Denis Claraz

Max J Friese

Hermann Von Hasseln

Ralph Mader

A dynamic Reference Architecture to achieve planned Determinism for Automotive Applications

With the evolution of modern cars towards more distributed architectures, considering also an increase of the data volume, we see the clear need of increased determinism in all types of communications: inter-tasks, inter-core, inter-partitions, inter-ecus. In parallel, to master the classical cost/quality/timeto-market tryptic, platform approaches are needed more than ever, to allow standardization. Our purpose in this document is to describe how to combine standardization and determinism, in the automotive domain, and what should be put in place in term of architecture and design patterns. Therefore, we describe our vision and experience of a dynamic reference architecture, as a "real-time framework" for easy development and integration of functions on one side, and for projects configuration on the other side. We explain the different levels of detail required by different users, the variability management required to support different classes of applications. Then, we introduce the need for determinism, and clarify what level of determinism we are talking about and which different approaches used can be used. In particular, we present a new approach that provides determinism not only at runtime, like Logical Execution Time (LET), but also throughout successive development cycles. In a next section, we present a deterministic reference architecture, that combines the two above mentioned objectives of standardization and determinism. We explain its main principles and the underlying constraints on the design of the functions. Following such an approach, we can achieve a certain degree of planned determinism (in opposition to an "inherited" one). Finally, we illustrate our proposal with practical cases taken from industrial projects, mostly from powertrain domain controllers.

I. INTRODUCTION

From their early days in basic engine control, powertrain electronics have evolved into sophisticated computers for precise combustion management, exhaust after-treatment and drivetrain control. Yet, that forty-year evolution pales in comparison to the transformation of the entire vehicle's electronics and software architecture over the coming decade. Over the years, new features for improved emission control, vehicle safety and comfort were incrementally introduced into the vehicle via new electronic control units (ECUs). The modern car now already contains as many as 150 ECUs which communicate with each other over in-vehicle networks such as CAN, Ethernet or FlexRay. This incremental expansion of the E/E landscape in a "distributed architecture" has, over the years, become the state of the art at most carmakers. As a result, the amount of software in the car continues to increase exponentially, with some estimates placing the number of lines of code in a premium car at over 700 million between 2025-2030, compared to an already massive 100 million lines of code in 2015. Architects imagine a simple E/E constellation borrowed from the IT-world as a "North Star": a few centralized servers for computation, and distributed smart actuators for real-time mechatronic control. However, most established car companies have a long legacy of car platforms which must be maintained in parallel with the desire to introduce new features via simple E/E architectures. A single leap from the current distributed architecture of as many as 150 ECUs, towards a server-based architecture centered around a handful of high-performance computers is done most often in intermediate steps, via domain (Powertrain, Chassis, Body, Interior) or and cross domain controllers, which we call master controller. [START_REF] Mader | The cars electronic architecture in motion: The coming transformation[END_REF] A. Repartitioning of Functions While cross-domain integration in a master controller, e.g. responsible for vehicle motion, reduces the number of ECUs in the car, it greatly increases the complexity of software inside the device. The master controller is not only the home of existing functions like energy management, torque management and vehicle stability functions, but also contains a slew of new functions to manage electrification, connectivity, and the impacts of autonomous driving. This E/E architectural trend affects the partitioning of the functionalities: They are divided in a low level sensing and actuation part and a high level computational part. The low level part will be still in a control device close to the corresponding sensors and actuators with hard real-time requirements, necessary for controlling a brush-less DC motor or a valve, just to mention some prominent examples. The algorithm part will move up to a higher architectural level in the E/E Architecture, like the Vehicle Motion Master Controller. The exchange of the sensor values, set point, etc. between low and high level ECUs will be realized with bus systems like CAN, CAN-FD and FlexRay.

B. Dynamic behaviour

Let us have a brief look on the architecture of automotive, especially powertrain, applications. They are typically based on an AUTOSAR Classic real-time operating system according to the OSEK standard. The configuration of the OS is done in a way that there are several recurring tasks with different periods from 1ms up to 1000ms which are distributed on several cores of a micro controller. These tasks call runnables subsequently according to the need of the data flow demanded by the causal chain of the function. As one can see in Fig. 1 the integration complexity with respect to the dynamic behavior of the system is different across various automotive applications. Typically the number of tasks and runnables increase with the size of the application and reaches its maximum for master-controller, battery management and engine-management-systems. When distributing functions of these applications over multiple ECUs one needs to carefully consider the timing behaviour of the event chains of the controlled system. Fig. 2 illustrates the basic principle of a distributed functionality with an ECU 1, responsible for reading the sensor values and transmitting them via CAN to the Master-Controller. The higher level algorithmic portion located in the Master Controller will receive the sensor values and use this input to compute a setpoint for the actuator controlled by a transmission-or engine-controller, called ECU2. The setpoint Fig. 2. Schematic of a control flow from a sensing ECU1 via the Master Controller to the acting ECU2, connected via CAN is transmitted via CAN to the acting ECU which will use this to apply the latest setpoint value to the actuator. The timing between reading the sensor value and applying the setpoint for the actuator must fulfill the requirements of the overall function which needs to be realized in the timing constraints given by the physics or the mechanics.

