
HAL Id: hal-03694029
https://hal.science/hal-03694029

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A decentralized blockchain-based key management
protocol for heterogeneous and dynamic IoT devices
Mohamed Ali Kandi, Djamel Eddine Kouicem, Messaoud Samir Doudou,

Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine Challal

To cite this version:
Mohamed Ali Kandi, Djamel Eddine Kouicem, Messaoud Samir Doudou, Hicham Lakhlef, Ab-
delmadjid Bouabdallah, et al.. A decentralized blockchain-based key management protocol
for heterogeneous and dynamic IoT devices. Computer Communications, 2022, 191, pp.11-25.
�10.1016/j.comcom.2022.04.018�. �hal-03694029�

https://hal.science/hal-03694029
https://hal.archives-ouvertes.fr

1

A Decentralized Blockchain-based Key
Management Protocol for Heterogeneous and

Dynamic IoT Devices
Mohamed Ali Kandi, Djamel Eddine Kouicem, Messaoud Doudou, Hicham Lakhlef, Abdelmadjid

Bouabdallah and Yacine Challal

Abstract—Secure communication is one of the main challenges that are slowing down the development of the Internet of Things (IoT).
Key Management (KM) is particularly a difficult security issue, mainly because of the lack of resources of the IoT devices. Most of the
existing solutions do not consider the heterogeneous and dynamic nature of the IoT. They do not regard the difference in capability of
its components and impose equal loads on them. Moreover, they store keys in device memories before deployment, which makes
adding devices difficult afterwards. We propose a novel decentralized blockchain-based KM protocol for the IoT. Our solution balances
the loads between nodes according to their capabilities. We prove that this makes it efficient and scalable. Furthermore, our solution
securely rekey the network upon a change. To decentralize the KM , we use the blockchain technology and smart contracts. We show
that the system continues to operate when an entity fails and that the compromise of an entity does not jeopardize the whole network.
We also prove that our solution fulfills the IoT requirements in terms of security and performance. Finally, we propose an
implementation on IoT platforms to validate our theoretical analysis and simulation results.

Index Terms—Internet of Things, Security, Key Management, Blockchain, Smart contract.

✦

1 INTRODUCTION

The Internet of Things (IoT) consists of extending connec-
tivity beyond standard devices (computers, tablets, smart-
phones. . . etc.) to all everyday objects. This gives rise to
a network made up of a large number of heterogeneous
devices, which are able to automatically communicate and
collaborate with each other. The IoT makes possible the
development of a large number of applications that have the
potential to improve our lives. Smart homes, for example,
involve using smart devices to ensure comfort, convenience
and energy efficiency to the homeowners. Autonomous
vehicles are able to automatically exchange data to maintain
traffic flow and avoid crashes.

Most of the IoT devices are nevertheless limited by their
small physical size and suffer from a lack of resources in
terms of storage, computation, communication and energy
[31]. For these reasons, many challenges are slowing down
the development of this emerging technology. Securing
communication is considered as one of the most difficult
and the most important [19]. Cryptography is a powerful
tool used to provide security services. It is based on se-
cret parameters, called keys, that are usually known only
to authorized entities. The proper management of keys is
essential to guarantee the effectiveness of cryptography.

• MA. Kandi is with IRIT, Université Paul Sabatier, Toulouse, France.
Email: mohamed-ali.kandi@irit.fr

• DE. Kouicem, M. Doudou, H. Lakhlef, A. Bouabdallah are with Sor-
bonne Université, Université de Technologie de Compiègne, HEUDI-
ASYC UMR 7253 CS 60319 60203 Compiègne Cedex France.
Email: {djamel-eddine.kouicem,messaoud-doudou,hicham.lakhlef, mad-
jid.bouabdallah}@hds.utc.fr

• Y. Challal is with Laboratoire de Méthodes de Conception de Systèmes,
École nationale Supérieure d’Informatique, Algiers, Algeria. Email:
y challal@esi.dz

A Key Management (KM) system includes all the oper-
ations involving the handling of cryptographic keys: gen-
eration, storage, distribution and replacement [63]. Most
of the existing KM solutions are proposed for traditional
Internet or Wireless Sensor Networks (WSNs). They rarely
consider heterogeneous and dynamic networks such as the
IoT. The solutions used in traditional Internet are usually
based on asymmetric cryptography. This implies intensive
computing, which makes them impractical on the IoT con-
strained devices [69]. The solutions proposed for WSNs are
indeed lighter [57, 72, 74] as they generally use symmetric
cryptography. However, they consider that the network is
homogeneous, unlike IoT, and do not balance the loads
between the nodes. They do not take into account the differ-
ence in capability of devices and impose the same overheads
on all of them. Thus, while a negligible part of the resources
of powerful devices is used by the protocol, those of the
constrained ones maybe barely or even not enough. This
exhausts the resources of the constrained devices, which can
significantly degrade the network performance and shorten
its lifetime. It may also happen that some constrained nodes
cannot support the overheads at all, while others can handle
much more.

Furthermore, most of the existing solutions store the
keys in the device memories before deployment. This key
pre-distribution is more suitable for static networks, whose
members do not change frequently. It is however difficult to
add new members after deployment in the case of dynamic
networks such as the IoT. On the other hand, the other
solutions that dynamically update the keys upon a change
in the network rely on a centralized entity [56]. This entity
becomes a single point of failure and the main target of
attacks. If it fails, the entire system stops operating, and
when it is attacked, the whole network is compromised.

2

To address these issues, we propose a novel decentral-
ized blockchain-based KM protocol for heterogeneous and
dynamic networks. Our solution considers the heterogene-
ity of the IoT devices and balances the loads between them
according to their capabilities. By using a bit more of the
resources of powerful devices, our protocol becomes lighter
for the constrained ones. This improves the network per-
formance and increase its lifetime. Our solution is therefore
both efficient and highly scalable in the IoT heterogeneous
networks. It also dynamically and securely updates the keys
upon a network change. To overcome the disadvantages of
centralized approaches, we propose a decentralized archi-
tecture based on blockchain. This technology is used as a
trustworthy and secure ledger, managed by multiple partic-
ipants, to ensure the traceability of the update of keys. Thus,
the failure of a participant will not prevent the system from
working and its capture will not jeopardize the security of
the whole network. The main contributions of our work can
be summarized in the following major points:

• We present a state of the art of the existing KM schemes
and classify them according to several parameters.

• We introduce a novel decentralized blockchain-based
KM protocol for heterogeneous and dynamic networks:
– We propose algorithms that balance the loads be-

tween the heterogeneous devices according to their
capabilities. We also opted for hybrid encryption,
which consists of combining symmetric (for con-
strained devices) and asymmetric (for powerful de-
vices) encryption to take advantages of each and
overcome its disadvantages.

– We propose a decentralization based on blockchain
and smart contracts to automatically and securely
distribute new keys to the members upon a network
change. We also design a lightweight consensus al-
gorithm that takes into account the capability of the
blockchain participants for block validation.

• We analyze and compare our solution with existing
schemes. We prove that our solution avoids the single
point of failure problem and fulfills the IoT require-
ments in terms of security and performance (Table 1).

• We propose an implementation on real IoT platforms to
validate our theoretical and simulation results.

The remainder of this paper is organized as follows. In
section 2, we discuss the related works. In section 3, we
recall the basic concepts of blockchain technology. In section
4, we detail our solution. In section 5, we present the security
analysis. In section 6, we evaluate the performance of our
solution. In section 7, we conclude our work.

2 RELATED WORKS

The main role of a KM system is to establish secure links
between nodes by providing them with secret cryptographic
keys. These keys are used, along with cryptographic algo-
rithms, to secure communication. Although different KM
protocols have been proposed, each of them presents its own
limitations. None of them meets all the IoT requirements
in terms of security and performance. These requirements
are summarized in Table 1. They depend on the mode of
communication of the IoT devices: device-to-device and
group communication.In device-to-device communication
(such as Vehicle-to-Vehicle communication), a device ad-
dresses a specific other one in a peer-to-peer manner. In
group communication (such as Vehicle-to-Everything com-
munication), a device communicates with multiple or all the
nodes at the same time. These devices usually participate in
the same service and thereby have a common interest.

2.1 Classification criteria

To properly characterize the existing KM protocols and to
clearly identify the remaining challenges to be overcome, we
classify them according to different criteria: key cryptogra-
phy, key type, distribution method and load balancing. We
discuss each category and explain its weaknesses.

2.1.1 Key cryptography
The KM protocols can be classified into symmetric and
asymmetric schemes. Symmetric approaches [5, 7, 10, 11,
15, 16, 21, 25–28, 33, 39, 44, 51, 56, 57, 60–63, 72, 74] involve
the use of the same key for ciphering and deciphering the
exchanged messages. They usually require affordable com-
puting capability and reasonable computing time. However,
their effectiveness depends on the secrecy of these shared
keys. The management and distribution of these keys gener-
ally require an amount of storage and communication grow-
ing with the size of the network. Symmetric approaches are
efficient, but not scalable. Asymmetric approaches [1, 3, 9,
35, 38, 45, 46, 50, 52, 65, 66] use two different keys: a public
key which may be disseminated widely and a private key
which is known only by the owner. One is always calculated
from the other so that if the first is used for encryption, the
second is used for decryption. Using these algorithms, no
secret key exchange is required and a device only needs to
store its own keys. However, their effectiveness depends on
the difficulty of guessing the private key from the public one
[58]. These algorithms are then based on computing power.
Asymmetric approaches are scalable, but not efficient.

Communication mode Requirement Description

Device-to-Device

Resilience Capturing devices must have a minimal impact on the network security
Connectivity Probability of sharing keys between neighboring devices must be maximum
Mobility Moving devices must share keys with their new neighbours
Flexibility Devices must be able to join or leave the network at any time

Group
Backward secrecy New devices must not have access to the old keys
Forward secrecy Old members must no have access to the future keys
Collusion resistance Unauthorized devices must not have access to the keys if they cooperate

Both modes
Efficiency Resource usage of devices must be minimal
Scalability Increasing the network size must not degrade performance

TABLE 1: Key Management requirements for the IoT.

