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Abstract. The automatic assessment of hippocampus volume is an important tool in the 

study of several neurodegenerative diseases such as Alzheimer's disease. Specifically, 

the measurement of hippocampus subfields properties is of great interest since it can 

show earlier pathological changes in the brain. However, segmentation of these subfields 

is very difficult due to their complex structure and for the need of high-resolution magnetic 

resonance images manually labeled. In this work, we present a novel pipeline for 

automatic hippocampus subfield segmentation based on a deeply supervised 

convolutional neural network. Results of the proposed method are shown for two available 

hippocampus subfield delineation protocols. The method has been compared to other 

state-of-the-art methods showing improved results in terms of accuracy and execution 

time. 
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1. Introduction 

The hippocampus (HC) is a bilateral brain structure located in the medial temporal lobe at 

both sides of the brainstem near to the cerebellum. HC is involved in many brain functions 

such as memory and spatial reasoning [1]. It plays also an important role in many 

neurodegenerative diseases such as Alzheimer's disease (AD) [2]. Furthermore, 

hippocampus volume estimation is considered a valuable tool for follow-up and treatment 

adjustment [3-5]. 

In the last years, many HC segmentation methods have been proposed [6-8]. Most of 

them, were restricted to consider the hippocampus as a single structure [9] due image 

resolution limitations. However, it is well known that, for example, AD affects the different 

HC subfields at different moments during the disease progression [2,10]. Thus, automatic 

and accurate HC subfield segmentation methods would be really important to obtain early 

biomarkers of the disease.  

Currently, advances in modern MR sequences allow acquiring high-resolution images 

making possible to divide the hippocampus into its constituent parts. In the last years, 

several delineation protocols have been proposed (some of these protocols have been 

used to create manually labeled MRI datasets). However, there is still little consensus 

between the different HC subfield protocols as shown in [11] where 21 delineation 

protocols were compared. For example, in 2013, Winterburn presented a new in-vivo high-

resolution atlas [12] to divide the hippocampus in five different sub-regions: CA1, CA2-3, 

CA4/DG, Stratum and Subiculum. Later, in 2015, Kulaga-Yoskovitz developed another 

segmentation protocol [13] consisting of three structures: CA1-3, CA4/DG and Subiculum.  

Several automatic methods for HC subfield segmentation have been developed in the last 

years [14-16]. One of the most well-known methods for HC subfield segmentation is 

named ASHS [17] that uses a multi-atlas approach combined with a similarity-weighted 

voting and a boosting-based error correction. Unfortunately, this method took several 

hours to produce a segmentation due to the exhaustive use of non-linear registrations (an 

updated version of this software has greatly reduced this time to few minutes). More 

recently, we proposed a method named HIPS [18] that obtained state-of- the-art results in 

two different delineation protocols (Winterburn and Kulaga-Yoskovitz) with relatively low 

processing times thanks to the use of a fast multi-atlas label fusion method called OPAL 
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[19]. Although these methods have promising results, their automatic measurements are 

not close enough to manual tracings in some cases [20].  

Recently, due to the expansion of deep learning in medical imaging, novel methods based 

on this technology have been proposed to further improve the accuracy of HC 

segmentation. For full hippocampus segmentation many methods based on convolutional 

neural networks (CNN) have been already proposed [21-24]. Recently, deep learning-

based methods has been also proposed for hippocampus subfield segmentation. For 

example, UGNET has been proposed [25] using an adversarial training approach and also 

variants of the famous UNET architecture [26] such as the Dilated Dense UNET [27] have 

been proposed. However, one of the major problems of supervised deep learning methods 

is their hunger for training data to be able to generalize on unseen data.   

In this paper, we propose a novel deep-learning based segmentation method that takes 

benefit of a problem specific preprocessing that locates the data in a canonical geometrical 

and intensity space therefore simplifying the segmentation problem and thus reducing the 

need for lots of manually labeled data. The proposed method has been validated using two 

hippocampus subfield segmentation protocols with publically available datasets.  