C. System integration and validation

These distributed functions will be developed by independent teams, working on software for the different ECUs with different update and release cycles. From one release to another the desire of the System Integrators is to have a control on the changes and best be able to reduce the systems test cases to a minimum while still guaranteeing the correct functional behaviour and a safe operation of the system. Therefore mechanisms are needed which implement a deterministic behaviour to reduce the necessary tests for the validation and enable the release of subsystems. In the following chapters we will manly focus on mechanisms which can be applied for a single device in the communication network to ease integration in the more complex devices like master controller or engine management systems, which are typically based on multi core controllers supporting different safety partitions.

II. DETERMINISM

The software technologies used in this context need to support this deterministic behaviour for static and dynamic aspects of the software system architecture. In the last years AUTOSAR Classic platform has been enriched in this direction. For the control of freedom from interference (FFI) safety partitions have been introduced in the AUTOSAR Classic standard. More recently, the release 20-11 [2] introduced the so called software clusters (SWCL) as independent development and build units with a defined interface layer: the software cluster connect to the rest of the system. This allows the development, validation and update of one software cluster, independently from the rest of the system. From a static architectural point of view the development and release of subsystems is covered by these approaches. Concerning the real-time behaviour of the system, an independence of the clusters needs also to be ensured: the update of a cluster should not impact the dynamic behavior of the others. This concerns not only the task behavior itself, but also the data communication between the clusters. In addition, different core to cluster mappings are considered: 1:1, 1:n, m:1, m:n, as shown in Fig. 3 Fig.

Actual distribution of Clusters on Cores

A. What is determinism in the dynamic behaviour

In such distributed context, our main interest is the inter-task data communication, when a data is transmitted or received (written, read). In case of multi-core architecture, we want to avoid 2 types of problems: concurrent accesses to the same data (consistency), and unstable data age (determinism).

The first problem happens when the two competing tasks attempt "simultaneously" to write (on one side), and read (or write, on the other side) the same data or data set. This "data consistency" issue (in the sense of stability and coherency) is solved by a buffering strategy, similar to AUTOSAR RTE/IOC [START_REF] Claraz | Introducing multi-core at automotive engine systems[END_REF] [4], and is not in the focus of this paper.

The second problem happens when the relative positions of the tasks jitters over the time, generating an instability of the number of writes between two successive reads, or viceversa. For instance, in Fig. 4, the 2 communicating tasks have a same period of 5ms, and also a deadline of 5ms: They can execute anywhere inside the shaded area (within the period), depending on the local situation on CPU load, interrupts, blocking semaphores, other tasks running, etc... Therefore their relative order is not guaranteed, and by consequence, the actuator function (blue task) may respond with an unstable delay to an input signal variation (yellow task): This "non-deterministic" data age can be solved by applying different scheduling and inter-task communication strategies, that will be detailed in the next chapter. As shown here, our main goal is to remove this uncertainty on the tasks communication paths, i.e. to ensure a correct sequence of causal chains.

As added benefits of deterministic communication, we can mention 2 aspects:

• Possibility to parallelize independent parts of algorithms, setting "rendez-vous" where data communication happens before the next parallel slot (chains of "fork join" patterns.) [START_REF] Mader | Design pattern in automotive multi-core embedded realtime environment and their support by scheduling strategies[END_REF]. In particular, the Logical Execution Time paradigm (LET, see II-B3) has been foreseen as a mean to enable multi-core introduction in automotive systems already in 2016 [START_REF] Hennig | Poster abstract: Towards parallelizing legacy embedded control software using the LET programming paradigm[END_REF] and in 2018 [START_REF] Biondi | Achieving predictable multicore execution of automotive applications using the LET paradigm[END_REF]. Furthermore, it was introduced in AUTOSAR Timing Extension [START_REF]Specification of timing extensions[END_REF] in 2020. • Mean to set time-budgets to tasks and to increase the decoupling between parts of the SW: as long as a task stays within his pre-defined time-interval, there is no impact on the other ones.

In our case (AUTOSAR OS, online scheduling), deterministic scheduling is not used to control the worst case execution time (WCET) of the task (avoiding concurrent access to shared resources like busses, memory, peripherals, . . .), like required in offline scheduling strategies.

Finally, there can be different points of view on determinism, and on implementation level, independently of the chosen strategy, an uncertainty remains at what absolute point in time a given data is transmitted or received.