3

2.1.2 Type of Keys
The KM protocols can be classified into network and pair-
wise key schemes. Network key approaches entail using the
same key by all members. They are scalable as they require
little storage. However, they are not suitable for device-to-
device communication as they lack resilience. Indeed, each
device can decrypt the communication of the other ones.
The best known schemes are: Logical Key Hierarchy (LKH)
and Exclusion Basic System (EBS). LKH schemes [68] consist
of using a tree structure to reduce the communication cost
during the process of rekeying. EBS schemes [15] are based
on combinatorial optimization to choose a compromise be-
tween the number of keys stored on devices and that of
messages exchanged during the rekeying process. Pairwise
key approaches consist of using several keys instead of
one. They are resilient as capturing a member does not
jeopardize the others. However, they are not well suitable
for group communication as the same message must be
encrypted and sent several times. Pairwise key approaches
can be deterministic or probabilistic. Deterministic schemes
[5, 11, 57] establish a direct secure link between each pair of
devices. They guarantee a total connectivity coverage, but
are not scalable. Indeed, each device stores as many keys
as there are members in the network. Probabilistic schemes
[7, 10, 70, 72, 74] require less storage, but do not guarantee
a total connectivity coverage. Intermediate devices are nec-
essary to establish secure links, which requires additional
computation and communication [72].

2.1.3 Load balancing
The KM solutions can be classified into homogeneous and
heterogeneous schemes. Most of the existing solutions are
homogeneous as they impose the same costs on all the
nodes. While a negligible amount of resources is sufficient
for some, others will not have enough. This exhausts the
resources of the constrained devices, which can significantly
degrade network performance and shorten its lifetime. Ho-
mogeneous schemes lack efficiency and scalability in het-
erogeneous networks. Heterogeneous schemes balance the
costs between the nodes according to their capabilities. By
using a bit more of the resources of powerful devices, the
constrained ones are more likely to support the costs. Some
protocols [1, 2, 29, 46] divide the network into two classes
only (powerful and constrained devices), while others [26,
27] automatically adapt to the network state.

2.1.4 Distribution method
The KM protocols can be classified into pre-distribution
and post-distribution schemes. Pre-distribution approaches
[5, 7, 10, 11, 57, 72, 74] involve the storage of keys in the
device memories before deployment. These methods are not
suitable for dynamic networks as they lack flexibility. It is
difficult to add new members to the network afterwards
or revoke those that get compromised. Post-distribution ap-
proaches [15, 16, 21, 24–28, 33, 56, 60, 61, 68] rely on a trusted
authority to dynamically provide keys to the nodes and to
update them upon a network change. This method poses
a risk of unavailability and has a low level of resilience.
The centralized entity may indeed become a single point of
failure and the main target of attacks.

2.2 Proposed classification

To identify the challenges that related works still face in
the IoT, we propose a classification of these protocols. Thus,
we use the following notation to refer to a class of Key
Management solutions: typ

cryKM
loa
dis. The abbreviation “cry”

refers to the key cryptography. It can take two values “sym”
for symmetric protocols and “asy” for the asymmetric ones.
The abbreviation “typ” indicates whether pairwise keys,
“pai”, or a network wide key, “net”, is used. The abbrevia-
tion “dis” can be replaced by “pre” for the protocols that are
based on pre-distribution and by “pos” for post-distribution
schemes. The abbreviation “loa” specifies whether the load
balancing adopted by the scheme is homogeneous, “hom”,
or heterogeneous, “het”. Finally, the notation “hyb” is used,
to replace any of the above-mentioned notations, when a
scheme is based on a hybridization of two categories.

In Table 2, we introduce a classification of the existing
solutions based on the criteria and the notations presented
above. We discuss each of the existing classes and present
its weaknesses. We therefore see that none of them meet all
the IoT requirements. For this reason, we propose a new
solution belonging to the class hyb

hybKM
het
pos and we show that

it is more suitable for the IoT. To overcome the drawbacks of
a centralized approach, we also propose a decentralization
of our protocol based on the blockchain technology and
smart contracts.

3 BACKGROUND OF BLOCKCHAIN

A blockchain is a decentralized and secure storage tech-
nology. Its name derives from the fact that it is composed
of a chain of blocks, each storing a set of transactions
(which is the storage unit) and the cryptographic hash of
the previous block. Every participant within a blockchain
network takes part in the management of data. The whole
system is therefore controlled by the members of a peer-
to-peer network. Since these collaborative parties do not
necessarily trust each other, the blockchain offers mech-
anisms allowing them to reach common consensus [67].
Consensus algorithms guarantee that the data cannot be
altered without the agreement of most of the participants.
Examples of well know consensus algorithms are Proof-
of-Work (PoW) [41], Proof-of-Stake (PoS) [59] and Practical
Byzantine Fault Tolerance Algorithm (PBFT) [8]).

The blockchain architectures can be classified into three
categories [73]: public, consortium and private. In a public
architecture (e.g. Bitcoin and Ethereum), the data is acces-
sible and can be managed by anyone who wants to join.
A large number of participants makes data more secure,
but the operation of validation usually requires a lot of
resources. In a private architecture (e.g. Ripple and Ten-
dermint), the data is accessible and can be managed only
by authorized users from a specific organization. With a
limited number of participants, it is less difficult to alter the
data, but the management is more efficient. In a consortium
architecture (e.g. Quorum and Hyperledger), the data is
accessible and can be managed by authorized users from
several organizations. A blockchain has four main features
[37, 64]: decentralization, immutability, traceability and se-
curity.

4

Decentralization consists of distributing computation
and storage over multiple entities. This solves the single
point of failure problem and makes compromising the sys-
tem difficult. Immutability means that the stored data are
permanent and unalterable. This brings more trust between
parties and more data integrity. Traceability allows to track
the origin of each transaction. This helps to prevent from
tampering with the records. Finally, the blockchain uses
cryptography to secure data.

Smart contracts are autonomous and irrevocable com-
puter programs stored in the blockchain [12]. They can
be automatically run by its participants to execute the
settlement of a contract between organizations, people or
objects. Although the idea was introduced in 1994, by Nick
Szabo, it has not been put into practice until the appearance
of the blockchain. It is precisely this technology that has
eliminated the need for a trusted third-party.

KM and Blockchain: The term blockchain first appeared
in Nakamoto’s Bitcoin paper describing a new decentralized
cryptocurrency [41]. It started then to be used in various
applications. Recently, researchers began to take interest in
using it to decentralize the KM . The authors of [32, 33]
proposed a blockchain-based KM system to secure group
communication in intelligent transportation systems. In [37],
a blockchain was used to decentralize the KM for Hier-
archical Access Control in the IoT. The authors of [4, 34]
proposed blockchain-based authentication schemes for pro-
viding secure communication in VANETs. However, most
of the existing works do not consider the device-to-device
communication and use the proof-of-work [41] consensus
algorithm. Our solution secures both device-to-device and
group communication. It is also based on a version of proof-
of-stake [59] that takes into account the capability of the
blockchain participants. Proof-of-stake is known to be far
less energy-intensive than proof-of-work [49].

Category Reference Discussion
pai

symKMhom
pre [7, 11, 57, 70,

72, 74]
[+] This category is efficient for secure device-to-device communication in static networks,
whose members do not change frequently.
[−] This category neither considers group communication nor the dynamic and heteroge-
neous nature of the IoT.

pai
symKMhom

post [5] [+] These categories are efficient for secure device-to-device communication in dynamic
networks.

pai
symKMhom

hyb [10, 51] [−] These categories do not consider group communication and lack scalabilty in heteroge-
neous networks containing limited-resource devices.

pai
symKMhet

pre [36] [+] This category is efficient and scalable for secure device-to-device communication in
heterogeneous networks.
[−] This category does not consider neither group communication nor the dynamic nature of
the IoT.

pai
symKMhet

hyb [13] [+] This category is efficient and scalable for secure device-to-device communication in
heterogeneous and dynamic networks.
[−] This category does not consider group communication.

net
symKMhom

hyb [39, 61, 75] [+] These categories are efficient for secure group communication in dynamic networks.
net

symKMhom
post [15, 16, 56,

60, 62, 68]
[−] These categories do not consider the device-to-device communication and lack scalabilty
in heterogeneous networks containing limited-resource devices.

net
symKMhet

post [21, 33] [+] This category is efficient and scalable for secure group communication in heterogeneous
and dynamic networks.
[−] This category does not consider the device-to-device communication.

hyb
symKMhom

pre [22] [+] This category is efficient for secure device-to-device and group communication in static
networks.
[−] This category does not consider the heterogeneous and dynamic nature of the IoT.

hyb
symKMhom

hyb [44, 74] [+] This category is efficient for secure device-to-device, and group communication in
dynamic networks.
[−] This category lacks scalabilty in heterogeneous networks containing limited-resource
devices.

pai
asyKMhom

post [9, 35, 45, 50,
52, 65, 66]

[+] This category is scalable for secure device-to-device communication in dynamic networks.
[−] This category does not consider neither group communication nor the heterogeneous
nature of the IoT. Also, being based on asymmetric encryption, it is not suitable for the IoT
constrained devices.

pai
asyKMhet

hyb [46] [+] This category is scalable for secure device-to-device communication in dynamic and
heterogeneous networks.
[−] This category does not consider group communication. Also, being based on asymmetric
encryption, it is not suitable for the IoT constrained devices.

pai
hybKMhom

pre [55] [+] This category is efficient for secure device-to-device communication in static networks.
[−] This category neither considers group communication nor the dynamic and heteroge-
neous nature of the IoT.

pai
hybKMhet

post [38] [+] This category is efficient for secure device-to-device communication in heterogeneous and
dynamic networks.
[−] This category does not consider group communication.

TABLE 2: Classification of existing solutions.

5

4 OUR SOLUTION

Our solution takes into account the heterogeneity of the IoT
devices and balances the loads between them according to
their capabilities. It also automatically and securely provides
new keys to the devices upon a network change. To se-
curely decentralize the KM , our solution is based on the
blockchain technology and smart contracts. Thus, our solu-
tion is organized into two layers (Figure 1). The node layer
organizes the nodes into logical sets and provides them
with cryptographic keys. The blockchain layer manages the
blockchain and its participants to overcome the disadvan-
tages of centralized approaches. Before we detail these two
layers, we start by classifying our solution according to the
criteria presented in the related works section.

Fig. 1: Architecture of our solution.
Our solution automatically provides keys to the nodes

and updates them upon a network change, meaning that is a
post-distribution approach. It is heterogeneous as it balances
the loads between the devices according to their capabilities.
Regarding the type of keys used, our solution combines
pairwise and network key schemes to secure the two com-
munication modes of the IoT: device-to-device and group
communication. Finally, our solution is a hybridization of
symmetric and asymmetric encryption to take advantages of
each and overcome its disadvantages. Symmetric encryption
is mainly used in layer 1, while asymmetric encryption is
only used in layer 2. The main notations, that are used in
multiple sections of the paper, are summarized in Table 3.

