≤H such that 2γ + 2H − 1> 0.

Then, Y is symmetric-Stratonovich integrable w.r.t X and we have the representation

∫ T

0
Ysd

0Xs =

∫ T

0
YsδXs +H

∫ T

0
tr[Ds−Ys]s

2H−1ds

(91) +

∫

0≤r1<r2≤T
tr[Dr1Yr2 −Dr2−Yr2 ]∂

2R(r1, r2)dr1dr2.

In addition, there exists a constant C which depends on (40) and (76) such that

(92) E

∣

∣

∣

∣

∣

∫ T

0
Ysd

0Xs − I0(ǫ, Y, dX)(T )

∣

∣

∣

∣

∣

2

≤C{ǫ2γ+2H−1 + ǫ2(η+2H−1)},

for every ǫ > 0 sufficiently small. Moreover, in case 1
3 <H < 1

2 and (Y,Y ′) ∈ DX(Rd) sat-

isfies (1), (2) and (3) in Theorem 5.1, then (Y,Y ′) ∈ DX(Rd) it is rough stochastically inte-

grable and the estimate (92) holds for the stochastic rough integral as well.
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REMARK 6.1. (Let γ and η be the exponents in Assumption SK and (76), respectively.

As far as the exponent γ in Assumption SK is concerned, typically, we expect γ ≤H . In case

γ =H and η ≥ 1
2 , the rate becomes ǫ4H−1. In case η ↑ 1

2 and either γ ↑H or γ =H , then

the rate becomes ǫ(4H−1)− . In case η ↑H and either γ ↑H or γ =H , then the rate becomes

ǫ(6H−2)− .

REMARK 6.2. The fact that the Gaussian process in Proposition 6.1 and Theorem 6.2 is

the fractional Brownian motion with 1
4 <H < 1

2 can be extended to a more general class of

Gaussian process (such as bifractional Brownian motion) satisfying

(93) |∂2R(s, t)|. |t− s|α + φ(s, t),

where −3
2 <α<−1 and s 7→ ∂3R

∂s2∂r
(r, s) is continuous on (r,T ) such that

∣

∣

∣

∂3R

∂s2∂r
(r, s)

∣

∣

∣
. |s− r|α−1 + z(r, s),

for 0< r < s≤ T , where φ, z : [0, T ]2 \D→R+ satisfy some regularity conditions compat-

ible with α and η given in (93) and (76), respectively.

We now present two classes of significant examples which illustrate Theorem 6.2 and its
relation with Theorem 5.1.

6.1. The case Y = f(X).

LEMMA 6.3. Fix 1
4 <H < 1

2 and let f : Rd →R
d be a continuously differentiable func-

tion such that f and ∇f are θ-Hölder continuous functions with 1
2H − 1 < θ ≤ 1. Then,

f(X) ∈D
1,2(LR(R

d)) and Assumption SK is fulfilled as

(94) ‖f(Xt)− f(Xs)‖
2
D1,2(Rd) . |t− s|2Hθ,

for s, t≥ 0. Therefore, f(X) it is symmetric-Stratonovich integrable. Moreover, if 1
3 <H < 1

2

and 1
2H − 1< θ ≤ 1

H
− 2, then ∇f(X) is θγ-Hölder continuous for every γ <H and

(95) f(Xt)− f(Xs)−∇f(Xs)(Xt −Xs) =O(|t− s|(θ+1)γ),

where (θ+1)γ + γ < 1 for every γ <H . In particular, the classical Sewing lemma fails.

PROOF. The proof follows from routine arguments as summarized here. Choose an or-
thonormal basis {en;n≥ 1} of LR(R

d) of continuous functions (see Prop 6.2 in [21]). The
conditions imposed on (f,∇f) yields f(X) ∈LR(R

d) a.s and we can define

Fn :=

n
∑

ℓ=1

〈f(X), eℓ〉LR(Rd)eℓ;n≥ 1,

in such way that Fn → f(X) in L2(Ω,LR(R
d)) as n → +∞. By Prop 8.12-8.14 in [21],

the subexponential behavior of ∇f and the assumption f ∈ C1 imply f(Xs) ∈ D
1,2 and

Df(Xs) =∇f(Xs)1[0,s] for every s ∈ [0, T ]. Moreover, by using Lemma 9.13 in [21], one
can easily check 〈f(X), en〉LR(Rd) ∈ D

1,2 and hence Fn ∈ D
1,2
(

LR(R
d)
)

for every n ≥ 1.
By using the θ-Hölder regularity of ∇f , we can check

sup
n≥1

E‖DFn‖
2
L2,R(Rd×d) <∞.
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This shows that f(X) ∈D
1,2(LR(R

d)). Clearly,

E|f(Xt)− f(Xs)|
2 . ‖f‖2θ|t− s|2θH ,

for every 0≤ s, t <∞, and

|∇f(Xa)| ≤ ‖∇f‖θ|Xa|
θ + |∇f(0)|; a≥ 0.

Then, there exists a constant C which depends on T and H such that

sup
s≥0

E
∣

∣∇f(Xs)
∣

∣

2
≤Cmax{‖∇f‖2θ, |∇f(0)|2}<∞.

By definition,

‖f(Xt)− f(Xs)‖
2
D1,2(Rd) = E|f(Xt)− f(Xs)|

2

+ E‖∇f(Xt)1[0,t] −∇f(Xs)1[0,s]‖
2
LR(Rd×d),

and triangle inequality yields

E‖∇f(Xt)1[0,t] −∇f(Xs)1[0,s]‖
2
LR(Rd×d) . E|∇f(Xt)−∇f(Xs)|

2‖1[0,t]‖
2
LR

+ E|∇f(Xs)|
2‖1[0,t] − 1[0,s]‖

2
LR

≤ T 2H‖∇f‖2θ|t− s|2θH +C|t− s|2H .

Therefore,

‖f(Xt)− f(Xs)‖
2
D1,2(Rd) ≤C

{

|t− s|2θH + |t− s|2H
}

,

for every 0 ≤ s, t < ∞. Then, f(X) satisfies the assumptions of Theorem 6.2 with η = 1.
Now, it is known that (see e.g Exercise 13.2 in [13])

(96) f(y) = f(x) +∇f(x)(y − x) +O(|y − x|θ+1); y,x ∈R
d.

Fix an arbitrary γ <H . Expansion (96) immediately implies that ∇f(X) is θγ-Hölder con-
tinuous and (95) holds. This concludes the proof.

We now present the proof of Corollary 1.1.

Proof of Corollary 1.1. Since

Dr1f(Xs)−Dr2f(Xs) = 0,

for every 0≤ r1 < r2 ≤ s≤ T , we can take any η = 1 in (76). A direct application of Lemma
6.3, Theorems 5.1 and 6.2 and Example 6 yields

(97)

E

∣

∣

∣

∣

∣

∫ T

0
f(Xs)dXs − I0(2−n, f(X), dX)(T )

∣

∣

∣

∣

∣

2

.max{‖∇f‖2θ,‖f‖
2
θ, |∇f(0)|2}2−n(4H−1)

for every n≥ 1 sufficiently large. By applying a routine Borel-Cantelli argument and Cheby-
shev’s inequality, (14) is a consequence of (97).
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6.2. The case of rough differential equations. In this section, we investigate the following
class of rough differential equations:

(98) dUX

t←0(y0) = dV (UX

t←0(y0))dXt

where UX
0←0(y0) = y0, V ∈ C3

b

(

R
d,L(Rd,Rd)

)

, y0 ∈ R
d and X is a γ-Hölder geometric

rough path lift for the fractional Brownian motion with parameter 1
3 <H < 1

2 and γ <H . It is
well-known that y0 7→ UX

t←0(y0) is differentiable with derivative JX

t←0(y0) ∈R
d×d, JX

t←0(y0)

is invertible a.s as a linear map with inverse denoted by J
−1,X
0←t (y0).

Throughout this section, we fix once and for all a deterministic initial condition y0 ∈ R
d

and a random γ-Hölder geometric rough path lift for X . We will denote

Yt = UX

t←0(y0), Jt = JX

t←0(y0), J
−1
t = J

−1,X
t←0 (y0).