B. Different implementation strategies

In this paragraph, we describe different implementations of determinism, that may fit to the requirement, depending on the needed precision. These strategies (applied on successive projects, as described in section V) are:

1) Strategy 1: Short deadlines (Fig. 5): A basic and simple determinism can be reached by setting Task deadlines, periods, and offsets in a way that the communicating tasks will never overlap. For instance, 2 Tasks of period 5ms on different Cores can have a deterministic communication if they have a short deadline (e.g. DL=2ms) and an offset (e.g. O=2.5ms) between them. Their execution domains (shaded areas) do not overlap each other, and therefore an order is guaranteed. One has just to ensure that each Task fits to its timing requirements, by setting the appropriate system configuration (priority, . . .). In the overall schedule of the TD tasks, data communication of each task is done in a gap left empty before its next period starts. The deadline of a TD-task is therefore shorter than its period: At maximum, it is equal to its period minus a fixed gap reserved for the bi-directional communication. A periodic task is created to communicate the data for all TD tasks. Inside each TD task, local buffers are used (similar to AUTOSAR implicit communication), instead of directly reading the global data. Each communication task publishes the buffers of the preceding TD task into the global data ("Terminate"), and copies the global data into local buffers of the succeeding TD task ("Release"). Therefore, the real position of the task within its deadline does not matter. What matters is the position of the communication gaps vs. each other. With such principle, the jitters of the 2 functional tasks have no impact on the data age, as long as they finish before the communication task: a data computed in the cycle N of a task will be available for the other task in the cycle N+1. 3) Strategy 3: Logical Execution Time (LET) paradigm (Fig. 7):

In the LET paradigm [START_REF] Kirsch | The logical execution time paradigm[END_REF], tasks execute anywhere within their designed time-interval (like in previous strategies), and the communication between them is done at the limits of the interval, using dedicated tasks (called "Release" and "Terminate"). The real determinism of the communication depends on how precise is the execution of these communication tasks. In the LET theory, the communication is done at each interval border, in a "zero time". But in the real implementation, the runtime for the data communication needs to be considered, and it must be ensured that the communication is done at the limits of -but inside -the interval. This constraint requires a careful planning of the intervals: For instance, enough margin needs to be reserved in the interval for the task (considering its WCET), but also for the communication (release + terminate) [10] [START_REF] Alfranseder | Logical execution time in the automotive environment[END_REF]. Also, conflicts (overlaps) between releases and terminates of different intervals shall be avoided, as they may end-up in conflicting accesses to the same data, with the resulting loss of determinism and coherency. TD and LET principles are very similar: In both cases, dedicated tasks are in charge of the inter-task communication. In both cases, an interval is defined for each functional task, which represents the time slot inside which the task is allowed to execute. In TD, the intervals are in practice nearly equal to the periods, whereas it should not be necessarily so. In LET, the intervals are much shorter than the period, and several intervals are set for the same period, whereas it should not be necessarily so. In TD, the actual communication of the data is done outside of the task frame, when the next (periodic) communication tasks executes. In LET, the actual communication of the data is done at the limit (inside) the interval.

4) Strategy 4: Planned LET (Fig. 8): The objective of this strategy is to ensure determinism of the communication between different tasks of different clusters. It also ensures a stability of this communication along the project development cycle, despite the successive upgrades: the communication between clusters is kept as planned. This strategy is in use in our newest program, which is described further in the chapter V.

C. For which data?

As seen in the previous paragraph, our motivation for determinism is the removal of the uncertainty of the data communication path between tasks, due to task jitters. Achieving a fixed age is a clear advantage of such scheduling, like LET, but there is a price to pay: First, the CPU utilization is not as optimized as it could be in a conventional system; Then, the duration of the Release/Terminate at the limits of the LET interval may become significant in proportion to the interval duration, in case of big data flows. Therefore, there is a need of a selective approach, where determinism is applied only on a subset of critical data. For the other data, classical data integrity (e.g. stability, or coherency) approach is sufficient, and more optimized. For instance, the LET approach could be limited to safety critical data, or for signal flows where the instability has system impact. Typically, it may depend also on the nature of the data. Control data (booleans, state machines, indexes, counters, ...) may have a stronger negative impact on the functional behavior in case of non-determinism, than more "continuous" data, which have low gradients. Finally, this is the consumer function of the signal, which knows better, whether a non-deterministic behavior of its inputs may have or not a negative effect on the strategy. In the case of Xcc communication, the objective is rather to concentrate the communication flow between the clusters in a few a-priori and stable defined channels, to reduce the impacts of upgrading one cluster. The challenge is here to properly map the exchanged data on the right Xcc communication tasks. On the consumer-cluster side, the different intervals and frequencies where the imported data is used have to be considered, together with the availability and location of XccIn Tasks. The idea is to have one single point of import, even if there are several consuming tasks/frequencies. On the producer-cluster side, a similar approach has to be followed, and finally the flow cross clusters has to be designed on overall system level, ensuring a coherency of the communication channels between the clusters. For sure, such an approach is easier when the clusters are decoupled, and exchange few information. In case of highly coupled clusters with several hundreds of interfaces, the a priori definition of all communication channels seems impossible, and in this case, a mixture between top-down & bottom-up approaches need to be applied.