Notation Definition
u, v Examples of nodes
cu The capability of u in number of keys
n The number of nodes in the network
S ,T Examples of node sets
mS ,mT The size of the sets S and T
mcS ,mcT The minimum capability of the sets S and T
p The number of sets in the network
BP A Blockchain Participant
r The number of BPs in the network
cp The consensus period
ct Maximum temporary transactions
RM A Rekeying Message
KDF A Key Derivation Function
RNG A Random Number Generator

TABLE 3: Summary of notations.

4.1 Layer 1: Node Management
The first layer of our solution manages the nodes. It orga-
nizes them into logical sets and provides them with cryp-
tographic keys. These keys can be classified into two cate-
gories: Data Encryption Keys (DEKs) and Key Encryption
Keys (KEKs). The DEKs are used by nodes to encrypt the
data exchanged between them. They include the network
key (used to secure group communication) and the pairwise
keys (used to secure device-to-device communication). The
KEKs are used to secure the communication between the
KM and the nodes in order to protect the DEKs . The aim
is to ensure the backward and forward secrecy (for group
communication) and to secure the distribution of keys (for
device-to-device communication).

Let us consider a node u that belongs to a set S . The
keys it holds are summarized in Table 4. We denote by p
the number of sets in the network and by mS the number
of nodes in S . In this case, u manages mS − 1 pairwise
node keys, p − 1 pairwise set keys, one network key, one
node key and one set key. The number of keys u has to
handle is therefore proportional to the sum p +mS . On this
basis, we propose set management algorithms to balance the
loads between the heterogeneous devices according to their
capabilities. Unlike homogeneous protocols, where the sets
are uniformly organized, our solution determines the size
of a set S (mS) based on the capability (mcS) of its weakest
member. Thus, each set must verify the following inequality:

∀S ,mcS ≥ p +mS (1)

Key Type Notation Description

Data
Encryption
Key (DEK)

Ku,v

This is a pairwise node key used
by u to secure the device-to-
device communication with v
(v ∈ S). A node has as many of
these keys as there are members
in its set

K S,T

This is a pairwise set key used
by u to secure the device-to-
device communication with the
members of T (T ̸= S). A node
has as many of these keys as
there are sets in the network

KG

This is a network key used by u
to secure the group communica-
tion. It is known by all the nodes

Key
Encryption
Key (KEK)

Ku

This is a node key used by u to
secure the communication with
the KM . It is known only by u
and the KM

K S

This is a set key used to se-
cure the communication with
the KM . It replaces the node key
when the same message is sent
to all the set members (for more
efficiency). It is known only by
the members of S

KR

This is a refresh key used for key
update. It is not stored in the
node memory

TABLE 4: Classification of cryptographic keys.

6

4.1.1 Set Management

The set management consists of organizing nodes into log-
ical sets while minimizing the number of keys they store.
The aim is to improve the protocol scalability without sig-
nificant loss of resilience, efficiency or network connectivity.
To satisfy the inequality 1, a minimum capability mcS is
attributed to each set S when created. We then assign at
most mcS − p nodes to the set.

A node u , that can handle cu keys, is assigned to S only
if mcS is the nearest value less than cu . In this case, u will
manage p +mS keys, in the worst case. Since cu ≥ mcS and
mcS ≥ p +mS then cu ≥ p +mS . In other words, u will
always be able to support the costs. Moreover, thanks to this
assignment strategy, the loads are well balanced between
the nodes according to their capabilities. Considering the
fact that a set cannot be empty, any node should be able to
store at least p keys. For this reason, the value of p must be
minimized.

Since the value of p or mS increases after the assignment,
it may happen that some nodes will not be able to handle
their keys anymore. In this case, their sets are split into two
sets with the same minimum capability. Their size being
divided in two, the members of these sets will again be
able to handle the keys. Note that a set cannot be split if
it contains only one node. In this case, the set is removed
and its member is revoked.

Regarding the choice of the set minimum capabilities, the
difficulty lies in the fact that sets are created and removed
as and when required and that the abilities of nodes are not
known a priori. We tried different increasing sequences and
found that the loads are well balanced and p is minimized if
the sequence grows exponentially. We then selected powers
of two as an example of sequence. The network may be
partitioned so that a minimum capability is the double of
the preceding one.

The set management is based on two algorithms: As-
signment and Reorder Algorithms. First, the Assignment
Algorithm is run when nodes join the network and assigns
them to the right sets. It creates new ones when it is neces-
sary and may split others so that the inequality 1 remains
always satisfied. On the other hand, the Reorder Algorithm
is executed after a node leaves the network to reduce the
number of sets. It then removes those that become empty
and merges others to the possible extent. Figure 2 shows an
example of a network partitioned using powers of two. The
inequality 1 is satisfied for all the sets and the value of p is
minimal.

Fig. 2: Example of a network partitioned into three sets.

4.1.1.1. Assignment Algorithm

The Assignment Algorithm (Algorithm 1) is run when a
node u joins the network. The algorithm takes as input cu ,
the number of keys u can handle, and assigns it to a set S
according to the input value. To achieve this, the algorithm
manipulates a list of sets, ls , of size p. Each of its items
contains the ID of a set, its minimum capability, its size and
the IDs of its members.

Algorithm 1: Assignment Algorithm
Input : cu = capability of the node u

1 Round down cu to the nearest power of two mcu ;
2 Find in ls a set S so that mcS = mcu ;
3 if no set is found then
4 Create a new one S ;
5 end
6 Assign u to S ;
7 Update ls ;
8 while ∃ T for which mct < p +mt do
9 Split T ;

10 end

Set creation:
Creating a new set S consists of assigning it a unique

ID , sidS , a key, K S , and a pairwise set key for each set T
of the network. Each of these pairwise set keys, K S ,T , is
encrypted using the key of the set associated to it and sent
to its members (message CM).

CM : KM → T :<
{
sidS ,K

S ,T
}
KT >

Set splitting:
Splitting S consists first of creating a new set T

(mcT = mcS). The mS

2 last nodes that have joined S are
then moved to T . We denote by S+ the set S after be-
ing splitted and by f the first node of S to join T , i.e.
∀u ∈ S+,nidu < nidf and ∀v ∈ T ,nidv ≥ nidf .

The algorithm determines first sidT . Next, to ensure the
forward secrecy, it randomly generates two refresh keys,
KR1

and KR2
. Then, using the KDF , it computes K S+

and KT (Formulas 2 and 3). After that, all the pairwise
keys associated to two nodes which no longer belong to
the same set are removed. Also, for each set U (including
S), a pairwise set key KT ,U is created.

K S+

= KDF (K S ||KR1
) (2)

KT = KDF (K S ||KR2) (3)

Furthermore, the algorithm sends the message SM1 to
each node u ∈ S (nidu < nidf). The message is encrypted
by means of the node secret key and contains KR1

. It also
sends the message SM2 to each node v ∈ T (nidv ≥ nidf)
encrypted using the node secret key. SM2 contains KR2

.
Finally, the message SM3 is sent to each set U (U ̸= S and
U ̸= T). It is encrypted by means of the set key and contains
KT ,U .

SM1 : KM → u :< {uidf ,KR1
)}Ku >

SM2 : KM → v :< {uidf ,KR2
}Kv >

SM3 : KM → U :<
{
KT ,U

}
KU >

7

4.1.1.2. Reorder Algorithm

The Reorder Algorithm (Algorithm 2) is run, after a
node leaves the network, to reduce the number of sets.
The algorithm takes as input a percentage of merging, pcm ,
and removes or merges sets if it is possible. Note that the
more the value of pcm increases, the more the threshold,
thr , below which a set must be merged increases. Thus, this
parameter allows us to choose the best compromise between
the merging’s cost and the value of p.

Algorithm 2: Reorder Algorithm
Input : pcm = percentage of merging

1 foreach set S that a node has left do
2 if mS = 0 then Remove S ;
3 else
4 thr ← pcm.(mcS − p);
5 if mS < thr then
6 Find T such as mT < thr and

mcT = mcS ;
7 if a set T is found in ls then
8 Merge S and T ;
9 end

10 end
11 end
12 end

Set removal:
Removing a set S consists of deleting its ID , sidS , its

key, K S , and all the pairwise set keys associated to it. The
message RM , containing the ID of the set, is then sent
to each remaining set so that its members can remove the
pairwise set key they share with the nodes of S .

RM : KM → T :< {sidS}KT >

Set merging:
Merging S and T consists of three steps. A new set is

first created (following the steps presented above). Next,
the members of S and T are moved to the new set. New
pairwise keys are then generated for every pair of nodes u ,
v (u ∈ S and v ∈ T) and sent to them (Messages MM1 and
MM2). These messages are encrypted by means of the node
keys. They contain the new cognate ID and the pairwise key
associated to it. Finally, the two sets S and T are removed
(following the steps presented above).

MM1 : KM → u :< {nidv ,Ku,v}Ku
>

MM2 : KM → v :< {nidu ,Ku,v}Kv
>

4.1.2 Rekeying upon joining
When a node u joins the network, the KM starts by running
the Assignment Algorithm to select a set S that matches
its capability. It determines then the node ID and uses the
RNG to generate a secret code and the keys associated to
it (Formulas 4 and 5). To ensure backward secrecy, the KM
also randomly generates the KR and uses it with the KDF
to update the keys that u will share with other members of
the network (Formulas 6, 7 and 8).

Ku,v = RNG(), ∀v ∈ S (4) Ku = RNG() (5)

K S,T+

= KDF (K S,T ||KR), ∀T ∈ N (6)

K+
G = KDF (KG ||KR) (7) K S+

= KDF (K S ||KR) (8)

After that the keys are generated and updated, they are
distributed by the KM on the appropriate nodes (Figure
3). Thus, it sends to each node v of the set S the unicast
message RM1 encrypted by means of the node secret key,
Kv . The message contains the ID of the joining node (nidu)
and the pairwise node key, Ku,v , associated to it. The KM
also broadcasts for each set T (including S) the message
RM2 encrypted using KT , the current set key of T . The
message contains the ID of S (sids) and KR. Finally, the KM
provides u , using a key agreement method, with its secret
key, the new set key, the pairwise node keys to share with
its cognates and all the new pairwise set keys associated to
S . After the keys distribution, the KM discards KR.