We recall the following fundamental result due to [6] and [3]:

(99) ‖J‖ 1

γ
−var,‖J

−1‖ 1

γ
−var ∈ ∩q≥1L

q(P)

and

(100) ‖Y ‖γ ,‖J‖γ ,‖J
−1‖γ ∈ ∩q≥1L

q(P),

whenever 2 < 1
H

< 1
γ
< 4, where ‖ · ‖ 1

γ
−var denotes the 1

γ
-variation semi-norm. See also

Remark 2.7 in [3]. Of course, (100) implies

(101) ‖Y ‖∞,‖J‖∞,‖J−1‖∞ ∈ ∩q≥1L
q(P).

In this section, the Hölder-type estimates (100) and (101) play a key role in our analysis.
At first, it is convenient to work with the norms

‖f‖∞,κ := ‖f‖∞ + ‖f‖κ,

for a function f : [0, T ]→E taking values on a finite-dimensional space E and 0< κ≤ 1.
We need some technical lemmas which we describe as follows. They are straightforward

consequences of the regularity of the vector field V , (100) and (101), so we omit the details.

LEMMA 6.4. For a given 1
3 < γ < H < 1

2 , there exists a constant C which depends on

T,H and γ such that

∥

∥

∥
J−1· ◦V (Y )1[0,M ]

∥

∥

∥

2

LR(Rd)
≤Cmax

{

‖J−1‖∞,γ‖∇V ‖2∞‖Y ‖2γ ;‖V (Y )‖∞‖J−1‖2∞,γ

}

a.s,

for every M > 0.

LEMMA 6.5. For a given 1
3 < γ < H < 1

2 , there exists a constant C which depends on

T,H and γ such that

∥

∥

∥
J−1· ◦ V (Y )1(N,M ]

∥

∥

∥

2

LR(Rd)
≤ Cmax

{

‖J−1‖2∞,γ‖V (Y )‖2∞;‖∇V ‖2∞‖Y ‖2γ ;‖V (Y )‖2∞

}

×
{

|T ∧M − T ∧N |2H + |T ∧M − T ∧N |2γ+2H
}

a.s,

for every N <M <∞.
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Lemmas 6.4 and 6.5 yield the following result.

LEMMA 6.6. For a given 1
3 < γ < H < 1

2 , there exists a constant C which depends on

the moments of ‖J‖∞,γ ,‖J
−1‖∞,γ ,‖Y ‖∞,γ ,‖∇V ‖∞,H and T such that

(102) ‖Yt − Ys‖
2
D1,2(Rd) ≤C|t− s|2γ ,

for every s, t≥ 0.

We are now in position to present the proof of Corollary 1.2.

Proof of Corollary 1.2. At first, we observe the solution of the rough differential equation
(98) belongs to D

1,2(LR(R
d)). Indeed, the proof follows the same lines of Lemma 6.3 and

the well-known facts Yt ∈D
1,2(Rd) for every t≥ 0, DsYt = Jt ◦ J

−1
s ◦V (Ys)1[0,t](s), (100)

and (101). Therefore, we omit the details. Moreover, (100) and (101) imply

E|Dr1Ys −Dr2Ys|
2 . |r1 − r2|

2η,

on 0≤ r1 < r2 ≤ s≤ T , for any η such that 1
3 < η <H < 1

2 . By applying Example 7, Lemma
6.6, Theorems 5.1 and 6.2, we get

(103) E

∣

∣

∣

∣

∣

∫ T

0
YsdXs − I0(2−n, Y, dX)(T )

∣

∣

∣

∣

∣

2

. 2−n(2(η+2H−1))

for every n≥ 1 sufficiently large. By applying a routine Borel-Cantelli argument and Cheby-
shev’s inequality, (15) is a consequence of (103).

The remainder of this paper is devoted to the proof of Theorem 5.1.

APPENDIX A: PROOF OF THEOREM 5.1

In this section, we present the proof of Theorem 5.1. Before we present it, it is convenient
to summarize the main idea. Under the assumptions of Theorem 5.1, it is enough to prove
that

(104) lim
ǫ→0+

1

ǫ

∫ t

0

〈

Y ′s ,Anti(Xs,s+ǫ)
〉

F

ds= 0

in probability, where 〈·, ·〉F denotes the Frobenius inner product on the space of d × d-
matrices. Indeed, if (Y,Y ′) ∈ DX(Rd), then we can take advantage of decomposition (21)
and the geometric property of X to write

1

ǫ

〈Ys + Ys+ǫ

2
,Xs,s+ǫ

〉

=
1

ǫ

〈

Ys,Xs,s+ǫ

〉

+
1

2ǫ

〈

Y ′sXs,s+ǫ,Xs,s+ǫ

〉

+
1

2ǫ

〈

RY
s,s+ǫ,Xs,s+ǫ

〉

=
1

ǫ

〈

Ys,Xs,s+ǫ

〉

+
1

2ǫ

〈

Y ′s ,Xs,s+ǫ ⊗Xs,s+ǫ

〉

F
+ oP(1)

=
1

ǫ

〈

Ys,Xs,s+ǫ

〉

+
1

ǫ

〈

Y ′s ,Sym(Xs,s+ǫ)
〉

F
+ oP(1)(105)

=
1

ǫ

〈

Ys,Xs,s+ǫ

〉

+
1

ǫ

〈

Y ′s ,Xs,s+ǫ

〉

F
−

1

ǫ

〈

Y ′s ,Anti(Xs,s+ǫ)
〉

F
+ oP(1)

where 〈·, ·〉 above denotes the standard inner product on R
d.
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A.1. Preliminary estimates. In this section, we provide some preliminary estimates to-
wards the obtention of (104). In the sequel, we fix (Y,Y ′) ∈DX(Rd) where

Y ′t =
(

Y
′,ji
t

)

; 1≤ i, j ≤ d,

is a d×d-matrix. For a given ǫ > 0, the (i, j)-th element of the d×d-matrix (Y
′

s )
⊤Anti(Xs,s+ǫ)

is given by

1

2

d
∑

ℓ=1

Y
′,iℓ
s

{

∫ s+ǫ

s

(Xj
r −Xj

s )d
0Xℓ

r −

∫ s+ǫ

s

(Xℓ
r −Xℓ

s)d
0Xj

r

}

.

Proposition 4.2 yields

∫ s+ǫ

s

(Xj
r −Xj

s )d
0Xℓ

r −

∫ s+ǫ

s

(Xℓ
r −Xℓ

s)d
0Xj

r =

δ
(

(Xj −Xj
s )1[s,s+ǫ]eℓ − (Xℓ −Xℓ

s)1[s,s+ǫ]ej

)

and by Proposition 10.2 in [21], we can write

Y
′,iℓ
s δ

(

(Xj −Xj
s )1[s,s+ǫ]eℓ − (Xℓ −Xℓ

s)1[s,s+ǫ]ej

)

=

δ
(

Y
′,iℓ
s (Xj −Xj

s )1[s,s+ǫ]eℓ − Y
′,iℓ
s (Xℓ −Xℓ

s)1[s,s+ǫ]ej

)

+
〈

D·Y
′,iℓ
s ,

[

(Xj
· −Xj

s )eℓ − (Xℓ
· −Xℓ

s)ej
]

1[s,s+ǫ](·)
〉

LR(Rd)
a.s.

We will analyze

ǫ−1
∫ t

0

〈

Y
′

s ,Anti(Xs,s+ǫ)〉Fds= ǫ−1
d
∑

i=1

∫ t

0

(

(Y
′

s )
⊤Anti(Xs,s+ǫ)

)

ii
ds.