III. REFERENCE ARCHITECTURE

Objectives of a reference architecture:

To facilitate the SW reuse, it is necessary that the reusable components and the reusing projects are developed according to a common framework. This framework comprises many facets, like a functional partitioning, a layered architecture, design patterns, coding rules, and more. One particular facet of this framework is a dynamic reference architecture, that ensures a correct real-time behaviour of the functions and projects.

Technical content: This reference architecture defines standard events, operating system tasks, as well as some transverse configuration items. Events are abstract artifacts that define timing properties like periods, deadlines, activation pattern (sporadic, periodic, aperiodic, ...), available phases (abstract way of specifying a sequence constraint [START_REF] Claraz | Deterministic Execution Sequence in Component Based Multi-Contributor Powertrain Control Systems[END_REF]), the behavior in case of system (core synchronous) transition [START_REF] Alfranseder | An efficient partitioning strategy for runnables in weakly dependent tasks on embedded multi-core systems[END_REF] [5], and other behavioral details. Tasks are concrete artifacts that define not only the basic OS configuration (core, priority, multi-activation, use of cooperative resource, . . .), but also extensions like chaining to other tasks (if any), detailed LET configuration, memory section, asil level and more implementation details. Tasks are linked to events by a n:1 relationship, in the sense that n different tasks can implement the same event, while one event is implemented by at least one task. If different tasks implement the same event, then they comply individually and collectively to the event's constraints. For instance, if 2 tasks of the same event are chained, the complete chain fulfills the timing constraints of the event (in particular period & deadline).

In total, the complete definition of an event requires around 10 parameters, and even some more for a task (Fig. 9). Fig. 9. Parameters of events and operating system tasks. They are defined centrally in the reference architecture, to ensure a good synergy between functions and projects.

Functional content:

Functionally, the reference architecture contains different categories of events and related tasks:

• Angle based events and tasks are necessary for engine control applications, which have the most complex architectures. We can find here events of different periods (top dead center, engine rotation, camshaft rotations, ...), different phasing (different angular phases vs. top dead center). These events can be periodic or aperiodic, in all cases depending on the engine rotation speed. There are also engine related transitions, like engine stalling or cranking events, which require specific function initialization. • Time based events and tasks are ranging from 1ms to 1000ms. For some of them, different deadlines are provided. For instance, most of 10ms calculations use a 10ms deadline, but for some other, a short deadline of e.g. 3ms is necessary. For this, different events, and different sets of tasks are provided in the reference. • Kernel events and tasks for the infrastructure / Basic Software (BSW), as well as some function dedicated tasks (communication, watchdog, safety, background, CPU load, etc...). These tasks are also part of the reference, but are in general not open for Application Software (ASW) integration. • Finally, initialization events and tasks are provided, that correspond to transitions between different ECU modes: reset, shutdown, entry or exit into RUN or POST-RUN modes, etc ... At the end, the complete reference for a four core engine control system contains 80 events & 200 tasks. How to use for functions: Function developers refer to standard events to specify the timing requirements (therefore integration constraints) of their functions. They cannot refer to standard tasks for the same, as it would tight them too much to a dedicated project configuration, and therefore reduce their re-usability. As mentioned above, if a project implements different tasks for the same event, any of these tasks is guaranteed to respect the timing constraints of the event. Therefore, the timing properties of a function will be respected in the project as long as it is integrated in a task implementing the specified event.

In particular, core allocation is not a requirement of the function. Eventually, an affinity versus a certain core property (availability of double precision FPU, lock-stepped core, ...) or versus other functionality ("be on the same core than ...") might be a valid requirement, but has to be used carefully as it might end-up in a non solvable situation.

Seen from function development perspective, the reference architecture provides sufficient information to allow the specification of the function's integration constraints. These constraints are precise enough to ensure a correct dynamic behaviour of the function, and abstract enough to comply with diverse integration project, based on different microcontrollers (therefore available cores), integrating different functions (thereof customer plugins), having different system configurations (hybrid vs. pure combustion engines vehicles, diesel vs. gasoline, engine control vs. domain controller,etc..), etc... How to use for projects: Considering the high number of tasks required (up to 200 on a 6 cores application), and the need of overall coherency, configuring such a project is a significant effort, even if it has just to select into a large library of existing tasks described in all implementation details. Therefore the reference architecture provides a series of architecture variants ("reference architecture projects"), which correspond to our main use cases, like e.g. 3 & 4 cores engine management system, 3 cores transmission systems, or single core selective catalyst reduction system. The left pie-chart in Fig. 10 shows the percentage of projects using one or the other variant, over a selection of 70 projects in development. We see, for instance, that only 21% of the projects are not based on any variant, due to their atypical architecture.