RM1 : KM → v :< {nidu ,Ku,v}Kv
> (∀v ∈ S)

RM2 : KM → T :< {sidS ,KR}KT
> (∀T ∈ N)

When a network node receives the rekeying messages,
it decrypts them using its node and set keys. It then stores
the new keys and updates those that it will share with the
joining node (Formulas 6, 7 and 8).

4.1.3 Rekeying upon leaving

When a node u leaves a set S or is evicted because it gets
compromised, the KM runs the Reorder Algorithm if a set
removal or merging is possible. Next, the KM removes the
node’s key and all the pairwise keys associated to it. The
same steps as for the node joining are then followed to
update the keys known by u (Formulas 6, 7 and 8).

Next, the KM distributes the new keys to the appro-
priate nodes (Figure 3). Thus, it sends, to each node v of
the set S , the unicast message RM3 encrypted by means
of the node key, Kv . The message contains the ID of the
leaving node and KR. The KM also broadcasts, for each set
T (T ̸= S), the message RM4 to provide its members with
KR. The message RM4 is encrypted using KT , the current
set key of T .

RM3 : KM → v :< {nidu ,KR}Kv
> (∀v ∈ S, v ̸= u)

RM4 : KM → T :< {sidS ,KR}KT
> (∀T ∈ N,T ̸= S)

When a network node receives a rekeying message, it
decrypts it using its node or set key. It then removes the
keys associated to the leaving node and updates those that
it shared with it (Formulas 6, 7 and 8).

Fig. 3: Rekeying upon a network change.

8

4.2 Layer 2: Blockchain Management
The main purpose of this layer is to decentralize the KM
using the blockchain technology and smart contracts. Note
that any type of architecture can be used (since the secret
keys are not stored in the blockchain), but a private or a
consortium blockchain remains preferable in an application
such as the KM . We introduce into the network IoT gate-
ways (or BPs for Blockchain Participants) that generate,
validate and store transactions upon a network change.

The BPs act as intermediaries between the nodes and
the blockchain (Figure 1). The aim is to not involve any
additional cost on nodes, except those imposed by Layer 1.
When a node wishes to join the network, it sends a request
to a BP . If the transaction corresponding to this request
is validated by the other BPs and is correctly added to the
blockchain, the node is attached to the gateway that initiates
the joining process. It will remain attached to it until the
node moves, leaves the network or when the BP fails or
gets compromised (see section 4.2.3). Meanwhile, the BP
manages (generates, stores and updates) the keys associated
to the node. The BP also sends to the node the rekeying
messages, so that it can update its keys.In case a new shared
key needs to be created (e.g., the group key or a set key), the
BPs can directly and securely exchange it.

A blockchain transaction is the storage unit that corre-
sponds to a specific event, which is a rekeying operation
in our case. Any BP that executes in order the operations
stored in the blockchain should have the same organization
in sets. As shown in Figure 4, a transaction contains the
following information:

• The rekeying operation (join, leave, evict...);
• The node ID;
• The node capability;
• The ID of the set of the node;
• The encrypted cryptographic hash of the node’s secret

code (see section 4.2.3);
• The refresh key used to update the keys.

Fig. 4: Example of a blockchain transaction.

4.2.1 Transaction management upon network change
When a BP receives a join/leave request, it first uses layer
1 for set and node management. The algorithms and opera-
tions performed (e.g. Assignment and Reorder Algorithms)
are transformed into smart contracts. The aim is to ensure
that, for a certain join/leave request, any BP should obtain
the same result. Before distributing the keys, the layer 1 calls
the layer 2 to generate, validate and store a transaction in the
blockchain. If the transaction corresponding to the current
rekeying operation is correctly stored in the blockchain, the
layer 2 informs the layer 1. The BP can then distribute the
generated keys on the appropriate nodes after ciphering
them using the KEKs (Figure 5).

(1) Transaction generation: When the layer 2 receives the
information from the first layer about a rekeying operation,
it starts by generating the corresponding transactions. A
single transaction is sufficient for most rekeying operations.
However, more than one transaction may be generated in
some cases. Indeed, in the case of a set merging, we need
to generate transactions for node leaving, set removal and
set creation. The layer 2 then stores these transactions in
its memory pool of temporary transactions and broadcasts
them to all the BPs . Note that the communication between
the BPs is ciphered using asymmetric encryption.

(2) Transaction verification: When a BP receives a trans-
action, it uses the smart contracts to verify its correctness. In
the case of a node joining, the BP runs again the assignment
algorithm to confirm that the node was assigned to the right
set. It also checks if the node ID and the hash of the secret
code have not already been used for another network node.
On the other hand, if a node leaves the network or is evicted,
the BP checks if the leaving node is actually a network
member. It also verifies if there is a match between the node
ID, the set ID and the cryptographic hash of the node’s secret
code. If the BP judges that the transaction is correct, it adds
it to its memory pool.

(3) Transaction validation: After a certain period of time
(cp) or when the size of the memory pool reaches a certain
threshold (ct), the BPs run a consensus algorithm (see
next section). The aim is to achieve a consensus between
them on whether the content of the memory pool can be
included to the blockchain. If all the BPs agree that a block
of transactions can be added to the blockchain and when
it is correctly stored, these transactions become valid. The
layer 1 is therefore informed so that it can distribute the
generated keys on the appropriate nodes.

4.2.2 Consensus Algorithm
We introduce a lightweight consensus algorithm for trans-
action validation. This is a proof-of-stake version that takes
into account the capability of the blockchain participants,
i.e. the BP ’s capability determines its chance to validate the
next block. In order not to favor the more powerful BPs ,
more parameters are included into the selection process:
confidence and age. The level of confidence is initialized
to a certain value, increased over time and decreased when
an incorrect transaction from a BP is detected. The age of
a BP represents the time elapsed between the last time it
validated a block and a given time. This gives chance to
the weak BPs to participate in the validation process when
their age is high enough.

Our Consensus Algorithm (Algorithm 3) can be executed
either periodically (the period is cp) or when the number of
transaction in the memory pool reaches a certain thresh-
old (ct). For each block, a validator (the BP that forges
the block) is randomly elected by including a weighting
according to the capabilities of BPs and the other above-
mentioned parameters (the higher the capability, the con-
fidence and the age of a BP , the higher its chance to be
elected). To achieve this, all BPs generate random numbers
and exchange them with each other. Each of them combines
all these random values by adding them, for example, or
by applying another common mathematical function. The
resulting value, being common to all, can be used by BPs

9

to perform a weighted random draw and thereby elect
the same validator. This validator groups the transactions
contained in its memory pool to forge the new block, signs
it then broadcasts it. The other unelected BPs wait for the
new block and check its content once received. All the BPs ,
including the validator, store the block in their copy of the
blockchain and remove the validated transactions from their
memory pool. Finally, they update the validator parameters.
They reset its age and modify its level of confidence depend-
ing on whether an error is detected or not.

Algorithm 3: Consensus Algorithm

1 Generate a random number and broadcast it;
2 Wait for the random numbers of the other BPs ;
3 Combine the received numbers into one value;
4 Use this shared value to elect a validator;
5 if the BP is the validator then
6 Forge the new block;
7 Sign the block;
8 Broadcast the block;
9 else

10 Wait for the block from the validator;
11 Check the block and its transactions;
12 end
13 Store the block in the blockchain;
14 Remove validated transactions from memory pool;
15 Update the validator parameters;

4.2.3 Blockchain interest

The blockchain is used as a trustworthy ledger that ensures
the traceability of the updating of keys. Thus, in addition to
securely distribute the KM and ensure consistency between
the different BPs , the use of blockchain offers functionalities
that a centralized solution cannot provide.

System availability: When a BP fails or when it is a
target of malicious attacks (such as DoS attacks), the nodes
attached to it become orphans. Each of them sends then a
rejoin request to an other BP . When a BP receives a rejoin
request, it agrees with the sender on new KEKs so they
can securely communicate. After that, the node sends the
hash of its secret code to be able to get authenticated. The
BP consults the blockchain and checks if the hash received
corresponds to that of the node. The node in question is

the only one able to generate the hash of its secret code.
Moreover, the hashes stored in the blockchain are encrypted
using a key known only by the authorized BPs . Therefore,
the BP can conclude that the node sending the request is
legitimate. If it is the case, the node is then attached to
this gateway without having to add new transactions to the
blockchain (Figure 6). This makes the rejoin operation more
efficient. More importantly, the failure of a BP does not
prevent the system from working. Therefore, our solution
solves the single point of failure problem, especially as no
BP knows all the keys.

Node mobility: As when a BP fails, a node can use
its secret code to get authenticated with another BP if its
actual BP is no longer in range. The node then sends a
rejoin request to a BP which is within reach. When the BP
receives the rejoin request, it sends to the node new KEKs
to secure their communication. The node sends then the
hash of its secret code to get authenticated. The BP consults
the blockchain and checks if the hash received corresponds
to that of the node.If it is the case, the node is attached
to this gateway without adding new transactions to the
blockchain (Figure 6). This makes the mobility operation
more efficient. Our protocol is therefore well suitable for
dynamic networks.

Node sleeping: To save energy, a node can sleep if it does
not have a work in progress. During sleeping, the node turns
off its radio and will not receive the rekeying messages.
Note that these messages contain the refresh keys that allow
the nodes to update their keys. Thus, the sleeping node
will not have the opportunity to update its keys. However,
when it wakes up, it will need the new keys to be able to
securely communicate with the other nodes. It will then
send to its BP a rekey request containing the last refresh
key it received. Since all the refresh keys are stored in the
blockchain, the BP can retrieve and send to the node the
refresh keys it missed. It will then be able to update its keys
without having to add new transactions to the blockchain.

Fig. 6: Rejoin exchange.

Fig. 5: Decentralized rekeying upon a network change using a blockchain.

10

5 SECURITY ANALYSIS

In this section, we analyze the security of our solution and
prove that it secures the two modes of IoT communication.

5.1 Threat model
A malicious device can be inside or outside the network
[6] and may jeopardize the security of both modes of
communication (Figure 7). An outsider node can store the
messages exchanged between the nodes (group communi-
cation) and decipher them when it joins the network. An
evicted member can also pose a threat to the network, if
it is still able to decipher the future communications. If
a node or a BP inside the network is captured, it may
try to decrypt the device-to-device communication of the
other nodes. We assume that the blockchain is tamper proof
(protected against P2P attacks such as eclipse or hijacking
attacks). An attacker can not alter its content unless it has a
capability that exceeds 51% of the overall network capacity,
which is practically unlikely [18].