By applying the Fubini’s Theorem 10.3 in [21], we arrive at the following representation for
the (i, j)-th element of the matrix ǫ−1

∫ t

0 (Y
′

s )
⊤Anti(Xs,s+ǫ)ds:

d
∑

ℓ=1

1

ǫ

∫ t

0
Y

′,iℓ
s

(

Anti(Xs,s+ǫ)
)

ℓj
ds=

1

2ǫ

d
∑

ℓ=1

∫ t

0

(

∫ r

r−ǫ
Y

′,iℓ
s

{

Xj
s,reℓ −Xℓ

s,rej
}

ds

)

δXr

(106)

+
1

2ǫ

d
∑

ℓ=1

∫ t

0

〈

D·Y
′,iℓ
s , [Xj

s,·eℓ −Xℓ
s,·ej ]1[s,s+ǫ](·)

〉

LR(Rd)
ds,

for every t ∈ [0, T ], ǫ > 0 and i, j ∈ {1, . . . , d}.
In the sequel, we are going to fix i, ℓ, j ∈ {1, . . . , d} and t ∈ [0, T ] and prove that the second

part in the right-hand side of ǫ−1
∫ t

0 Y
′,iℓ
s (Anti(Xs,s+ǫ))

ℓjds in (106) vanishes in L1(P) as
ǫ ↓ 0. In the sequel, we recall

|µ|(dv1dv2) =
∣

∣∂2R(v1, v2)
∣

∣dv1dv2.
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To keep notation, variables in R
2
+ \D are denoted by r= (r1, r2).

Let us write DrY
′,iℓ
s = (D1

rY
′,iℓ
s , . . . ,Dd

rY
′,iℓ
s ) in LR(R

d). Then, we have

〈

D·Y
′,iℓ
s ,

[

(Xj
· −Xj

s )eℓ − (Xℓ
· −Xℓ

s)ej
]

1[s,s+ǫ](·)
〉

LR(Rd)

=

∫ s+ǫ

s
Dℓ

rY
′,iℓ
s Xj

s,r∂rR(r, T )dr

−

∫ s+ǫ

s
Dj

rY
′,iℓ
s Xℓ

s,r∂rR(r, T )dr

+
1

2

∫

[0,T ]2\D

(

Dℓ
r1Y

′,iℓ
s −Dℓ

r2Y
′,iℓ
s

)(

Xj
s,r11[s,s+ǫ](r1)−Xj

s,r21[s,s+ǫ](r2)
)

|µ|(dr1dr2)

−
1

2

∫

[0,T ]2\D

(

Dj
r1Y

′,iℓ
s −Dj

r2Y
′,iℓ
s

)(

Xℓ
s,r11[s,s+ǫ](r1)−Xℓ

s,r21[s,s+ǫ](r2)
)

|µ|(dr1dr2)

=: I1s + I2s + I3s + I4s a.s.

The components I1 and I2 can be estimated as follows. In order to keep notation simple, we
set β = α

2 + 1 ∈
(

1
3 ,

1
2

)

. By using (57), Assumption D(4) and Hölder’s inequality, we get

E

∣

∣

∣

1

ǫ

∫ t

0
I1s ds

∣

∣

∣
. ǫβ

∫ t

0

(

1

ǫ

∫ s+ǫ

s

∂R(r,T )dr

)

ds→ 0

as ǫ→ 0+. The term I2 is similar. By symmetry, the analysis of the term I3 is similar to I4.
Again, by using (57), Assumptions D, C and Hölder’s inequality, we get

E

∣

∣

∣

1

ǫ

∫ t

0
I3s ds

∣

∣

∣
.

1

ǫ

∫ t

0

∫

{s<r2<r1<s+ǫ}

{

(r1 − r2)
β+α + (r1 − r2)

βφ(r1, r2)
}

dr1dr2ds

+
1

ǫ

∫ t

0

∫

{r2≤s<r1<s+ǫ}

{

(r1 − s)β(r1 − r2)
α + (r1 − s)βφ(r1, r2)

}

dr1dr2ds

+
1

ǫ

∫ t

0

∫

{s<r2<s+ǫ≤r1}

{

(r2 − s)β(r1 − r2)
α + (r2 − s)βφ(r1, r2)

}

dr1dr2ds,

for ǫ > 0. By invoking Assumption D, we observe

(107) ǫ−1
∫

{s<r2<r1<s+ǫ}
(r1 − r2)

βφ(r1, r2)dr1dr2 . ǫα+1+β,

for every s ∈ [0, t]. Moreover,

ǫ−1
∫

{s<r2<s+ǫ≤r1}
(r2 − s)βφ(r1, r2)dr1dr2 = ǫ−1

∫ s+ǫ

s

∫ T

s+ǫ

(r2 − s)βφ(r1, r2)dr1dr2

. ǫ−1[T
α+2

2 − (s+ ǫ)
α+2

2 ]ϕ(s)

∫ s+ǫ

s

(r2 − s)βdr2

= ǫβ[T
α+2

2 − (s+ ǫ)
α+2

2 ]ϕ(s)

. ǫβT
α+2

2 ϕ(s),(108)
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and

ǫ−1
∫

{r2≤s<r1<s+ǫ}
(r1 − s)βφ(r1, r2)dr1dr2 = ǫ−1

∫ s+ǫ

s

∫ s

0
(r1 − s)βφ(r1, r2)dr2dr1

. ǫ−1
∫ s+ǫ

s

(r1 − s)βs
α+2

2 ϕ(r1)dr1

. s
α+2

2 ϕ(s)ǫ−1
∫ s+ǫ

s

(r1 − s)βdr1

= s
α+2

2 ϕ(s)ǫβ ,(109)

for each s ∈ [0, t]. Moreover,

∫

{s<r2<r1<s+ǫ}
(r1 − r2)

α+βdr1dr2 . ǫα+2+β ,

(110)
∫

{s<r2<s+ǫ≤r1}
(r1 − r2)

αdr1dr2 . ǫα+2,

and

∫

{r2≤s<r1<s+ǫ}
(r1 − r2)

αdr=
1

(1− (α+ 2))(α+ 2)

{

sα+2 + ǫα+2 − (s+ ǫ)α+2
}

. ǫα+2,(111)

for every s ∈ [0, t]. Then, (110), (111), (107), (108) and (109) allow us to conclude there
exists a constant C such that

E
1

ǫ

∣

∣

∣

∣

∣

∫ t

0
I3s ds

∣

∣

∣

∣

∣

≤Cǫβ+α+1 → 0

as ǫ ↓ 0, because α+ 1+ β > 0. This shows that the second part of (106) vanishes.

A.2. Estimating the Skorohod integral in (106). Let us now devote our attention to
the first component in the right-hand side of (106), namely the Skorohod integral. In the
sequel, we are going to fix i, ℓ, j ∈ {1, . . . , d} and t ∈ [0, T ] and prove that the first part in the
right-hand side of (106) vanishes in L1(P) as ǫ ↓ 0.

In the sequel, to keep notation simple, we set

u
iℓ,j
r−ǫ,r :=

∫ r

r−ǫ
Y

′,iℓ
s (Xj

r −Xj
s )ds=

∫ ∞

0
(Xj

r −Xj
s )1(r−ǫ,r)(s)Y

′,iℓ
s ds.

The following technical result is an almost immediate consequence of Assumptions (1)
and (2) in Theorem 5.1. Indeed, it is an application of Lemma 4.2. We left the details of the
proof to the reader.

LEMMA A.1. Assume that assumptions (2) and (3) in Theorem 5.1 hold. Then, for every

i, ℓ, j ∈ {1, . . . , d} and ǫ > 0,
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(112)
(

u
iℓ,j
·−ǫ,·eℓ − u

iℓ,ℓ
·−ǫ,·ej

)

∈D
1,2(LR(R

d)).

In particular, the (only) non-null ℓ-th column of Dvu
iℓ,j
r−ǫ,reℓ equals to

(113)
∫ r

r−ǫ

{

(Xj
r −Xj

s )DvY
′,iℓ
s + Y

′,iℓ
s 1[s,r](v)ej

}

ds

and the (only) non-null j-th column of Dvu
iℓ,ℓ
r−ǫ,rej equals to

(114)
∫ r

r−ǫ

{

(Xℓ
r −Xℓ

s)DvY
′,iℓ
s + Y

′,iℓ
s 1[s,r](v)eℓ

}

ds

a.s for every v, r ∈ [0, T ] and ǫ > 0.

The Skorohod operator (dom δ,δ) is defined on dom δ ⊂L2(Ω;LR(R
d)), where

1

ǫ

∫ t

0

(

∫ r

r−ǫ
Y

′,iℓ
s

{

Xj
s,reℓ −Xℓ

s,rej
}

ds

)

δXr = δ
(1

ǫ

(

u
iℓ,j
·−ǫ,·eℓ − u

iℓ,ℓ
·−ǫ,·ej

)

1[0,t]

)

.