In addition to the case-relevant event and tasks, each of these variants comprises transverse configurations, that can only be set at multi-task or multi-event level. This is the case, for instance, of sets of tasks that need to be enabled or disabled at once at given phases of the ECU life. Therefore, a project architecture is based (reuse by reference) on the variant, which is closest to its configuration. From this variant, the project can:

• reuse any artifact from the reference as is • ignore any artifact of the reference (not needed)

• adapt any artifact of the reference (deviation)

• create its own artifact w/o restriction. In any of these cases, the project is responsible to ensure that the timing requirements of the events are respected, for any of the underlying tasks.

Finally, the most usual case is that the project at Vitesco Technologies reuse one variant and all embedded artifacts with very few specializations, as shown in Fig. 10: Nearly 80% of all tasks used by our selection of projects are reused from the reference architecture without any modification.

IV. REFERENCE ARCHITECTURE FOR DETERMINISM

A. Reference Architecture for Time Determinism

The reference architecture described in the previous chapter is a living practice, and fits to a well-established product group such as combustion engine control. With the introduction of electrification and new domain-oriented architectures, where more determinism is required, this reference needs to be adapted. The new reference architecture will be simpler in the sense that there will be less complex events (related to engine rotation), but a simple timing event previously described by a period, offset and deadline, will now in addition be split into a series of LET intervals each one defined by an additional offset and a duration. The challenge is then to define a priori, w/o the full knowledge and background of potential user functions, a standardized organization of these intervals, that is kept stable over the development loops and across projects. This proceeding is contrary to most of the current LET projects, where the architecture has to be regularly readjusted to satisfy fast communication chains (a bottom-up approach where the architecture is adapted to the functions, and not vice-versa).

Below are listed some principles of this LET reference architecture, that we believe can satisfy our upcoming projects.

1) Distribution over the period: In order to balance the CPU load, the intervals are not "grouped" at the beginning of the period, but rather mostly equally distributed over the complete period. For instance in case of 5 intervals of 2ms length and 1000ms period, instead of concentrating them in a reduced slot of approximately 10 to 20ms, they are distributed over the complete 1000ms period. This principle provides flexibility in the later evolution of the architecture, as it gives space for moving or expanding existing intervals, or adding new ones, without reworking the complete scheduling.

2) Ratio interval length vs. WCET of task: We know that we need a minimum margin between the WCET of the task, and the length of its interval, to let enough time for interrupts, higher priority tasks, and for the release & terminate operations. But ensuring a minimum margin does not mean that this minimum value has to be applied: any longer interval is also valid. Therefore, the ratio between the interval length and the WCET of the task has to be above a minimum threshold, but does not have a maximum. Having a long interval, even if we know the WCET of the task will be much shorter is not an issue, and reduces the "stress" of the scheduling, by letting time for other tasks to execute. The important point here is that the position of data transfer, at the limits of the interval, is fixed, and in accordance with the communication needs between tasks. For sure, this ratio depends also on the number of intervals for the given period.

3) Minimum length of interval: A very fine granularity of intervals lengths requires a high resolution of the LET system, and therefore a high CPU load overhead. Finally, this concerns not only the lengths of the intervals, but also the offsets, and the periods.

4) Maximum number of intervals:

The number of intervals for a given period and core has to be limited. For instance, even on small periods like 100 or 1000ms, we limit ourselves to a reduced set of intervals, even if we could introduce a lot. The reason here is to limit the integration possibilities, keep the architecture relatively simple, and reduce the OS overhead.

5) Overlap between intervals of different periods:

In general, for a given core, the intervals are organized to avoid overlapping situations. Nevertheless, keeping this principle for all periods is particularly problematic when periods are quite different. For instance avoiding overlap between a 1000ms interval and a 5ms -even 1ms-interval introduces the high constraint that even for tasks of slow period, therefore relaxed deadlines, the interval length must be kept very short to avoid such overlaps. To avoid such constraints 3 groups of periods are defined, inside which no overlap can occur. On the opposite, cross different groups, an overlap is fully possible. Therefore, a 5ms interval will overlap a 1000ms interval. This is not contradicting the LET paradigm, and the communication between both tasks will be done at each intervals limits.

6) Core independence:

Having identical architectures on different cores have different advantages. First, it simplifies the overall architecture. Second, it allows the design of the functions independently of the core, providing an important flexibility at integration time. Another advantage is the possibility to implement "fork-join" patterns, where necessary. For this reason, we have designed a reference architecture with 2 types of clusters/cores: fast and slow clusters, to cover different use cases. But 2 fast (respectively slow) clusters have exactly the same architecture.

7) Cohabitation with non-LET tasks:

The LET architecture must reserve sufficient empty space for non LET tasks, from the kernel, or from non-deterministic application SW. This non-LET part of the SW usually has more relaxed timing constraints, and will get executed in the "holes" of the LET scheduling.