Fig. 7: Threat model and countermeasures

5.2 Backward secrecy
We prove that a joining node cannot access the current or
previous shared (network, set and pairwise set) keys.

Proposition 1: Backward secrecy is guaranteed as the
joining node never gets knowledge of the old keys.

Proof: Let us consider a node u that joins a set S . The
KM starts by updating the keys mentioned above. Before
u can actually join the network, the KM rekeys all current
members of the network, by means of messages RM1 and
RM2 . These messages are encrypted using the node and set
keys, respectively. Since none of these keys are known by u ,
it is excluded from the process of rekeying.

5.3 Forward secrecy and collusion resistance
We prove that leaving nodes cannot access the new shared
(network, set and pairwise set) keys or any future incarna-
tion of them, even if they cooperate.

Proposition 2: Our solution guarantees the forward se-
crecy and resists to collusion after nodes leaving, since they
do not have access to the new security material.

Proof: Let us consider a node u that leaves a set S . The
KM rekeys the nodes by means of the messages RM3 and
RM4 , respectively. The former is encrypted using the node
keys and the latter by means of the set keys. Since none of
these keys are known by u , the leaving node is excluded
from the process of rekeying. Furthermore, as these keys
are independent of each other, u can not collude with other
evicted nodes to decipher the rekeying messages.

5.4 Resilience against node capture
Although our solution is heterogeneous, a homogeneous
distribution allows us to evaluate resilience against node
capture with no significant lack of generality. The n nodes
(n > 1) of the network are then uniformly distributed in p
sets of m members each, i.e. p = m =

√
n

5.4.1 Theoretical analysis
We study the rate of compromised links after node capture.

Lemma 1: A node can decrypt a number of links D :

D = n − 1 + (
√
n − 1)(n −

√
n) = (

√
n − 1)(n + 1) (9)

Proof: A node can decrypt the communications linking
it to the n − 1 other nodes as well as the links between its√
n − 1 cognates and the n −

√
n other nodes.

Proposition 3: The percentage of links that a compro-
mised node can decipher is equal to:

P =
D

T
=

2 (n + 1)

(
√
n + 1)n

→ 0 , as n → ∞ (10)

Proof: From lemma 1 and the fact that the total
number of links in a network of n nodes is equal to
T = C 2

n = n(n−1)
2 , we obtain this percentage.

Proposition 4: The capture of the whole network cannot
succeed unless all the nodes are compromised.

Proof: Deciphering all the intra-set communications re-
quires the knowledge of all the pairwise node keys asso-
ciated to it. This is only possible if all the set members are
captured. Also, deciphering all the inter-set communications
requires the knowledge of all the pairwise set keys. This is
only possible if at least a member of each set is captured.
Deciphering all the communications is then possible if and
only if all the nodes of each set are captured.

5.4.2 Comparison
We compare our solution to the deterministic scheme pre-
sented in [11]. Providing a perfect resilience, none of the
other solutions can do better. Figure 8 shows that, using
our solution, the rate of compromised links due to node
capture is negligible for large networks like the IoT. It is even
comparable to the percentage provided by the perfectly
resilient scheme. We also showed that the compromise of
the whole network requires the capture of all its members.
Our solution provides then a good level of resilience.

Fig. 8: Resilience against node capture.

5.5 Resilience against BP capture
We assume that nodes are uniformly distributed on a num-
ber of BPs equal to r (i.e. n

r nodes are attached to each BP).
This allows us to evaluate resilience against BP capture
without a significant lack of generality.

11

5.5.1 Theoretical analysis
We study the rate of compromised links after BP capture.

Proposition 5: The percentage of links that a compro-
mised BP can decipher is equal to:

P =
D

T
=

2nr − n − r

(n − 1)r2
→ 2r − 1

r2
, as n → ∞ (11)

Proof: A BP is responsible for the generation of the keys
associated to the nodes attached to it. Therefore, if it gets
compromised, it will be able to decipher the n

2r (
n
r − 1)

links between them. It will also be able to decipher the
communications between its n

r nodes and the n − n
r other

members of the network. It can then decrypt a total number
of links equal to D = n

2r (
n
r − 1) + n

r (n −
n
r).

Proposition 6: The capture of the whole network cannot
succeed unless all the BPs are compromised.

Proof: As shown in proposition 4, deciphering all the
communications requires the knowledge of all the pairwise
keys. This is possible only if all the BPs are captured.

5.5.2 Comparison
In previous works [25, 26], we assumed that the KM itself
is secure and that only the nodes can be compromised.
In this paper, we propose a decentralization based on the
blockchain as in practice the central entity can be captured.
Thanks to the blockchain features, the KM is securely
decentralized so that the compromise of a BP has no effect
on the others. Thus, compared to the solution based on a
centralized entity [25, 26], which once captured the whole
network is compromised, only a part (Proposition 5) is
captured using this decentralized version (Figure 9). We
showed that the rate of compromised links is inversely
proportional to the number of BPs . In other words, the
more we increase the number of BPs , the more resilient
is our solution. In the next section, we analyze the effect
of this parameter on the network performance to help the
reader to choose the best compromise between resilience
and performance.

Fig. 9: Resilience against BP capture.

6 APPLICATION AND PERFORMANCE EVALUATION

To give a concrete overview of the performance of our
solution, we consider the example of a smart city. This
choice is motivated by the fact that a smart city contains a
huge number of heterogeneous devices (servers, computers,
smartphones, gateways, sensors...etc) spread across the city
to provide various services to the benefit of society (health-
care, intelligent transportation system...etc.). These devices
can use the two communication modes of the IoT (device-
to-device and group communication).

6.1 Theoretical analysis

We study the overheads of our solution on nodes and BPs .
Property 1: The storage cost on the members of a set S is

proportional to p +mS . It is of the order of n
r on the BPs .

Proof: A node of a set S stores mS − 1 pairwise node
keys, p − 1 pairwise set keys, one network key, one node
key and one set key. The storage overhead on nodes is
therefore proportional to the sum p +mS . If we choose
not to store the pairwise node keys (which are used for
device-to-device communication between the nodes) in the
BP memories, the largest number of keys to store will then
be that of the node keys of the members attached to it. The
BP will then store a total number of keys proportional to n

r .
Property 2: The calculation cost of an operation related

to a set S is proportional to p +mS on nodes and BPs .
Proof: Regardless of the rekeying operation performed

(e.g. node joining S or node leaving S), a node can, in the
worst case, update all the keys it knows. The calculation cost
on nodes is then proportional to the storage, which has been
proven to be of the order of p +mS . Furthermore, a BP
updates the keys which are or will be known by the node in
question. The calculation overhead on the BP is therefore
also proportional to the storage cost on nodes. Regarding
the Assignment and Reorder Algorithms, they loop through
the list of sets in the worst case, which is of size p.

Property 3: The communication cost is O(1) on nodes.
The communication overhead of an operation related to a
set S is proportional to p +mS on the BPs .

Proof: Regardless of the rekeying operation performed,
a node receives a constant number of messages. The com-
munication cost on nodes is therefore independent of all
parameters (i .e.O(1)). Also, a BP sends a unicast message
to each of the mS members of S and broadcasts a message
for each of the other p − 1 sets, in the worst case. A BP
sends then a number of messages proportional to p +mS .

6.2 Experiments

For our experiments, we used a laptop and IoT motes. The
laptop is an Intel Core i7 with 4GB RAM. The motes (based
on Contiki) are of 5 types: 22 Exp5438 [17], 22 MicaZ [40],
12 Openmotes [43], 22 TelosB [54] and 22 Z1 [71]. To join
the network, the devices send requests to the BPs . The BPs
process the requests and send rekeying messages to nodes.
Given the limited number of physical motes available to us,
some are Cooja motes. For scaling up even more, a simulator
(written in Python) sends requests for the tests in which the
number of devices exceeds 100 (Figure 10). The experiments
are carried out following these assumptions:

• We use AES-128 for encryption involving nodes and
AES-256 for BPs . Indeed, some of the nodes support
only AES-128. We use ECC [30] for the key exchange
between BPs and for signing the blocks. We plan to
propose a new lightweight key exchange method in
future works. For now, we store a temporary key in the
nodes before deployment to secure the first exchange.

• We rely on storage to assess the capabilities of nodes.
Indeed, the communication for nodes is O(1) and the
calculation depends on storage. The keys (128 bits long)
are stored in the Flash memory of the nodes.

12

Fig. 10: Experimental platform.

• The simulated requests are uniformly distributed on the
BPs and their capabilities follow a uniform distribution
between 64 and a maximum value noted C MAX .

6.2.1 Number of sets
We deduce from the theoretical study that our solution’s
overheads mainly depend on the number of sets. Thus,
we start by analyzing the evolution of p according to the
algorithms’ inputs. The aim is to present an overview on
how to minimize this value. We study the effect of three
parameters on the value of p: the number of nodes (n), the
nodes maximum capability (C MAX) and the percentage
of merging (pcm). Each time we set two parameters to
default values and vary the third one. The default values
of the three parameters are 1024000 , 0 .4 and 256000 ,
respectively. Note that only the request simulator is used
in this part of the experiments.

Starting with n , the results (Figure 11a) show that, re-
gardless of the network size the number of sets remains
reasonable. Even when n exceeds one million, the value of
p does not exceed a few dozen. This makes our solution
scalable since the constrained nodes manage a reasonable
number of keys. Next, we analyze the effect of C MAX , the
maximum capability of the simulated requests. The results
(Figure 11b) show that the more powerful the nodes, the
smaller the value of p. This is because powerful devices are

able to manage more keys and can be assigned to larger
sets. Note that the larger the sets, the more their number de-
creases. Therefore, the constrained nodes are more likely to
support the overheads. Even when the maximum capability
is small, the value of p remains reasonable for a network
containing over a million nodes. Finally, we study the effect
of pcm . The results (Figure 11c) show that the greater the
percentage of merging, the smaller the value of p. Therefore,
the merging operation actually reduces the number of sets
and makes our solution lighter for the constrained devices.
Most of the costs imposed by set merging are on the BPs
and have no significant influence on the nodes performance.

6.2.2 Overheads on the BPs
After studying the evolution of the number of sets, we
analyze the overheads of our solution on the BPs (the
blockchain overhead). We assume that, unlike nodes, the
BPs have enough storage and focus on their response time.
It is the time separating the reception of a join or leave
request from the sending of a response to the node. We
analyze the effect of three parameters on the response time
(of the first and the last of simultaneous requests): the
number of BPs (r), the number of simultaneous requests
(nst) and the consensus period (cp). Each time we set two
parameters to default values and we vary the third. The
default values are 8 , 100 and 100ms , respectively. The size

(a) Effect of n on p (b) Effect of C MAX on p. (c) Effect of pcm on p.