By recalling that

(115) ‖F −E[F ]‖L2(Ω,LR(Rd)) . ‖DF‖L2(Ω;L2,R(Rd×d))

for every F ∈D
1,2
(

LR(R
d)
)

, we may apply Proposition 1.5.8 in [24] (see also Prop 12.5 in
[21]) and Lemma A.1 to infer the existence of an universal constant c2 such that

∥

∥

∥

∥

∥

δ
(1

ǫ

(

u
iℓ,j
·−ǫ,·eℓ − u

iℓ,ℓ
·−ǫ,·ej

)

1[0,t]

)

∥

∥

∥

∥

∥

L2(P)

≤ c2

(

∥

∥

∥
E

[1

ǫ

(

u
iℓ,j
·−ǫ,·eℓ − u

iℓ,ℓ
·−ǫ,·ej

)

1[0,t]

]
∥

∥

∥

LR(Rd)

(116) +
∥

∥

∥
D·

[1

ǫ

(

u
iℓ,j
·−ǫ,·1[0,t]eℓ − u

iℓ,ℓ
·−ǫ,·1[0,t]ej

)

]
∥

∥

∥

L2(Ω;L2,R(Rd×d))

)

=: J1(ǫ, t) + J2(ǫ, t),

for every t ∈ [0, T ] and ǫ > 0.

A.3. Analysis of J1(ǫ, t). In the sequel, we set β = α
2 + 1, where −4

3 < α < −1. To
shorten notation, we set

U iℓ,j,ǫ
s1 := E[uiℓ,js1−ǫ,s1] =

∫ s1

s1−ǫ
E[Y

′,iℓ
s (Xj

s1 −Xj
s )]ds

and

∆(s;t)U
iℓ,j,ǫ := U iℓ,j,ǫ

s1
1[0,t](s1)−U iℓ,j,ǫ

s2
1[0,t](s2)

for s= (s1, s2) ∈ [0, T ]2 \D. Then, for ℓ 6= j, we have

E

[1

ǫ

(

u
iℓ,j
s1−ǫ,s1eℓ − u

iℓ,ℓ
s1−ǫ,s1ej

)

]

1[0,t](s1) =
1

ǫ

(

U iℓ,j,ǫ
s1 eℓ −U iℓ,ℓ,ǫ

s1 ej

)

1[0,t](s1)
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and

∥

∥

∥

∥

∥

E

[1

ǫ

(

uiℓ,jeℓ − uiℓ,ℓej
)

1[0,t]

]

∥

∥

∥

∥

∥

2

LR(Rd)

.

∫ t

0

∣

∣

∣

1

ǫ

∫ r

r−ǫ
E[Y

′,iℓ
s (Xj

r −Xj
s )]ds

∣

∣

∣

2∣
∣∂rR(r,T )

∣

∣dr

(117)

+

∫ t

0

∣

∣

∣

1

ǫ

∫ r

r−ǫ
E[Y

′,iℓ
s (Xℓ

r −Xℓ
s)]ds

∣

∣

∣

2∣
∣

∣
∂rR(r,T )

∣

∣dr

+

∫

[0,T ]2\D

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|µ|(ds1ds2)

+

∫

[0,T ]2\D

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,ℓ,ǫ
∣

∣

∣

2
|µ|(ds1ds2).

By Hölder’s inequality, assumption (57) and Assumption C (ii), we have

∫ t

0

∣

∣

∣

1

ǫ

∫ r

r−ǫ
E[Y

′,iℓ
s (Xj

r −Xj
s )]ds

∣

∣

∣

2∣
∣∂Rr(r,T )

∣

∣dr ≤ ǫ−2
∫ t

0

(

∫ r

r−ǫ
(r− s)βds

)2∣
∣∂Rr(r,T )

∣

∣dr

(118)

. ǫ−2ǫ2(β+1)

∫ T

0

∣

∣∂Rr(r,T )
∣

∣dr.

By symmetry, the estimate (118) also holds for the second term in the right-hand side of
(117). Now, we split

∫

[0,T ]2\D

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|µ|(ds1ds2) = 2

∫

0<s1<t<s2≤T

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|µ|(ds1ds2)

(119) +

∫

[0,t]2\D

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|µ|(ds1ds2).

In the sequel, we will take advantage of assumption (25). In case, s1 < t < s2, mean value
theorem, assumption (57), Hölder’s inequality and Assumption C (ii) yield

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
=
∣

∣

∣

1

ǫ

∫ s1

s1−ǫ
E[Y

′,iℓ
s (Xj

s1
−Xj

s )]ds
∣

∣

∣

2
=
∣

∣

∣
E[Y

′,iℓ
r1

(Xj
s1
−Xj

r1
)]
∣

∣

∣

2

. (s1 − r1)
2β ≤ ǫ2β ,

for some r1 satisfying s1 − ǫ < r1 < s1 < t < s2. Then,

2

∫

0<s1<t<s2≤T

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|s1 − s2|

αds1ds2

. ǫ2β
∫ T

t

∫ t

0
(s2 − s1)

αds1ds2
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(120) . ǫ2β
∫ T

t

{(s2 − t)α+1 − sα+1
2 }ds2 → 0,

as ǫ ↓ 0. In addition,

∫

0<s1<t<s2≤T

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
φ(s1, s2)ds1ds2 . ǫ2β

∫

0<s1<t<s2≤T
φ(s1, s2)ds1ds2 → 0,

as ǫ ↓ 0.
The case s1 < t and s2 < t is trickier. At first, we observe a 7→ E[Y

′,iℓ
a (Xj

b − X
j
a)] is

continuous for every b. Hence,

(121) lim
ǫ↓0

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
= 0,

for each s= (s1, s2) ∈ [0, t]2 \D. If s2 < s1 < t, then we shall write

1

ǫ

∫ s1

s1−ǫ
E[Y

′,iℓ
s (Xj

s1 −Xj
s )]ds=

1

ǫ

∫ s2

s2−ǫ
E[Y

′,iℓ
s (Xj

s1 −Xj
s )]ds

+
1

ǫ

∫ s1

s2

E[Y
′,iℓ
s (Xj

s1 −Xj
s )]ds−

1

ǫ

∫ s1−ǫ

s2−ǫ
E[Y

′,iℓ
s (Xj

s1 −Xj
s )]ds,

and we arrive at

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
=
∣

∣

∣

1

ǫ

∫ s1

s1−ǫ
E[Y

′,iℓ
s (Xj

s1
−Xj

s )]ds−
1

ǫ

∫ s2

s2−ǫ
E[Y

′,iℓ
s (Xj

s2
−Xj

s )]ds
∣

∣

∣

2

(122) =
∣

∣

∣

1

ǫ

∫ s2

s2−ǫ
E[Y

′,iℓ
s (Xj

s1
−Xj

s2
)]ds+

1

ǫ

∫ s1

s2

E[Y
′,iℓ
s (Xj

s1
−Xj

s )]ds

−
1

ǫ

∫ s1−ǫ

s2−ǫ
E[Y

′,iℓ
s (Xj

s1
−Xj

s )]ds
∣

∣

∣

2
.

Mean value theorem, assumption (57), Hölder’s inequality and Assumption C (ii) yield

(123)
∣

∣

∣

1

ǫ

∫ s2

s2−ǫ
E[Y

′,iℓ
s (Xj

s1 −Xj
s2)]ds

∣

∣

∣

2
. (s1 − s2)

2β ,

for every s2 < s1 < t. In addition, the same argument yields

∣

∣

∣

1

ǫ

∫ s1

s2

E[Y
′,iℓ
s (Xj

s1 −Xj
s )]ds

∣

∣

∣

2
.