8) Constraints vs. Xcc tasks: For most of the periods, one XccIn and one XccOut are reserved, for inter-cluster communication. In some cases (fast frequencies), no cross cluster communication will be done. In some other (highly loaded frequencies), a double Xcc communication is planned, to allow the insertion of fast communication paths. By default the Xcc communication tasks are added at the begining (for XccIn) and at the end (XccOut) of the period ("chain of LET intervals").

As result of these principles, we defined a standard architecture, for which we give an abstract in Fig. 11. Each column represents a project. The green column gives the priority defined in the reference. A red cell indicates that the project deviates from the reference. A grey-shaded cell indicates that the task is not used. Fig. 11. A simplified LET-RA shown with two flavors: "Fast" and "Slow". Each flavor can be mapped onto a core, and be used to implement a Software-Cluster, or parts of a Software-Cluster. On the "Slow" flavor there are two sets of LET intervals with their own Xcc-tasks, which can be used for different functional causal chains. On the B0 cluster, Xcc "communication channels" (i.e. extra Xcc tasks) are inserted in the middle of the 10ms and 20ms chains, to satisfy some short causal chains. Note that this is a gross simplified picture.

B. Requirements for, and impact of RA on function design

As described in the next chapter 'Practical Example', the strategy up to now was in essence to adapt existing static and dynamic architectures to legacy functions and their software architecture. The drawbacks of such an approach have been outlined above, and a more planning is in need here. With the introduction of a Reference Architecture for Time Determinism it is clear that some restrictions and rules on the functions design level are necessary. This is by no means something new, as for example the Autosar component model also puts some constraints on the function design. For Time Determinism and the introduction of LET, which results in a component model for the dynamic aspects of the architecture, similar constraints needs to be formulated. As already stated, without the full knowledge of potential user functions, it is a real challenge to define the Reference Architecture. But, there is a lot of implicit information contained in legacy projects and from foreseeable development of user functions, which can be used to derive some minimal assumptions and constraints for function design.

Some fundamental basics of a function design include:

1) In the case of a periodic functions, the frequency with which these functions shall be called. It is helpful to avoid frequency dividers, because these would unnecessarily enlarge LET intervals and might lead to a waste of time resources. Although, to minimize complexity, it is also of importance to confine the number of task (or LET interval) periodicities. This is a tradeoff, and depends clearly of the kind of software project and user functions.

In our experience there is generally enough information available to decide for a set of periodicities. 2) In the case of event-triggered functions, the information on a worst case response time of a causal chain in which these functions are embedded is needed. If planned to embedd event-triggered functions into LET-intervals, it should be coordinated with the overall set of periodicities, and if over-or undersampling is appropriate. 3) In general, the embedding of functions in one or more causal chains, together with minimal latencies requirements these causal chain have to fulfil, 4) or, at least, the predecessor and successor relations of functions which define execution order constraints. 5) The description of the dependency of functions on other functions in order to build up a data dependency graph. Such data dependency graph are used to optimize implementations of causal chains or resolve concurrency issues on the LET-interval structure. The data dependency graphs is not only needed in order to verify requirements of causal chains in a Software-Cluster, or among Software-Clusters, but may also be necessary in cases where a Software-Cluster has to be mapped onto more than one core (parallelization). 6) A classification to which SW-Cluster functions are assigned to. 7) An estimate of the resource consumption of functions.

These include memory consumption, the the amount of data to be buffered for determinism (in or among SW-clusters: therefore a detailed analysis of the data dependency graphs are necessary, see (5)), estimates of (worst-case) execution times in order to map functions onto LET-intervals. It is also of crucial importance to have information on the volatility of the runtime of functions.

In most practical cases, static WCET analyzes are not feasible, but information on the functional content often helps to classify these functions. 8) There are also a number of non-functional requirements which have to be considered. Among them are a classification of functions according to ASIL-levels. This might lead to restrictions on the mapping fo ASIL-relevant functions to cores of multi-core controller which a have Lock-Step core behind. Another important restriction is the placement of functions related to signal mappings and network diagnostics (middleware), which should be placed with respect to the capability to distribute basic software functions onto cores. There is also an important restriction coming from the Autosar Software architecture: atomic Software components must be mapped onto one core, i.e., the runnables are not allowed to be dis-tributed among cores. This list has to be understood as a minimal set of user function properties, or properties of a given Software architecture. On the other hand, this list can be used as a minimal set of impact properties for the design of user function.

Depending on the Software architecture of user functions it might be appropriate to define several "flavors" of task structures of a Reference Architecure, which then can be used on different cores of a target multi-core controller. With this basic information at hand, the following required information can be gathered: 1) which "flavour" of the RA should be instantiated on each core of the target controller, 2) an analysis and mapping of functions onto tasks or LET intervals of a SW-Cluster (e.g., corresponding to existing dynamical concepts), to fulfil inter-SW-Cluster communication, 3) an analysis and placement of intra-Cluster-Communication (Xcc tasks), in order to fulfil causal chain requirements.