(d) Effect of r on time response. (e) Effect of nst on time response. (f) Effect of cp on time response.
Fig. 11: Experimental results.

13

of the memory pool (ct) is set to the number of BPs (r).
Note that the request simulator as well as the physical and
Cooja motes are used in this part of the experiments.

Starting with r , the results (Figure 11d) show that the
more the number of BPs increases, the more the processing
time of one request rises. This can be explained by the fact
that there is more communication between BPs . However,
if more than one request are received at the same time, we
notice a decrease in the response time (of the last request)
before it starts going up again. This is because several BPs
can process different requests at the same time. However,
after a certain threshold (8 BPs with our means), the time
lost due to communications covers the time saved thanks to
parallelism. Next, we analyze the effect of nst . The results
(Figure 11e) show that the more the system receives si-
multaneous requests, the more the response time increases,
especially for the last node. Note that with our means, more
than 1000 requests are processed per minute. Finally, we
study the effect of cp (Figure 11f). The best results are
obtained when the period to forge new blocks is neither too
short nor too long (10ms with our means). If it is too short,
there will be a lot of unnecessary message exchanges, while
the memory pool is empty. Conversely, when this period is
too long, the processing time of a request increases.

6.2.3 Overheads on nodes
Now, we evaluate the performance of our solution on the
nodes. We used the 100 Cooja and physical motes in this
part of the experiments. They are all within the reach of
the BPs (routing is therefore not necessary) and belong to
the same network. After all the nodes joined the network,
we obtained the set distribution shown in Figure 12. Note
that the sets 4 and 5 result from the split of the sets 2 and
1 , respectively. Furthermore, we used PowerTrace for the
execution time and the energy consumption. It is a Contiki
built-in tool that reports the resource utilization of a node
(with an accuracy of 94% [14]) and prints the statistics to
the console. However, This tool is not supported by MicaZ.
Therefore, we only present the storage cost on these motes.

Fig. 12: Network partitioning.

Storage overhead on nodes: The program, the values
of the initialized variables and the cryptographic keys are
stored in the flash memory, while the data are saved in
RAM. The choice of storing the keys in the flash memory
was motivated by the fact that some of the motes (espe-
cially MicaZ) have a very limited RAM. The number of
keys stored in nodes varies depending on weather our
heterogeneous seting (proportional to the node capacities)
is used or not (i.e. nodes hold n keys). The percentage
of memory occupation is presented in Table 5. The results
show that, although the network is neither too large nor
too heterogeneous, our heterogeneous seting reduces the
storage on nodes.

Node
Flash

RAM
Heterogeneous None

Exp5438 9.76% 10.14% 52.75%
MicaZ 19% 19.9% 91.70%

OpenMote 5.46% 5.65% 21.05%
TelosB 63.26% 66.03% 47.15%

Z1 34.7% 35.96% 37.72%

TABLE 5: Storage overhead on nodes.

The occupation of the MicaZ RAM may seem important.
However, the basic communication program, which con-
sists of periodically sending and receiving unicast messages
(without broadcast and AES encryption), occupies 67% of
the RAM. In other words, a large part of the memory is used
by other processes. The part of the memory used by our
protocol remains reasonable, especially considering the very
limited MicaZ RAM. In [47], the network is composed of 15
TelosB motes only and yet 96 .3% (against 63 .26% using
our solution) of their flash memory and 74 .92% (against
47 .15% using our solution) of their RAM are occupied. Our
solution requires then less storage on TelosB.

Execution time on nodes: The evaluation of the comput-
ing cost of our solution concerns two operations a node may
perform: key installation and key update. Key installation
corresponds to the operation by which a new node, which
has just join the network, processes the Key Manager’s
messages and stores the keys assigned to it in its memory.
Key update is the operation by which a network node
updates its keys upon a network change. For this operation,
we consider both cases where a set is split or not. The
execution time of any of these operations corresponds to
the time separating the reception of a message from a BP
and the end of its processing. The execution times on nodes
are presented in Table 6. The results were obtained using
Powertrace. This tool is not supported on MicaZ. Therefore,
we only present the execution time on the other motes.

Node Key installation Key update Key update/split

Exp5438 57.98 ms 69.18 ms 139.34 ms
OpenMote 101.86 ms 103.46 ms 211.46 ms

TelosB 85.41 ms 89.02 ms 177.28 ms
Z1 60.33 ms 76.29 ms 167.23 ms

TABLE 6: Execution time on nodes.

Energy consumption by nodes: For energy consumma-
tion, we consider the same operations as in the previous
section (key installation and key update with or without set
split). The energy consumed by a node includes calculations
and communications. We then used Powertrace to evaluate
the energy consumption of our solution per second. The
results are presented in Table 7.

Node Key installation Key update Key update/split

Exp5438 3.2 mJ 3.95 mJ 8.41 mJ
OpenMote 4.38 mJ 4.52 mJ 10.03 mJ

TelosB 2.32 mJ 4.22 mJ 9.83 mJ
Z1 3.7 mJ 4.38 mJ 9.46 mJ

TABLE 7: Energy consumption by nodes.

14

In Table 8, we present an estimate of the lifespan of 2xAA
batteries using our solution. The lifespan is calculated, for
each type of node, according to the average value of the
quantity of energy it consumes. The results are obtained
assuming that the nodes are constantly receiving a rekeying
message per second.

Node Battery life

Exp5438 101 days
OpenMote 69 days

TelosB 74 days
Z1 76 days

TABLE 8: Battery life.

Although some authors (such as those of [7, 38, 42])
evaluate the energy consummation of their Key Manage-
ment protocols, they are based on theoretical models (an
example can be found in [20]) and cannot be compared to
our experimental results. In the absence of similar works
presenting the results of an implementation on the same
IoT motes we used, our results can be compared to those
presented in [53]. The authors used Powertrace to estimate
the energy consumption of TelosB motes when sending
ipv6 packets (while we used the lightweight Rime Stack).
Since communication is the operation that consumes the
most energy, these results can be compared to the energy
consumption of our solution, even if they do not consider
the overheads related to the Key Management.

6.3 Comparison
We compare our solution to the existing protocols proposed
for device-to-device (PKS [11], Trade [48], UKP [7], Kro-
necker [57]) and group communication (MGKMP [28] and
GREP [56]). We also compare our consensus algorithm to
Tendermint, which is based on PBFT [23].

6.3.1 Efficiency and scalability
We take as example a TelosB node, which can theoreti-
cally store up to 1536 keys of 256 bits (ignoring the other
node’s memory requirements). For the node to support
the storage cost of our solution, it must be able to store
at least p keys. The percentage of storage must then be
greater than Po = p

1536 . The authors of GREP, MGKMP,
Trade and Kronecker show that the storage of their solutions
is proportional to O(

√
n). The memory rate required to

store these
√
n keys is Pr =

√
n

1536 . Finally, the nodes storage
cost of PKS is of the order of n . The percentage of memory
required is Pn = n

1536 .

We compare the variation of these percentages according
to n (Figure 13a). The results show that our solution requires
less storage on a TelosB than the other protocols. Indeed,
regardless of network size, the value of Po is smaller than
Pr and Pn . More importantly, if the network contains 1536
nodes, the total memory of the TelosB will be used to store
all the keys of PKS, while 1% of its storage capability
is enough if our solution is used. This is because storage
cost is well balanced between the nodes according to their
capabilities. Thus, by using a bit more of the resources of
powerful devices, our solution becomes much lighter for
the constrained ones. It can then operate on much larger
heterogeneous networks.

6.3.2 Connectivity, mobility and flexibility
While the probability that two neighboring nodes share a
common key does not exceed 0 .25 in Trade and is approx-
imately lower bounded by 0 .632 in UKP, it is always equal
to 1 using our solution. Moving devices will also always
share keys with their new neighbours. Indeed, each pair of
communicators share a pairwise node or set key and can es-
tablish a direct secure link. Our solution provides then good
connectivity and mobility. Note that when connectivity and
mobility are low, some communicators rely on intermediate
nodes to establish a secure link. This reduces the efficiency
of the protocol.

Some schemes [10, 70] are based on the deployment
knowledge to maximize the network connectivity. The ap-
plication of this method is nevertheless restrictive if the
deployment knowledge is not possible. It is therefore clear
that the KM we propose is more flexible as the division into
sets is logical and operates well regardless of the position of
nodes. Furthermore, regardless of their category, most of the
existing schemes for device-to-device communication are
based on key pre-distribution. These schemes suffer from
poor flexibility as it is hard to add new nodes to the network.
Our solution, on the other hand, supports the dynamic
deployment of nodes thanks to its rekeying mechanism.
Indeed, we previously showed that nodes can join and leave
the network at any time without jeopardizing the security
of the network. Our solution is therefore more flexible.

6.3.3 Heterogeneity
Unlike most of the existing schemes, our solution balances
the loads between the heterogeneous devices of the network
according to their capabilities. To illustrate this difference,
we consider the protocols MGKMP and GREP. The authors
show that their calculation and storage costs are propor-
tional to O(

√
n) for all the nodes, while they are both

(a) Efficiency and scalability. (b) Heterogeneity. (c) Consensus algorithm.
Fig. 13: Comparison results.

15

proportional to the nodes’ storage capability, using our
solution. We consider then a network of 10000 nodes and
analyze the variation of the calculation and storage cost
according to the node’s capability (number of keys it can
handle), for the three protocols. Note that the percentage of
storage capability that we choose using our solution is 5%
(i.e. only 5% of the real capability of the node is used). The
results are plotted in Figures 13b.

We take as example two nodes u1 and u2 that can store
200 and 1800 keys, respectively. For both nodes, 5% of
their memory is used by our solution, in the worst case.
MGKMP and GREP, on the other hand, use 50% of the
former and 5% of the latter. As the calculation overhead
on node depends on the storage, these protocols quickly
exhausts the resources of u1 , while u2 has much more. More
importantly, the nodes having a capability lower than 100
can not even store all the keys, while our solution uses 5% of
their memory only. Thus, although the overheads imposed
by MGKMP and GREP are lower than that of our solution
for powerful devices (capability greater than 1000), they are
much greater for the weak ones.