2. Material and methods 

2.1. Training data 

In this work, we have used two different datasets including two manual labeling 

hippocampus subfield segmentation protocols, both with high-resolution (HR) T1w and 

T2w MR images (see figure 1). Details of these datasets are given below: 

Kulaga-Yoskovitz dataset 

This dataset includes 25 subjects from a public repository 

(http://www.nitrc.org/projects/mni-hisub25) (31 ± 7 yrs, 12 males, 13 females) with 

manually segmented labels dividing the HC in three parts (CA1-3, DG-CA4 and 

Subiculum). The Ethics Committee of the Montreal Neurological Institute and Hospital 

approved the study and written informed consent was obtained from all participants in 

accordance with the standards of the Declaration of Helsinki. Participants gave their 

written informed consent prior to scanning and received a monetary compensation. MR 

data from each subject consist of an isotropic 3D-MPRAGE T1-weighted (0.6 mm3) and 
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anisotropic 2D T2-weighted TSE images (0.4×0.4×2 mm3). Images underwent automated 

correction for intensity non-uniformity, intensity standardization and were linearly 

registered to the MNI152 space. T1w and T2w images were resampled to a resolution of 

0.4 mm3. To reduce interpolation artifacts, the T2w data was upsampled using a non-local 

super-resolution method [28]. For more details about the labeling protocol see the original 

paper [13].  

Winterburn dataset 

This dataset contains 5 subjects with 0.3x0.3x0.3 mm3 high resolution T1-weighted and 

T2-weighted images obtained by 2x interpolation of 0.6x0.6x0.6 mm3 acquisitions and their 

corresponding manual segmentations. The HR images are publicly available at the 

CoBrALab website (http://cobralab.ca/atlases). These MR images were taken from 5 

healthy volunteers (2 males, 3 females, aged 29–57). The study was conducted in keeping 

with the Declaration of Helsinki, was approved by the Centre for Addiction and Mental 

Health Research Ethics Board, and all subjects provided written, informed consent for data 

acquisition and sharing. High-resolution T1-weighted images were acquired using the 3D 

inversion-prepared fast spoiled gradient-recalled echo acquisition (TE/TR=4.3 ms/9.2 ms, 

TI=650 ms, α=8°, 2-NEX and isotropic resolution of 0.6 mm3). High-resolution T2-weighted 

images were acquired using the 3D fast spin echo acquisition, FSE-CUBE (TE/TR=95.3 

ms/2500 ms, ETL=100 ms, 2NEX, and isotropic resolution of 0.6 mm3). Reconstruction 

filters, ZIPX2 and ZIP512, were also used resulting in a final isotropic 0.3 mm3 dimension 

voxels. The hippocampus and each of their subfields were segmented manually by an 

expert rater including 5 labels (CA1, CA2/3, CA4/DG, (SR/SL/SM), and subiculum). For 

more details about the labeling protocol see the original paper [12]. All methods were 

performed in accordance to relevant guidelines and regulations.  

Example images of these two protocols are shown at figure 1. Images and labels were 

visualized using ITK-SNAP v 3.4.0 software (http://www.itksnap.org).  
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Figure 1: Examples from Winterburn and Kulaga-Yoskovitz datasets showing T1w, T2w and 

manual segmentations. Images generated using ITK-SNAP v 3.4.0.  