V. PRACTICAL EXAMPLE

In this section we give a brief history of how multi-core architectures have become part of the development for the central powertrain controller at Mercedes-Benz Cars. Following this, we discuss the demands of the upcoming generations and finally we give an outlook for future generations which provides additional motivation to pursue LET reference architectures.

In the following, we refer to five different generations of central powertrain controllers: Gen A (launched around 2012), Gen B (launched around 2016), Gen C0 (launched around 2020), Gen C1 (launched around 2020), and Gen D (to be launched around 2024).

A. Evolution of the Dynamic Architecture of the Central Powertrain Controller

The development of the dynamic architecture of the central powertrain controller has been influenced by multiple factors. Firstly, the hardware architecture has an impact as it determines the number of available cores and the communication between software allocated on these cores. Secondly, the software architecture plays an important role. A monolithic architecture (cf. [START_REF] Staron | Automotive Software Architectures[END_REF]) can not be freely distributed, wheres a component-based architecture with well-defined interfaces also gives more flexibility for the scheduling. It stands to reason that the amount of signals exchanged via the interfaces also impacts the scheduling and therefore the dynamic architecture. The more signals are communicated, the more scheduling constraints potentially exist. In Fig. 12 1) Gen A : This is the first generation taking the role of a domain controller. It was using a single-core controller with a multi-task system which was scheduled using a priority-based preemptive algorithm. For this, basic data consistency methods were introduced.

2) Gen B : In this generation, tasks are still scheduled using a priority-based preemptive scheduling. Since it is the first generation with a multi-core controller, in Gen B the first cautious utilization of multi-core was introduced. Tasks were distributed on the different cores with limited use of task chaining techniques. These techniques allow rule out any overlap of certain tasks across two cores. See also page 3 strategy 1.

3) Gen C0 : In Gen C0 the use of multi-core scheduling has been developed further. To cope with the arising challenges different mechanism for time determinism have been introduced. While still using the same priority-based preemptive scheduling, and mostly reusing existing OS-tasks from the previous generation, but implementing data determinism mechanism for tasks with fast periods. Although this is not strictly following the LET approach, it was the first time communication mechanisms following the LET semantics were implemented. Furthermore, synchronization of the clocks of some of the powertrain ECUs has been implemented to orchestrate network communication with other controllers within the domain. See also page 3 strategy 2.

4) Gen C1 : In this generation, time determinism was rolled out for almost all application-level tasks. For the first time a LET-based scheduling for the application software was used in this ECU to ensure for data determinism, enable load better balancing by parallelization, and implementation of causal chains by design. To achieve this, a detailed data dependency analysis for the design of causal chains was developed [START_REF] Hennig | Poster abstract: Towards parallelizing legacy embedded control software using the LET programming paradigm[END_REF]. See also page 4 strategy 3.

5) Gen D : With Gen D a cluster-concept is introduced allowing more flexible development. This also comes with more sophisticated methodologies for architectural work for both, the static software as well as the dynamic software architecture. On the static as well as on the dynamic side, architects are working with component models. While the static side architects can rely on the well-established AUTOSAR component model, for the dynamic side new concepts have been developed. More precisely, a reference architecture with SL-LET-like [START_REF] Gemlau | Efficient run-time environments for system-level LET programming[END_REF] is implemented on the dynamic side, which we call planned LET. The primary objective is to further improve stability of the development process during different phases of a project. See also page 4 strategy 4.

B. Future of the of the Central Powertrain Controller

As depicted in Fig. 12, the amount of signals communicated with fast frequencies steadily increases with every generation of the central powertrain controller. This is also expected to happen from Gen C to Gen D . In addition, the introduction of the cluster-concept allows to configure different configurations consisting of varying clusters. In the maximum configuration we expect an increased demand of deterministic communication by 25 to 30 percent compared to Gen C1 . A considerable share of this increases comes from the EV part in Gen C2 , however, it is also possible that more functionalities are integrated in new clusters.

VI. CONCLUSION AND OUTLOOK

In the paper we have shown the evolution of deterministic scheduling and data communication approaches of the past decade in the powertrain domain. From single core to multi core, from a project architecture to a reference architecture. We have shown how a reference architecture for the dynamic aspects of an embedded automotive system is applied in practice at Vitesco Technologies. The evolution of the central power-train controller at Mercedes-Benz Cars clearly shows the gradual establishment of LET-based data determinism mechanisms. Initially, the goal was to utilize multi-core architectures in a safe manner, With LET now being successfully implemented, we strive for an independent dynamic software architecture with LET frames as the components. Especially the application of a dynamic reference architecture in combination with the AUTOSAR Flexibility concept will enable an independent development and release of SW-clusters and so it will help to manage complex embedded automotive software systems. As a next step these approaches can be extended to in-vehicle networks in the sens of a System Level LET.

Fig. 1 .

 1 Fig. 1. Number of cores, tasks and runnables of different automotive applications

Fig. 4 .

 4 Fig. 4. Impact of Task jitter on determinism of flow, and response time of function

Fig. 5 .