6.3.4 Consensus Algorithm

We mainly choose Tendermint for two reasons. First, it is
a powerful blockchain engine based on the PBFT consensus
algorithm [23]. Using Tendermint, solving a puzzle is not re-
quired to enter the next block. Therefore, compared to some
of the most used consensus algorithms (e.g. PoW), PBFT
reduces computation and thereby the energy consumption.
Second, the application layer of Tendermint can be written
in any programming language. This facilitates the integra-
tion of our solution (written in Python) to this environment.
The other parameters that are not related to the consensus
algorithms (such as the key size, the assignment algorithm
and the material used) are the same in both cases (using
our consensus algorithm and PBFT of Tendermint). The
obtained results are plotted in Figure 13c. They show that
regardless of the number of BPs , the process of a request is
always faster using our solution.

7 CONCLUSION

In this paper, we proposed a novel decentralized
blockchain-based Key Management protocol for heteroge-
neous and dynamic networks. Our solution balances the
loads between the nodes according to their capabilities.
We proved that this makes it efficient and highly scalable.
Furthermore, our solution automatically and securely dis-
tribute new keys to the members upon a network change.
To overcome the disadvantages of centralized approaches,
we used the blockchain technology and smart contracts. We
showed that the system will continue to operate even if an
entity fails and that the compromise of an entity will not
jeopardize the security of the whole network. Finally, we
proposed an implementation on real IoT platforms to vali-
date the theoretical analysis and the results of simulations.
In future woks, we intend to propose a novel lightweight
key agreement method to securely and efficiently distribute
keys on the limited-constrained nodes.

ACKNOWLEDGMENTS

This work was carried out and funded by Heudiasyc UMR
CNRS 7253 and the Labex MS2T.

REFERENCES
[1] M. R. Alagheband and M. R. Aref. “Dynamic and secure key

management model for hierarchical heterogeneous sensor net-
works”. In: IET Information Security 6.4 (2012), pp. 271–280.

[2] S. Athmani, A. Bilami and D. E. Boubiche. “EDAK: An efficient
dynamic authentication and key management mechanism for
heterogeneous WSNs”. In: Future Generation Computer Systems
92 (2019), pp. 789–799.

[3] J. Ayuso, L. Marin, A. Jara and A. F. G. Skarmeta. “Optimization
of Public Key Cryptography (RSA and ECC) for 16-bits Devices
based on 6LoWPAN”. In: 1st International Workshop on the Secu-
rity of the Internet of Things, Tokyo, Japan (2010), pp. 1–8.

[4] M. Azees, P. Vijayakumar, L. J. Deborah, K. Marimuthu and M. S.
Christo. “BBAAS: Blockchain-based anonymous authentication
scheme for providing secure communication in VANETs”. In:
Security and Communication Networks 2021 (2021).

[5] E. Baburaj et al. “Polynomial and multivariate mapping-based
triple-key approach for secure key distribution in wireless sen-
sor networks”. In: Computers & Electrical Engineering 59 (2017),
pp. 274–290.

[6] N. Baracaldo, B. Palanisamy and J. Joshi. “G-sir: an insider
attack resilient geo-social access control framework”. In: IEEE
Transactions on Dependable and Secure Computing 16.1 (2017),
pp. 84–98.

[7] W. Bechkit, Y. Challal, A. Bouabdallah and V. Tarokh. “A highly
scalable key pre-distribution scheme for wireless sensor net-
works”. In: IEEE Transactions on Wireless Communications 12.2
(2013), pp. 948–959.

[8] M. Castro, B. Liskov et al. “Practical Byzantine fault tolerance”.
In: OSDI 99.1999 (1999), pp. 173–186.

[9] K. Chatterjee, A. De and D. Gupta. “An improved ID-Based key
management scheme in wireless sensor network”. In: Interna-
tional Conference in Swarm Intelligence (2012), pp. 351–359.

[10] J. Choi, J. Bang, L. Kim, M. Ahn and T. Kwon. “Location-based
key management strong against insider threats in wireless sen-
sor networks”. In: IEEE Systems Journal 11.2 (2015), pp. 494–502.

[11] T. Choi, H. B. Acharya and M. G. Gouda. “The best keying pro-
tocol for sensor networks”. In: Pervasive and Mobile Computing
9.4 (2013), pp. 564–571.

[12] K. Christidis and M. Devetsikiotis. “Blockchains and smart
contracts for the internet of things”. In: Ieee Access 4 (2016),
pp. 2292–2303.

[13] X. Du, Y. Xiao, M. Guizani and H.-H. Chen. “An effective key
management scheme for heterogeneous sensor networks”. In:
Ad Hoc Networks 5.1 (2007), pp. 24–34.

[14] A. Dunkels, J. Eriksson, N. Finne and N. Tsiftes. “Powertrace:
Network-level power profiling for low-power wireless net-
works”. In: SICS Technical Report 5 (2011), pp. 11–25.

[15] M. Eltoweissy, M. Moharrum and R. Mukkamala. “Dynamic
key management in sensor networks”. In: IEEE Communications
magazine 44.4 (2006), pp. 122–130.

[16] C. Esposito, M. Ficco, A. Castiglione, F. Palmieri and A. De San-
tis. “Distributed group key management for event notification
confidentiality among sensors”. In: IEEE Transactions on Depend-
able and Secure Computing 17.3 (2018), pp. 566–580.

[17] Exp5438. “MSP430F5438 Experimenter Board”. In: URL:
https://www.ti.com/tool/MSP-EXP430F5438descriptionArea (2022).

[18] J. T. George. “Proof of Stake: Consensus of the Future”. In:
Introducing Blockchain Applications (2022), pp. 107–123.

[19] E. I. W. Group and I. IoT. “IoT Developer Survey”. In: URL:
https://iot.eclipse.org/community/resources/iot-surveys/ (2019).

[20] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan.
“Energy-efficient communication protocol for wireless mi-
crosensor networks”. In: Proceedings of the 33rd annual Hawaii
international conference on system sciences (2000), pp. 10–20.

[21] F. Hendaoui, H. Eltaief and H. Youssef. “UAP: A unified authen-
tication platform for IoT environment”. In: Computer Networks
188 (2021), p. 107811.

[22] A. S. Hosen, G.-h. Cho et al. “A robust key management scheme
based on node hierarchy for wireless sensor networks”. In:
International conference on computational science and its applications
(2014), pp. 315–329.

16

[23] T. Inc. “Tendermint”. In: URL: https://docs.tendermint.com (2022).
[24] M. A. Kandi, D. E. Kouicem, H. Lakhlef, A. Bouabdallah and

Y. Challal. “A Blockchain-based Key Management Protocol
for Secure Device-to-Device Communication in the Internet of
Things”. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE. 2020, pp. 1868–1873.

[25] M. A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “A Key
Management Protocol for Secure Device-to-Device Communica-
tion in the Internet of Things”. In: IEEE Global Communications
Conference (Globecom’19) (2019), pp. 1–6.

[26] M. A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “A ver-
satile Key Management protocol for secure Group and Device-
to-Device Communication in the Internet of Things”. In: Journal
of Network and Computer Applications 150 (2020), p. 102480.

[27] M. A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “An
Efficient Multi-Group Key Management Protocol for Hetero-
geneous IoT Devices”. In: IEEE Wireless Communications and
Networking Conference (WCNC) (2019), pp. 1–6.

[28] M. A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “An
Efficient Multi-Group Key Management Protocol for Internet of
Things”. In: 26th International Conference on Software, Telecommu-
nications and Computer Networks (SoftCOM) (2018), pp. 1–6.

[29] F. Kausar, S. Hussain, L. T. Yang and A. Masood. “Scalable and
efficient key management for heterogeneous sensor networks”.
In: The Journal of Supercomputing 45.1 (2008), pp. 44–65.

[30] K. Keerthi, C. Rebeiro and A. Hazra. “An Algorithmic Approach
to Formally Verify an ECC Library”. In: ACM Transactions on
Design Automation of Electronic Systems 23.5 (2018).

[31] J. Y. Kim, W. Hu, H. Shafagh and S. Jha. “Seda: Secure over-
the-air code dissemination protocol for the internet of things”.
In: IEEE Transactions on Dependable and Secure Computing 15.6
(2016), pp. 1041–1054.

[32] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah and
Z. Sun. “Blockchain-based dynamic key management for het-
erogeneous intelligent transportation systems”. In: IEEE Internet
of Things Journal 4.6 (2017), pp. 1832–1843.

[33] A. Lei, C. Ogah, P. Asuquo, H. Cruickshank and Z. Sun. “A
secure key management scheme for heterogeneous secure ve-
hicular communication systems”. In: ZTE Communications 14.S0
(2019), pp. 21–31.

[34] J. Liu, X. Li, Q. Jiang, M. S. Obaidat and P. Vijayakumar. “Bua: A
blockchain-based unlinkable authentication in vanets”. In: IEEE
International Conference on Communications (ICC) (2020), pp. 1–6.

[35] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo and L. Zhou. “On
emerging family of elliptic curves to secure internet of things:
ECC comes of age”. In: IEEE Transactions on Dependable and
Secure Computing 14.3 (2017), pp. 237–248.

[36] K. Lu, Y. Qian, M. Guizani and H.-H. Chen. “A framework for a
distributed key management scheme in heterogeneous wireless
sensor networks”. In: IEEE transactions on wireless communica-
tions 7.2 (2008), pp. 639–647.

[37] M. Ma, G. Shi and F. Li. “Privacy-Oriented Blockchain-based
Distributed Key Management Architecture for Hierarchical Ac-
cess Control in the IoT Scenario”. In: IEEE Access 7 (2019),
pp. 34045–34059.

[38] D. Mall, K. Konaté and A.-S. K. Pathan. “ECL-EKM: An en-
hanced Certificateless Effective Key Management protocol for
dynamic WSN”. In: International Conference on Networking, Sys-
tems and Security (NSysS) (2017), pp. 150–155.

[39] G. Mehmood, M. S. Khan, A. Waheed, M. Zareei, M. Fayaz,
T. Sadad, N. Kama and A. Azmi. “An Efficient and Secure
Session Key Management Scheme in Wireless Sensor Network”.
In: Complexity 2021 (2021).

[40] MicaZ. “Micaz Wireless Measurement System”. In: URL:
https://www.openautomation.net/uploadsproductos/micaz datasheet.-
pdf (2022).

[41] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”.
In: Decentralized Business Review (2008), p. 21260.

[42] M. Omar, I. Belalouache, S. Amrane and B. Abbache. “Efficient
and energy-aware key management framework for dynamic
sensor networks”. In: Computers & Electrical Engineering 72
(2018), pp. 990–1005.