 

2.2. Image preprocessing 

The images were preprocessed using the following steps: 1) Denoising using the Spatially 

Adaptive Non-Local Means Filter [29], 2) Intensity inhomogeneity correction using the N4 

bias field correction [30], 3) Affine registration to the Montreal Neurological Institute (MNI) 

space by applying the Advanced Normalization Tools (ANTs) package [31]. This 

registration was estimated using the T1w MNI152 template (at 0.5 mm3 resolution) and the 

T1w images, and applied to both T1w and T2w images (a rigid transformation from T2w to 

T1w was previously estimated and later concatenated with T1w transformation to perform 

a single interpolation step when registering both T1w and T2w images). 4) Cropping: To 

reduce the memory requirements and the computational cost, the images were cropped 

around HC area, 5) Finally, the cropped images were intensity normalized by subtracting 

the image mean and dividing by its standard deviation. 
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2.3. Proposed method  

Our proposed method is based on a variant of the well-known UNET architecture 

(Ronneberger et al., 2015). The proposed UNET has 4 resolution levels (from 0.5 to 4 

mm). We used three blocks of BatchNormalization, 3D convolution (kernel size of 3x3x3 

voxels) plus ReLU layers for each resolution level. We also used dropout layers (with 0.5 

rate) in the encoding part of the UNET to minimize overfitting problems. The input of the 

network consists of a tensor with two channels (T1 and T2 images). The first resolution 

level has 64 filters and the next levels multiply by 2 this number to compensate the loss of 

spatial resolution. Similarly, the number of filters is reduced by 2 in the ascending path of 

the encoder at each resolution level. The output is also a tensor of nc channels represent 

the probabilities of each subfield and the background.  

 

We also used a modified version of deep supervision [32] approach that helps to train very 

deep networks by producing segmentations at different resolution levels. Deep supervision 

has been shown to not only counteract the adverse effects of gradient vanishing but also 

to speed up convergence and produce highly accurate results even with limited data. The 

main difference of our implementation compared to Dou et al., is that we used upsampled 

low-resolution outputs also as inputs of the next level of the decoder (concatenated with 

the upsampled features and the encoder shortcut) to help in the next resolution level (only 

for 1 and 2 mm resolution levels). The resulting network has 56 layers and 35,085,580 

trainable parameters. In figure 2 the scheme of the proposed network is shown. We will 

refer to the deep supervised variant of the UNET as DS-UNET3D. 

 

 

Figure 2. Scheme of the proposed Deep Supervised UNET CNN.  
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The loss function plays a major role in the training process and an exhaustive search of 

the most suitable function for the proposed architecture and problem has to be done. One 

of the most common loss functions for classification is the categorical cross entropy. 

However, for segmentation purposes it is common to use the dice loss (DL) [33] as it 

directly optimizes the segmentation metric most commonly used and it is more robust to 

the class imbalance problem (1). Recently, a Generalized Dice Loss (GDL) [34] was 

proposed to deal with the well-known dependency of the dice index with the size of the 

labels (2). Inspired by GDL, we propose in this paper the Generalized Jaccard Loss (GDL) 

(4) which is a variant of Jaccard loss (3) following the same idea to reduce label size 

dependency:    
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where N is the number of voxels, NC is the number of classes, p is the predicted 

probability and t is the true probability and 𝑤𝑐 = 1/(∑ tci)
N
i=1

2
. Alternatively, in our proposed 

GJL loss we did not use the squared volume to normalize but just the volume, i.e. 𝑤𝑐 =

1/∑ tci
N
i=1 .  

As the size of our training datasets is small (specially for the Winterburn dataset) we used 

different approaches of data augmentation. We randomly smooth and sharpen the images 

to simulate different image quality conditions during the training. We expanded the 

Winterburn dataset with automatic segmentations of the kulaga-Yoskovitz dataset using 

the method HIPS. Note that to generate these segmentations only training data was used 

as library. Finally, we used also mixup [35] as a data agnostic method for performing data 

augmentation. 

Batch normalization is a highly effective manner to speed up the training process and to 

improve the results by minimizing the internal covariate shift. However, we realized that 
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when used with small batch sizes it behaves sub-optimally at test time. The reason of this 

issue is that Batch Normalization layer behaves differently at training and test time. During 

training, the mean and standard deviation of the activation maps are computed for the 

whole batch using a moving average estimation to enforce stability during training. 