 5 Fig. 5. Short deadline tasks with offsets ensure a deterministic flow2) Strategy 2: Time Determinism (TD) algorithm (Fig.6): In the overall schedule of the TD tasks, data communication of each task is done in a gap left empty before its next period starts. The deadline of a TD-task is therefore shorter than its period: At maximum, it is equal to its period minus a fixed gap reserved for the bi-directional communication. A periodic task is created to communicate the data for all TD tasks. Inside each TD task, local buffers are used (similar to AUTOSAR implicit communication), instead of directly reading the global data. Each communication task publishes the buffers of the preceding TD task into the global data ("Terminate"), and copies the global data into local buffers of the succeeding TD task ("Release"). Therefore, the real position of the task within its deadline does not matter. What matters is the position of the communication gaps vs. each other. With such principle, the jitters of the 2 functional tasks have no impact on the data age, as long as they finish before the communication task: a data computed in the cycle N of a task will be available for the other task in the cycle N+1.

Fig. 6 .

 6 Fig. 6. TD communication done in end of cycle task. A terminate (T) driver publishes the data (computed in the previous cycle) to the global memory, and a release (R) driver fetches the data from the global memory for the next cycle computations. This example shows clearly that the flow between the fast (yellow) task & the slow one (blue) is perfectly deterministic, independently of the jitters of the tasks in their respective intervals.

Fig. 7 .

 7 Fig. 7. LET communication: Different intervals/tasks on different cores. Communication is done at limits of each interval in the Release & Terminate drivers.

Fig. 8 .

 8 Fig. 8. Cross cluster communication: Clusters A & B communicate at pre-defined & fixed points (Xcc tasks), which are independent of the internal details of each cluster. The Xcc tasks are in charge of distributing (respectively collecting) the inter-cluster data to the different consuming (resp. producing) tasks inside the cluster. LET communication is applied for the internal flow of the cluster.

Fig. 10 .

 10 Fig. 10. Comparison of OS tasks priorities between a selection of 70 projects and the reference architecture. Each line represents a task from the reference. Each column represents a project. The green column gives the priority defined in the reference. A red cell indicates that the project deviates from the reference. A grey-shaded cell indicates that the task is not used.

Fig. 12 .

 12 Fig. 12. Signals Written with Frequency 5, 10, and 20ms in the ASW of different generations of the Central Powertrain Controller

 the increase in the amount of signals exchanged within the OEMs application software is depicted. More precisely, the figure shows signals exchanged with high frequencies between generations of the central powertrain. Please note, that Gen C1 is installed in electric vehicles (EV) and therefore has less signals as no combustion engine is controlled. Starting from Gen B , the determinism is used

		8,000	
	# of signals written	2,000 4,000 6,000	
		0	
		0.005	0.01	0.02
			Frequency [s]
		Gen A Gen B Gen C1 Gen C2

The LET communication described above ensures determinism of communication between tasks at runtime. But in case of distinct clusters, each one with its own tasks, it cannot be ensured that the communication is still done at the same position, when one of the 2 clusters gets updated (e.g. reflashed). Even if the architectures (number of tasks, periods, offsets, lengths) of all clusters are frozen (which might not be the case), it is possible that in the new upgrade of cluster B (e.g. on core 3), the production of the inter-cluster data is moved from the 1st to the 2nd interval. Consequently, the behavior of the cluster A (on cores 1 & 2) would be affected by this modification of cluster B, if the tasks of the different clusters would directly communicate. Here, LET alone would bring a certain determinism at runtime, but would not offer any determinism over development cycles. To avoid this effect, cross-cluster communication tasks are created, that define communication channels between the clusters, and that are fixed on system design level, in term of position, and data to be transmitted. In other words, we have a component model for the dynamic aspects of the architecture. In the example Fig.8, we show that for cluster A distributed on 2 cores, that the (green) importing task ("XccIn") can even be implemented on a different core than the (red) exporting task ("XccOut").Finally, this concept has 2 additional benefits: First, it compensates one weakness of the LET paradigm: its single interval scope: With LET, each interval is treated as an own execution container, for which a high degree of data integrity is ensured (determinism, stability, coherency). But in reality, a complete system is based on several -or even many -intervals. and some of them consume the same information. Then, LET does not answer to the question of data integrity for a complete set of tasks. For instance, one might have the need that all intervals of same period (e.g. 10ms) share the same value for a data coming from another period (e.g. 10ms) or cluster. We might even need to define, in a series of successive intervals, which one should work with the latest value, while the others may work with an older information ("fast causal chain"). With Xcc communication, the producer cluster decides at which instant it communicates certain information to all consumers, and each consumer decides for itself at which instant it imports the information. There is a total decoupling between the actual computation/use of the data and its communication. As second side effect, the Xcc communication reduces the conversion overhead between the clusters, compared to a direct task-to-task communication: The import of a data from another cluster is done only once, even if this data is used in many tasks (intervals).