[43] Openmote. “OpenMote-cc2538”. In: URL: https://doc.riot-
os.org/group boards openmote-cc2538.html (2022).

[44] T. C. Priyadharshini and D. M. Geetha. “Efficient Key Manage-
ment System Based Lightweight Devices in IoT”. In: Intelligent
Automation and Soft Computing 31.3 (2022), pp. 1793–1808.

[45] Z. Qin, X. Zhang, K. Feng, Q. Zhang and J. Huang. “An
efficient identity-based key management scheme for wireless
sensor networks using the bloom filter”. In: Sensors 14.10 (2014),
pp. 17937–17951.

[46] S. M. M. Rahman and K. El-Khatib. “Private key agreement and
secure communication for heterogeneous sensor networks”. In:
Journal of Parallel and Distributed Computing 70.8 (2010), pp. 858–
870.

[47] K. Rizki. “Efficient Group Key Management for Internet of
Things”. In: School of Electrical Engineering (EES) 2016 (2016),
pp. 1–115.

[48] S. Ruj, A. Nayak and I. Stojmenovic. “Pairwise and triple key
distribution in wireless sensor networks with applications”. In:
IEEE Transactions on Computers 62.11 (2012), pp. 2224–2237.

[49] F. Saleh. “Blockchain without waste: Proof-of-stake”. In: The
Review of financial studies 34.3 (2021), pp. 1156–1190.

[50] S. Seo, J. Won, S. Sultana and E. Bertino. “Effective key manage-
ment in dynamic wireless sensor networks”. In: IEEE Transac-
tions on Information Forensics and Security 10.2 (2015), pp. 371–383.

[51] A. Singh, A. N. Tentu and V. C. Venkaiah. “A dynamic key
management paradigm for secure wireless ad hoc network com-
munications”. In: International Journal of Information and Computer
Security 14.3-4 (2021), pp. 380–402.

[52] S. Singh, A. Khan and T. Singh. “A New Key Management
Scheme for Wireless Senm Networks using an Elliptic Curve”.
In: Indian Journal of Science and Technology 10.13 (2017), pp. 1–7.

[53] Sonhan. “Sample Data for powertrace using CM5000 motes”. In:
URL: https://github.com/sonhan/contiki/tree/master/apps/powertrace-
sonhan/sample-data (2015).

[54] Telosb. “Telosb Mote Platform”. In: URL:
https://www.memsic.com/userfiles/files/Datasheets/WSN/telosb data-
sheet.pdf (2022).

[55] G. K. C. Thevar and G. Rohini. “Energy efficient geographical
key management scheme for authentication in mobile wireless
sensor networks”. In: Wireless Networks 23.5 (2017), pp. 1479–
1489.

[56] M. Tiloca and G. Dini. “GREP: A group rekeying protocol based
on member join history”. In: IEEE Symposium on Computers and
Communication (ISCC) (2016), pp. 326–333.

[57] I.-C. Tsai, C.-M. Yu, H. Yokota and S.-Y. Kuo. “Key management
in Internet of Things via Kronecker product”. In: IEEE 22nd
Pacific Rim International Symposium on Dependable Computing
(PRDC) (2017), pp. 118–124.

[58] Y.-M. Tseng, J.-L. Chen and S.-S. Huang. “A Lightweight
Leakage-Resilient Identity-Based Mutual Authentication and
Key Exchange Protocol for Resource-limited Devices”. In: Com-
puter Networks 196 (2021), p. 108246.

[59] P. Vasin. “Blackcoin’s proof-of-stake protocol v2”. In:
URL: https://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.pdf
71 (2014).

[60] L. Veltri, S. Cirani, S. Busanelli and G. Ferrari. “A novel batch-
based group key management protocol applied to the internet
of things”. In: Ad Hoc Networks 11.8 (2013), pp. 2724–2737.

[61] P. Vijayakumar, S. Bose and A. Kannan. “Rotation based secure
multicast key management for batch rekeying operations”. In:
Networking Science 1.1-4 (2012), pp. 39–47.

[62] P. Vijayakumar, S. Bose and A. Kannan. “Chinese remainder
theorem based centralised group key management for secure
multicast communication”. In: IET information Security 8.3 (2014),
pp. 179–187.

[63] P. Vijayakumar, V. Chang, L. J. Deborah and B. S. R. Kshatriya.
“Key management and key distribution for secure group com-
munication in mobile and cloud network”. In: Future Generation
Computer Systems 84 (2018), pp. 123–125.

[64] W. Viriyasitavat and D. Hoonsopon. “Blockchain characteristics
and consensus in modern business processes”. In: Journal of
Industrial Information Integration 13 (2019), pp. 32–39.

[65] C. Wan. “IBKES: Efficient Identity-Based Key Exchange with
Scalability for Wireless Sensor Networks Using Algebraic Sig-
nature”. In: Adhoc & Sensor Wireless Networks 39 (2017).

[66] J. Wang, H. Wang, X. A. Wang and Y. Cao. “An Authentication
Key Agreement Scheme for Heterogeneous Sensor Network
Based on Improved Counting Bloom Filter”. In: 10th Interna-

17

tional Conference on P2P, Parallel, Grid, Cloud and Internet Comput-
ing (2015), pp. 815–820.

[67] Y. Wen, F. Lu, Y. Liu and X. Huang. “Attacks and countermea-
sures on blockchains: A survey from layering perspective”. In:
Computer Networks 191 (2021), p. 107978.

[68] C. K. Wong, M. Gouda and S. S. Lam. “Secure group com-
munications using key graphs”. In: IEEE/ACM transactions on
networking 8.1 (2000), pp. 16–30.

[69] M. S. Yousefpoor and H. Barati. “Dynamic key management
algorithms in wireless sensor networks: A survey”. In: Computer
Communications 134 (2019), pp. 52–69.

[70] Z. Yu and Y. Guan. “A robust group-based key management
scheme for wireless sensor networks”. In: IEEE Wireless Commu-
nications and Networking Conference 4 (2005), pp. 1915–1920.

[71] Z1. “The Z1 mote”. In: URL:
https://github.com/Zolertia/Resources/wiki/The-Z1-mote (2022).

[72] F. Zhan, N. Yao, Z. Gao and G. Tan. “A novel key generation
method for wireless sensor networks based on system of equa-
tions”. In: Journal of Network and Computer Applications 82 (2017),
pp. 114–127.

[73] A. Zhang and X. Lin. “Towards secure and privacy-preserving
data sharing in e-health systems via consortium blockchain”. In:
Journal of medical systems 42.8 (2018), p. 140.

[74] J. Zhang, H. Li and J. Li. “Key establishment scheme for wireless
sensor networks based on polynomial and random key predis-
tribution scheme”. In: Ad Hoc Networks 71 (2018), pp. 68–77.

[75] Y. Zhang, X. Li, J. Liu, J. Yang and B. Cui. “A secure hierarchical
key management scheme in wireless sensor network”. In: inter-
national journal of distributed sensor networks 8.9 (2012), p. 547471.

Dr. Mohamed Ali Kandi is an associate
professor at University Paul Sabatier (UPS),
France. He obtained his Ph.D. degree from
the University of Technology of Compiegne in
2020 (UMR CNRS 7253). He received a double
degree (Master and Engineer) in Computer
Science from the High National School of
Computer Science of Algiers (ESI) in 2017. His
main research interests are trusted computing
schemes (especially the blockchain technology
and smart contracts) to address the challenges

(mainly security and privacy) facing the Internet of Things.

Dr. Djamel Eddine Kouicem obtained his
Ph.D degree from the University of Tech-
nology of Compiegne (UMR CNRS 7253) in
2019. In September 2016, he gained a MSC
diploma in Computer Science - Networking
from Pierre & Marie Curie university (Paris 6)
in France. In July 2015, he received Engineer
Diploma in computer science from the High
National School of Computer Science in Al-
giers. His research interests are in security and
privacy in internet of things and Networking.

Messouad Doudou is currently working
as a research Engineer at Itron R&D since
2020. He obtained his Ph.D. in 2016 from
University of Science and Technology Houari-
Boumedienne, USTHB. He was a full-time re-
searcher at CERIST Research Center 2009-2017
and a postdoc at the University of Technology
of Compiègne, Sorbonne Universities, France
2017-2019. He worked on the design and op-
timization of efficient low duty-cycle MAC
protocols, involving low power, low latency,

reliability, and QoS support in sensor networks. His research
interest includes energy efficiency and QoS in wireless low-
power networks, and data cleaning, processing, and analysis in
IoT and Cyber-Physical systems.

Dr. Hicham Lakhlef is an associate profes-
sor at the University of Technology of Com-
piegne (UMR CNRS 7253). During the year
2015/2016 he was a temporary researcher in
IRISA, University of Rennes 1 (UMR CNRS
6074). During the year 2014/2015 he was a
temporary teaching assistant and researcher at
the University of Franche-Comté/ FEMTO-ST
institute (UMR CNRS 6174). He obtained his
Ph.D degree from the University of Franche-

Comté in 2014. He obtained his Master’s degree from the
University of Picardie Jules Verne in 2011. His research interests
are in parallel and distributed algorithms, WSNs, clustering,
optimization, routing, and IoT.

Pr. Abdelmadjid Bouabdallah received
the Master (DEA) degree and Ph.D. from uni-
versity of Paris-sud Orsay (France) respec-
tively in 1988 and 1991. From 1992 to 1996,
he was Assistant Professor at university of
EvryVal-d’Essonne (France) and since 1996
he is Professor at University of Technology
of Compiègne (UTC), where he is leading
the Networking & Security research group
and the Interaction & Cooperation research
of the Excellence Research Center LABEX

MS2T. His research Interest includes Internet QoS, security,
unicast/multicast communication, Wireless Sensor Networks,
and fault tolerance in wired/wireless networks. He conducted
several large-scale research projects funded by Motorola Labs.,
Orange Labs., ANRRNRT, CNRS, and ANR-Carnot.

Dr. Yacine Challal is associate profes-
sor at Compiegne University of Technology
(France). He is member of the networking
and optimization research team at the UMR-
CNRS-7253 Heudiasyc Lab. He got his Ph.D.
and Master degrees respectively in 2005 and
2002 from Compiegne University of Tech-
nology. He got his engineering degree from
National Institute of Informatics (Algiers) in
2001. His research interests include security
in group communication, security in wireless

mobile ad hoc networks and wireless sensor networks, and
fault tolerance in distributed systems.