(

∫ s1

s2

(s1 − s)βdsǫ−1

)2

. (s1 − s2)
2β ,(124)

whenever (s1 − s2)< ǫ and s2 < s1 < t. Similarly,
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∣

∣

∣

1

ǫ

∫ s1−ǫ

s2−ǫ
E[Y

′,iℓ
s (Xj

s1
−Xj

s )]ds
∣

∣

∣

2
. ǫ−2

(

∫ s1−ǫ

s2−ǫ
(s1 − s)βds

)2

. ǫ−2(s1 − s2 + ǫ)2(β+1)

. (s1 − s2 + ǫ)2β ,(125)

whenever (s1 − s2)< ǫ and s2 < s1 < t.
We observe |s1 − s2|

2β is integrable w.r.t the positive measures |s1 − s2|
αds1ds2 +

φ(s1, s2)ds1ds2 (recall 2β+α+1> 0). Then, (121), the estimates (122), (123), (124), (125)
and assumption (25) allow us to apply bounded convergence theorem to get

(126)
∫

{s;s2<s1<t,(s1−s2)<ǫ}

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|µ|(ds1ds2)→ 0,

as ǫ ↓ 0. Now, Mean Value theorem yields

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
1{s;s2<s1<t,(s1−s2)≥ǫ}

(127) =
∣

∣

∣
E[Y

′,iℓ
s̄1(ǫ)

(Xj
s1 −X

j
s̄1(ǫ)

)]−E[Y
′,iℓ
s̄2(ǫ)

(Xj
s2 −X

j
s̄2(ǫ)

)]
∣

∣

∣

2
1{s;s2<s1<t,(s1−s2)≥ǫ}

for some (s̄1(ǫ), s̄2(ǫ)) satisfying s1 − ǫ < s̄1(ǫ) < s1 and s2 − ǫ < s̄2(ǫ) < s2. Jensen’s
inequality, (57) and Assumption C (ii) yield

|E[Y
′,iℓ

s̄1(ǫ)
(Xj

s1 −X
j

s̄1(ǫ)
)]|21{s;s2<s1<t,(s1−s2)≥ǫ}

. (s1 − s̄1(ǫ))
2β
1{s;s2<s1<t,(s1−s2)≥ǫ}

(128) . (s1 − s2)
2β

and

|E[Y
′,iℓ
s̄2(ǫ)

(Xj
s2
−X

j
s̄2(ǫ)

)]|21{s;s2<s1<t,(s1−s2)≥ǫ}

. (s1 − s̄2(ǫ))
2β
1{s;s2<s1<t,(s1−s2)≥ǫ}

(129) . (s1 − s2 + ǫ)2β1{s;(s1−s2)≥ǫ}

. (s1 − s2)
2β .

Summing up (121), (127), (128), (129) and invoking bounded convergence theorem and (25),
we conclude

(130)
∫

{s;s2<s1<t,(s1−s2)≥ǫ}

∣

∣

∣

1

ǫ
∆(s;t)U

iℓ,j,ǫ
∣

∣

∣

2
|µ|(ds1ds2)→ 0,

as ǫ ↓ 0.
Summing up (117), (118), (119), (120), (126 and (130) and using symmetry of the terms

in (117), we conclude limǫ↓0 J1(ǫ, t) = 0 in (116) for each t ∈ [0, T ].



44

A.4. Analysis of J2(ǫ, t). In order to finish the proof of the theorem, we now need to
estimate J2(ǫ, t). With a slight abuse of notation, when no confusion is possible, we write
| · |= ‖ · ‖Rd×d . Let us fix r 6= v, i, ℓ, j ∈ {1, . . . , d} with ℓ 6= j.

LEMMA A.2. If Y
′

satisfies the assumptions of Theorem 5.1, then

(131) lim
ǫ→0+

1

ǫ

∫ r

r−ǫ

{

Xj
s,rDvY

′,iℓ
s + Y

′,iℓ
s 1[s,r](v)ej

}

ds= 0

almost surely, for Lebesgue almost all (r, v) ∈ [0, T ]2 \D.

PROOF. If r < v, then 1[s,r](v) = 0 whenever r − ǫ < s < r. Then, for Lebesgue almost
all (r, v) with r < v, we have

(132)
∣

∣

∣

1

ǫ

∫ r

r−ǫ

{

Xj
s,rDvY

′,iℓ
s + Y

′,iℓ
s 1[s,r](v)ej

}

ds
∣

∣

∣
=
∣

∣

∣

1

ǫ

∫ r

r−ǫ
Xj

s,rDvY
′,iℓ
s ds

∣

∣

∣
→ 0

almost surely as ǫ ↓ 0. In case v < r, we observe v < r− ǫ < r for every ǫ sufficiently small
and 1[s,r](v) = 0 whenever v < r− ǫ < s < r. Then, for each (r, v) with v < r, one can take
ǫ= ǫ(r, v) sufficiently small such that the estimate (132) holds true as well. Then, we do have
the almost sure convergence (131) pointwise in [0, T ]2 \D.

Next, we provide the analysis of J2(ǫ, t). In this section, we will analyze

J2(ǫ, t) = E‖hǫ‖
2
L2,R(Rd×d)),

where hǫ is given by

hǫ(v, r) =Dv

[1

ǫ

(

u
iℓ,j
r−ǫ,r1[0,t](r)eℓ − u

iℓ,ℓ
r−ǫ,r1[0,t](r)ej

)

]

,

where

‖hǫ‖
2
L2,R(Rd×d) =

∫ ∞

0

∫ ∞

0
|hǫ(v, r)|

2|∂vR(v,T )|ds|∂rR(r,T )|dr

+
1

2

∫ ∞

0

∫

R
2
+\D

|hǫ(v1, r)− hǫ(v2, r)|
2|µ|(dv1dv2)|∂rR(r,T )|dr

+
1

2

∫

R
2
+\D

∫ ∞

0
|hǫ(v, r1)− hǫ(v, r2)|

2|∂vR(v,T )|dv|µ|(dr1dr2)

+
1

4

∫

R
2
+\D

∫

R
2
+\D

|∆∆hǫ(v,r)|
2|µ|(dv1dv2)|µ|(dr1dr2)

=: L1(ǫ) +L2(ǫ) +L3(ǫ) +L4(ǫ),

and

∆∆hǫ(v,r) = hǫ(v1, r1)− hǫ(v1, r2)− hǫ(v2, r1) + hǫ(v2, r2)

for v= (v1, v2),r= (r1, r2) ∈R
2
+ \D.
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Analysis of L1(ǫ). By using Jensen’s inequality, Lemma A.1, Gaussian moments and As-
sumptions A and (57), one can easily check there exists p > 1 such that

sup
0<ǫ<1

E

∫ T

0

∫ T

0
|hǫ(r, v)|

2p|∂R(r,T )∂R(v,T )|dv <∞.

Lemma A.2 and Vitali’s theorem allow us to conclude E[L1(ǫ)]→ 0 as ǫ ↓ 0.

Analysis of L2(ǫ). Next, we analyze

(133)

E

∫ t

0

∫

[0,T ]2\D

∣

∣

∣
Dv1

[1

ǫ

(

u
iℓ,j
r−ǫ,reℓ−u

iℓ,ℓ
r−ǫ,rej

)]

−Dv2

[1

ǫ

(

u
iℓ,j
r−ǫ,reℓ−u

iℓ,ℓ
r−ǫ,rej

)]

∣

∣

∣

2
|µ|(dv1dv2)|R(dr,T )|.

For this purpose, by symmetry and Lemma A.1, it is sufficient to bound

(134)
∣

∣

∣

1

ǫ

∫ r

r−ǫ
Xj

s,r

(

Dm
v1
Y

′,iℓ
s −Dm

v2
Y

′,iℓ
s

)

ds
∣

∣

∣

2

for m 6= j and

(135)
∣

∣

∣

1

ǫ

∫ r

r−ǫ

{

Xj
s,r

(

Dj
v1Y

′,iℓ
s −Dj

v2Y
′,iℓ
s

)

+ Y
′,iℓ
s

[

1[s,r](v1)− 1[s,r](v2)
]

}

ds
∣

∣

∣

2
.

Clearly, we only need to check (135) because the term (134) is totally analogous. In the
sequel, to shorten notation, we denote Aǫ(r, v1, v2) as the square root of (135). By using the
same argument given in the proof of Lemma A.2, we can safely state that

(136) lim
ǫ→0+

Aǫ(r, v1, v2) = 0 a.s,

for each v1 6= v2 and r ∈ [0, T ]. In the sequel, let us write

Aǫ(r, v1, v2) =

6
∑

i=1

Aǫ(r, v1, v2)1Ei(ǫ)

for v1 < v2 (without any loss of generality), where

• E1(ǫ) = {(r, v1, v2);v1 < v2 < r− ǫ}
• E2(ǫ) = {(r, v1, v2); r < v1 < v2}
• E3(ǫ) = {(r, v1, v2);v1 < r− ǫ < v2 < r}
• E4(ǫ) = {(r, v1, v2); r− ǫ < v1 < v2 < r}
• E5(ǫ) = {(r, v1, v2); r− ǫ < v1 < r < v2}
• E6(ǫ) = {(r, v1, v2);v1 < r− ǫ < r < v2}.

Here, for each positive small ǫ, {Ei(ǫ); 1 ≤ i ≤ 6} constitutes a partition of [0, T ] ×
{(v1, v2) ∈ [0, T ]2 \ D;v1 < v2}. By using Jensen, Hölder’s inequalities and Assumption
A, C(ii) and (56), there exists q > 1 such that

E

∫

E1(ǫ)
|Aǫ(r, v1, v2)|

2|µ|(dv1dv2)|R(dr,T )|
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. ǫα+2

∫ T

0

∫

v1

sup
s≥v2

‖Dv1Y
′

s −Dv2Y
′

s ‖
2
L2q(P)|µ|(dv1dv2)→ 0,

as ǫ ↓ 0. Similarly, there exists q > 1 such that

E

∫

E2(ǫ)
|Aǫ(r, v1, v2)|

2|µ|(dv1dv2)|R(dr,T )|

. ǫα+2

∫ T

0

∫

v1

sup
s<v1

‖Dv1Y
′

s −Dv2Y
′

s ‖
2
L2q(P)|µ|(dv1dv2)→ 0,

as ǫ ↓ 0. Similar analysis can be made for Ei(ǫ) for 3≤ i≤ 6. Indeed, one can show that for
each i= 3,4,5,6,

{|Aǫ|
2
1Ei(ǫ)|∂

2R|; 0< ǫ < 1}

is uniformly integrable w.r.t P× |R(·, T )| ×Leb. Vitali’s theorem combined with (136) yield
E[L2(ǫ)]→ 0 as ǫ ↓ 0.

Analysis of L3(ǫ) and L4(ǫ). In order to shorten notation, we now set

Ξiℓ,j,ǫ
r,v,t :=Dv

[1

ǫ

(

u
iℓ,j
r−ǫ,r1[0,t](r)eℓ − u

iℓ,ℓ
r−ǫ,r1[0,t](r)ej

)

]

,

∆rΞ
iℓ,j,ǫ(r, v, t) := Ξiℓ,j,ǫ

r1,v,t
−Ξiℓ,j,ǫ

r2,v,t
=

1

ǫ
Dv

[

(

u
iℓ,j
r1−ǫ,r11[0,t](r1)− u

iℓ,j
r2−ǫ,r21[0,t](r2)

)

eℓ

(137)

−
(

u
iℓ,ℓ
r1−ǫ,r11[0,t](r1)− u

iℓ,ℓ
r2−ǫ,r21[0,t](r2)

)

ej
)

]

,

(138) ∆v∆rΞ
iℓ,j,ǫ(r,v, t) := ∆rΞ

iℓ,j,ǫ(r, v1, t)−∆rΞ
iℓ,j,ǫ(r, v2, t).

Of course, we recall that the above multi-parameter processes take values on the space of
d× d-matrices. It remains to estimate

E

∫

[0,T ]2\D

∥

∥

∥
D·

[1

ǫ

(

u
iℓ,j
r1−ǫ,r11[0,t](r1)eℓ − u

iℓ,ℓ
r1−ǫ,r11[0,t](r1)ej

)

]

−D·

[1

ǫ

(

u
iℓ,j
r2−ǫ,r21[0,t](r2)eℓ − u

iℓ,ℓ
r2−ǫ,r21[0,t](r2)ej

)

]
∥

∥

∥

2

LR(Rd×d)
|µ|(dr1dr2)

= E

∫

[0,T ]2\D

∫ T

0
|∆rΞ

iℓ,j,ǫ(r, v, t)|2|R(dv,T )||µ|(dr1dr2)

+
1

2
E

∫

[0,T ]2\D

∫

[0,T ]2\D
|∆v∆rΞ

iℓ,j,ǫ(r,v, t)|2|µ|(dv1dv2)|µ|(dr1dr2) = L3(ǫ) +L4(ǫ).

Analysis of L3(ǫ). Since ℓ 6= j, by symmetry, Lemma A.1 and the definition of (137), we
only need to check convergence to zero in L2(P× |R(·, T )| × d|µ|) of the ℓ-th column (the

only non-null column) of 1
ǫ
Dv

[

(

u
iℓ,j
r1−ǫ,r1 − u

iℓ,j
r2−ǫ,r2

)

eℓ

]

.
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LEMMA A.3. Assume that Y
′

satisfies the assumptions in Theorem 5.1. Then, for each

ℓ 6= j and t ∈ (0, T ],

lim
ǫ→0+

1

ǫ
Dv

[

(

u
iℓ,j
r1−ǫ,r11[0,t](r1)− u

iℓ,j
r2−ǫ,r21[0,t](r2)

)

eℓ

]

= 0 a.s

for almost all (v, r1, r2) ∈ [0, T ]× [0, T ]2 \D w.r.t the product measure |R(·, T )| × d|µ|.

PROOF. The (only) non-null ℓ-th column of

ǫ−1Dvu
iℓ,j
r1−ǫ,r1eℓ1[0,t](r1)− ǫ−1Dvu

iℓ,j
r2−ǫ,r2eℓ1[0,t](r2)

equals to

(139)
1

ǫ

∫ r1

r1−ǫ

{

Xj
s,r1DvY

′,iℓ
s + Y

′,iℓ
s 1[s,r1](v)ej

}

ds1[0,t](r1)

−
1

ǫ

∫ r2

r2−ǫ

{

Xj
s,r2DvY

′,iℓ
s + Y

′,iℓ
s 1[s,r2](v)ej

}

ds1[0,t](r2)

a.s for Lebesgue almost all v, r1, r2 ∈ [0, T ] and ǫ > 0. Then, the argument is the same as the
one applied in the proof of Lemma A.2.

We need to investigate convergence to zero of (139) in L2(P× |R(·, T )| × d|µ|). Again,
the idea is to explore almost sure convergence stated in Lemma A.3 and uniform integrability.
By symmetry, we may restrict r2 < r1 ≤ t. The case r2 ≤ t < r1 ≤ T is trivial because no
singularity appears in ∂2R(r1, r2). We split [0, T ]× {(r1, r2); r2 < r1 ≤ t} into three cases

F1 = {(v, r1, r2); 0≤ v < r2 < r1 ≤ t}, F2 = {(v, r1, r2); 0≤ r2 < v < r1 ≤ t}

F3 = {(v, r1, r2); 0≤ r2 < r1 ≤ v ≤ T}.

We will check that

∣

∣

∣

∣

∣

1

ǫ
Dv

[

(

u
iℓ,j
r1−ǫ,r11[0,t](r1)− u

iℓ,j
r2−ǫ,r21[0,t](r2)

)

eℓ

]

∣

∣

∣

∣

∣

2

|∂2R(r1, r2)|1Fz

is uniformly integrable (along the parameter ǫ ∈ (0,1)) over the measure space P ×
|R(·, T )| × Leb, for each z = 1,2,3.

The process (139) at the region F2 can be easily estimated by using (25), (57), assumption
A and the fact that no singularity appears in ∂2R. Indeed, there exists p > 1 such that

E

∫

F2

∣

∣

∣

∣

∣

1

ǫ

∫ rm

rm−ǫ

{

Xj
s,rm

DvY
′,iℓ
s + Y

′,iℓ
s 1[s,rm](v)ej

}

ds

∣

∣

∣

∣

∣

2p

|∂2R(r1, r2)|
p|∂R(v,T )|drdv

.

∫

r2<v<r1≤t
{(r1 − r2)

αp + φ(r1, r2)
p}|∂R(v,T )|drdv <∞,

for every ǫ ∈ (0,1) and m= 1,2. At the region F3 (we may suppose r1 < v), (139) reduces
to
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(140)
1

ǫ

∫ r1

r1−ǫ
Xj

s,r1
DvY

′,iℓ
s ds−

1

ǫ

∫ r2

r2−ǫ
Xj

s,r2
DvY

′,iℓ
s ds.

We split {(v, r1, r2); 0 ≤ r2 < r1 < v} = {(v, r1, r2); 0 ≤ r2 < r1 < v, r1 − r2 < ǫ} ∪
{(v, r1, r2); 0≤ r2 < r1 < v, r1 − r2 ≥ ǫ}=:K1 ∪K2. On K1, we can write (140) as

1

ǫ

∫ r2

r1−ǫ
Xj

r2,r1
DvY

′,iℓ
s ds+

1

ǫ

∫ r1

r2

Xj
s,r1

DvY
′,iℓ
s ds−

1

ǫ

∫ r1−ǫ

r2−ǫ
Xj

s,r2
DvY

′,iℓ
s ds

and hence Assumption C yield

E

∫

K1

∣

∣

∣

∣

∣

1

ǫ

∫ r1−ǫ

r2−ǫ
Xj

s,r2
DvY

′,iℓ
s ds

∣

∣

∣

∣

∣

2

|µ|(dr1dr2)|∂R(v,T )|dv

+E

∫

K1

∣

∣

∣

∣

∣

1

ǫ

∫ r1

r2

Xj
s,r1DvY

′,iℓ
s ds

∣

∣

∣

∣

∣

2

|µ|(dr1dr2)|∂R(v,T )|dv

+E

∫

K1

∣

∣

∣

∣

∣

1

ǫ

∫ r2

r1−ǫ
Xj

r2,r1DvY
′,iℓ
s ds

∣

∣

∣

∣

∣

2

|µ|(dr1dr2)|∂R(v,T )|dv

.

∫ T

0

∫ r1

r1−ǫ
(r1 − r2)

2α+2dr2dr1 . ǫ2α+3 → 0,

as ǫ ↓ 0, because 2α+ 3> 0. On K2, we estimate (140) as follows: We take 1< p< 1
−2α−2

and again by Assumption C, we have

E

∫

K2

∣

∣

∣

∣

∣

1

ǫ

∫ r1

r1−ǫ
Xj

s,r1DvY
′,iℓ
s ds

∣

∣

∣

∣

∣

2p

|∂2R(r1, r2)|
pdr1dr2|∂R(v,T )|dv

.

∫ T

0

∫ T

r2

(r1 − r2)
p(2α+2)dr1dr2 <∞,

for every ǫ ∈ (0,1).

For the analysis on F1, we write F1 = ∪7
i=1F1,i, where

F1,1 = {v < r2 − ǫ < r1 − ǫ < r2 < r1}, F1,2 = {v < r2 − ǫ < r2 < r1 − ǫ < r1},

F1,3 = {r2 − ǫ < v < r1 − ǫ < r2 < r1}, F1,4 = {r2 − ǫ < v < r2 < r1 − ǫ < r1},

F1,5 = {r2 − ǫ < r1 − ǫ < v < r2 < r1}, F1,6 = {r2 − ǫ < v < r2 < r1 − ǫ < r1},

F1,7 = {r2 − ǫ < v < r1 − ǫ < r2 < r1}.

We observe (57), Assumption C, Jensen and Hölder’inequality allow us to choose 1 < q <
α+3
−α such that
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E

∫

F1,z

∣

∣

∣

∣

∣

1

ǫ

∫ rm

rm−ǫ

{

Xj
s,rmDvY

′,iℓ
s + Y

′,iℓ
s 1[s,rm](v)ej

}

ds

∣

∣

∣

∣

∣

2q

|∂2R(r1, r2)|
q|∂R(v,T )|drdv

.

∫

r2<r1

(r1 − r2)
α+2+qαdr<∞

for every ǫ ∈ (0,1), m= 1,2 and z = 3,4,6,7. Next, we analyze the set F1,5. In this case, we
may write (139) equals to

1

ǫ

∫ r1−ǫ

r2−ǫ
Y

′,iℓ
s dsej +

1

ǫ

∫ r1

v

Xj
s,r1

DvY
′,iℓ
s ds−

1

ǫ

∫ r2

v

Xj
s,r2

DvY
′,iℓ
s ds

+
1

ǫ

∫ v

r1−ǫ
Xj

r2,r1
DvY

′,iℓ
s ds−

1

ǫ

∫ r1−ǫ

r2−ǫ
Xj

s,r2
DvY

′,iℓ
s ds

on F1,5. At this point, we use Assumptions C, E, (57) and Fubini’s theorem to get

E

∫

F1,5

∣

∣

∣

∣

∣

1

ǫ

∫ r1−ǫ

r2−ǫ
Y

′,iℓ
s dsej

∣

∣

∣

∣

∣

2

|∂R(v,T )|dv|∂R(r1, r2)|dr1dr2

. ǫ−2
∫ T

0

∫ r1

r1−ǫ

(

r2 − (r1 − ǫ)
)α+2

(r1 − r2)
α+2dr2dr1 . ǫ2α+3 → 0

as ǫ ↓ 0. We can write

1

ǫ

∫ r1

v

Xj
s,r1

DvY
′,iℓ
s ds−

1

ǫ

∫ r2

v

Xj
s,r2

DvY
′,iℓ
s ds=

1

ǫ

∫ r2

v

Xj
r2,r1

DvY
′,iℓ
s ds

+
1

ǫ

∫ r1

r2

Xj
s,r1DvY

′,iℓ
s ds

on F1,5. Repeat the same argument used above to conclude

lim
ǫ→0+

E

∫

F1,5

∣

∣

∣

∣

∣

1

ǫ

∫ r1

r2

Xj
s,r1DvY

′,iℓ
s ds

∣

∣

∣

∣

∣

2

|∂R(v,T )|dv|µ|(dr1dr2) = 0,

lim
ǫ→0+

E

∫

F1,5

∣

∣

∣

∣

∣

1

ǫ

∫ r2

v
Xj

r2,r1DvY
′,iℓ
s ds

∣

∣

∣

∣

∣

2

|∂R(v,T )|dv|µ|(dr1dr2) = 0,

lim
ǫ→0+

E

∫

F1,5

∣

∣

∣

∣

∣

1

ǫ

∫ v

r1−ǫ
Xj

r2,r1DvY
′,iℓ
s ds

∣

∣

∣

∣

∣

2

|∂R(v,T )|dv|µ|(dr1dr2) = 0,

lim
ǫ→0+

E

∫

F1,5

∣

∣

∣

∣

∣

1

ǫ

∫ r1−ǫ

r2−ǫ
Xj

s,r2DvY
′,iℓ
s ds

∣

∣

∣

∣

∣

2

|∂R(v,T )|dv|µ|(dr1dr2) = 0.

By using Jensen’s inequality, Assumptions A, C and (57), we can repeat the same argument
given in the analysis of (140) to conclude
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lim
ǫ→0+

E

∫

F1,1

∣

∣

∣
∆rΞ

iℓ,j,ǫ(r, v, t)
∣

∣

∣

2
|∂R(v,T )|dv|µ|(dr1dr2) = 0

and there exists p > 2 such that

sup
0<ǫ<1

E

∫

F1,2

∣

∣

∣
∆rΞ

iℓ,j,ǫ(r, v, t)
∣

∣

∣

p

|∂R(v,T )|dv|∂2R(r1, r2)|
p

2 dr<∞.

Vitali’s theorem combined with Lemma A.3 allow us to conclude E[L3(t)]→ 0 as ǫ→ 0+.

Analysis of L4(ǫ). In the sequel, in view of assumption (25), we may suppose that φ = 0,
i.e.,

∣

∣∂2R(r1, r2)
∣

∣. |r1 − r2|
α; (r1, r2) ∈ [0, T ]2 \D.

The main difficulty lies on the singularity of the kernel |r1 − r2|
α on [0, T ]2 \D. Indeed,

by Assumption C, we recall there exists L > 1 such that φ is p-integrable on [0, T ]2 \D for
every p ∈ (1,L). Then, we may restrict the analysis to the case φ= 0.

Since ℓ 6= j, by symmetry, Lemma A.1 and the definition of (138), we only need to check
convergence to zero in L2(P× |µ| × |µ|) of the ℓ-th column (the only non-null column) of

(141)
1

ǫ

{

Dv1

[

(

u
iℓ,j
r1−ǫ,r1

1[0,t](r1)−u
iℓ,j
r2−ǫ,r2

1[0,t](r2)
)

eℓ

]

−Dv2

[

(

u
iℓ,j
r1−ǫ,r1

1[0,t](r1)−u
iℓ,j
r2−ǫ,r2

1[0,t](r2)
)

eℓ

]

}

.

Without any loss of generality, we may assume 0 ≤ r2 < r1 ≤ t, v2 < v1 ≤ T . We also
observe the case r2 < t < r1 can be easily treated because, in this case, no singularity appears
in |r1 − r2|

α. We can write (141) as

1

ǫ

∫ r1

r1−ǫ
Xj

s,r1

(

Dv1Y
′,iℓ
s −Dv2Y

′,iℓ
s

)

ds

−
1

ǫ

∫ r2

r2−ǫ
Xj

s,r2

(

Dv1Y
′,iℓ
s −Dv2Y

′,iℓ
s

)

ds

+
1

ǫ

∫ r1

r1−ǫ
Y

′,iℓ
s

(

1[s,r1](v1)− 1[s,r1](v2)
)

ejds

−
1

ǫ

∫ r2

r2−ǫ
Y

′,iℓ
s

(

1[s,r2](v1)− 1[s,r2](v2)
)

ejds

=: a1(r,v, ǫ)− a2(r,v, ǫ) + b1(r,v, ǫ)− b2(r,v, ǫ).

To shorten notation, we denote a(r,v, ǫ) = a1(r,v, ǫ)− a2(r,v, ǫ), b(r,v, ǫ) = b1(r,v, ǫ)−
b2(r,v, ǫ).

LEMMA A.4. We have limǫ↓0 ai(r,v, ǫ) = limǫ↓0 bi(r,v, ǫ) = 0 a.s for Lebesgue almost

all (r,v) ∈ [0, T ]2 \D× [0, T ]2 \D, for each i= 1,2.



ROUGH PATHS AND SYMMETRIC-STRATONOVICH INTEGRALS 51

PROOF. The same argument given in Lemmas A.2 and A.3 applies here.

In the sequel, we will check that

|b(r,v, ǫ)|2|∂2R(r)|∂2R(v)|

is an uniformly integrable family (in 0< ǫ < 1) w.r.t the measure P× Leb and hence Vitali’s
theorem combined with Lemma A.4 will imply

lim
ǫ→0+

E

∫

v1>v2,t≥r1>r2

|b(r,v, ǫ)|2|∂2R(r1, r2)||∂
2R(v1, v2)|drdv = 0.

We observe b= 0 on {r2 < r1 < v2 < v1} so that we only need to analyze b on r1 > v2. We
split {(r,v); 0≤ r2 < r1 ≤ t,0≤ v2 < v1 ≤ T, r1 > v2} in terms of the partition

G1 = {v2 < v1 < r2 < r1}, G2 = {r2 < v2 < v1 < r1}

G3 = {v2 < r2 < v1 < r1}, G4 = {v2 < r2 < r1 < v1}, G5 = {r2 < v2 < r1 < v1}

The most delicate cases are G1 and G2. We split G1 in terms of the partition

G11 = {r2 − ǫ < r1 − ǫ < v2 < v1 < r2 < r1},G12 = {v2 < v1 < r2 − ǫ < r1 − ǫ < r2 < r1}

G13 = {v2 < v1 < r2 − ǫ < r2 < r1 − ǫ < r1},G14 = {r2 − ǫ < v2 < r1 − ǫ < v1 < r2 < r1}

G15 = {v2 < r2 − ǫ < v1 < r1 − ǫ < r2 < r1},G16 = {v2 < r2 − ǫ < v1 < r2 < r1 − ǫ < r1}

G17 = {r2 − ǫ < v2 < v1 < r1 − ǫ < r2 < r1}, G18 = {r2 − ǫ < v2 < v1 < r2 < r1 − ǫ < r1}

G19 = {v2 < r2 − ǫ < r− 1− ǫ < v1 < r2 < r1}.

We observe b= 0 on ∪3
ℓ=1G1ℓ. Jensen’s inequality and assumption (57) yield

E

∫

∪6
ℓ=4G1ℓ

|b(r,v, ǫ)|p|∂2R(r)|
p

2 |∂2R(v)|
p

2 drdv.

∫

∪6
ℓ=4G1ℓ

|∂2R(r)|
p

2 |∂2R(v)|
p

2 drdv.

Next, by using Assumption C and choosing 2< p< 18
4 , we have

∫

G14

|∂2R(r)|
p

2 |∂2R(v)|
p

2 drdv.

∫

r2<r1

∫ r2

r1−ǫ

∫ r1−ǫ

r2−ǫ
(r1 − r2)

αp

2 (v1 − v2)
αp

2 dv2dv1dr

.

∫

r2<r1

(r1 − r2)
αp

2
+2dr<∞

for every ǫ ∈ (0,1). Similar analysis can be made on G15 and G16.
We can choose 0 < β < 1 such that 0 < −(α + 1) < 1

3 < β < 2
3 < α + 2 < 1. Then,

ǫ−2(r1 − r2)
2 ≤ ǫ−β(r1 − r2)

β on G19. Then,

E

∫

G19

|b(r,v, ǫ)|2|∂2R(r)||∂2R(v)|drdv .
1

ǫ2

∫

G19

(r1 − r2)
2(r1 − r2)

α(v1 − v2)
αdrdv.
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. ǫ−β
∫

r2<r1

∫ r2−ǫ

0

∫ r2

r1−ǫ
(v1 − v2)

α(r1 − r2)
α+βdr

. ǫα+β−2

∫

r2<r1

(r1 − r2)
α+βdr→ 0

as ǫ ↓ 0. The analysis of the sets G17 and G18 is easy, so we omit the details. Next, we split
the set G2 into

G21 = {r2 − ǫ < r2 < v2 < v1 < r1 − ǫ < r1}, G22 = {r2 − ǫ < r2 < v2 < r1 − ǫ < v1 < r1}

G23 = {r2 − ǫ < r2 < r1 − ǫ < v2 < v1 < r1}, G24 = {r2 − ǫ < r1 − ǫ < r2 < v2 < v1 < r1}

We observe b= 0 on G21 and, for each i= 2,3,4, one can easily check we can take 2< p<
−3
α

such that

E

∫

G2i

|b(r,v, ǫ)|p|∂2R(r)|
p

2 |∂2R(v)|
p

2 drdv.

∫

r2<r1

(r1 − r2)
αp+2dr

for every ǫ ∈ (0,1). The analysis over G4 is similar to G2. The analysis of G3 and G5 is
straightforward. By symmetry, we conclude

lim
ǫ→0+

E

∫

[0,T ]2\D
|b(r,v, ǫ)|2|∂2R(r)|∂2R(v)|drdv = 0.

The analysis of the term a(r,v, ǫ) is similar to b, so we may omit the details. Indeed, we need
to combine assumptions C and (56) to check uniform integrability of

|a(r,v, ǫ)|2|∂2R(r)||∂2R(v)|

just like we did for the term b. For the subset {(r,v); 0≤ r2 < r1 ≤ t,0≤ v2 < v2 ≤ T, r1 >

v2}, we make the analysis over the same partition ∪5
z=1Gz . For the subset {(r,v); 0 ≤ r2 <

r1 ≤ t,0≤ r2 < r1 < v2 < v1 ≤ T}, we decompose just like G1 and use assumptions C and
(56). By using symmetry and Vitali’s theorem, we conclude

lim
ǫ→0+

E

∫

[0,T ]2\D
|a(r,v, ǫ)|2|∂2R(r)|∂2R(v)|drdv = 0.

This concludes the proof of Theorem 5.1.
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