However, at test time the network does not processes any batch of data and therefore 

cannot estimate the mean and standard deviation of the batch, as a result, the network 

uses the historical mean and standard deviation stored during training. Unfortunately, 

when using small batch sizes (N=1 in our case) the stored values do not work very well. 

Nevertheless, if we run the network in training mode we force the network to use the 

current mean and standard deviation of the new case and the results are significantly 

improved. We call this, training time batch normalization (TTBN).  

3. Experiments and results 

In this section, the analysis of the different options of the proposed method and their 

results are presented. To evaluate the segmentation accuracy, we have used the DICE 

coefficient [36] measured in the linear MNI152 space. All experiments were performed 

using tensorflow 1.2.0 and keras 2.2.4 using Titan Xp Nvidia GPU with 12 GB RAM. To 

train the network, we used an Adam optimizer [37] with default parameters during 200 

epochs and we test different loss functions with multiscale loss weights (0.1, 0.2 and 0.7) 

for low, medium and high-resolution outputs respectively (see figure 2). A batch size of 

one was used in all our experiments. 

Kulaga-Yoskovitz and Winterburn datasets were preprocessed as described in section 2.2. 

To increase the size of the training data, we put together left and right crops by left-right 

flipping the left crops to generate right oriented crops. This yield 50 right crops in Kulaga-

Yoskovitz dataset and 10 right crops in Winterburn dataset. Since the size of both datasets 

is quite small we have used a K-fold cross validation strategy to increase the relevance of 

our findings. Specifically, we used K=5 in both datasets. In Kulaga-Yoskovitz dataset this 

let each fold with 40 training images (5 of them for validation) and 10 test images. In 

Winterburn dataset each fold had 8 training images (2 of them for validation) and 2 test 

images. 
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3.1. Analysis of the proposed method 

There are many factors that affect the performance of deep learning methods such as the 

architecture, the loss function, data augmentation strategies, etc. In this section we will 

present some experiments that show their effects on the proposed method.  

The first option we tested was the loss function. We compared 5 different loss functions 

using the same exact network initialization. In table 1 the validation DICE of each loss 

function is compared for both datasets. We also included the categorical cross entropy 

(CCE) in the comparison as it is a common loss used in segmentation/classification. As 

can be noted, CCE performed worse than dice loss which is a common loss function used 

in segmentation. Curiously, the GDL failed giving a really low dice compared with the other 

losses. JL performed similar than dice loss. The proposed GJL was the best performing 

loss in both datasets and therefore was selected a loss function of the proposed method.  

Table 1. Average DICE in Kulaga-Yoskovitz (first row) and Winterburn (second row) datasets. 

Protocol CCE DL GDL JL GJL 

Kulaga-Yoskovitz 0.8928±0.0149 0.8952±0.0147 0.7802±0.1445 0.8947±0.0153 0.8970±0.0143 

Winterburn 0.7124±0.0293 0.7148 ±0.0285 0.6471±0.0737 0.7135±0.0315 0.7177±0.0263 

 

To study the impact of the proposed architecture, we run the proposed network with deep 

supervision and compared it with the classic UNET. In table 2 the results of the 

comparison are shown. As can be seen, the proposed architecture was able to improve 

the results in both datasets. 

Table 2. Comparison of our proposed deep supervised UNET vs classic UNET 3D. 

Protocol UNET 3D DS-UNET 3D  

Kulaga-Yoskovitz 0.8970±0.0143 0.9001±0.0130 

Winterburn 0.7177±0.0263 0.7202±0.0288 

 

It is well-known that in deep learning the amount of training data plays a major role 

(probably the biggest) in the quality of the network results. Unfortunately, manually labeled 

cases of hippocampal subfields is a rare resource due to the difficulty of generating such 

data. Automatic data augmentation has been traditional used to artificially increase the 

number of training cases. This has been usually done applying random transformations on 
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the available training data (rotation, scale, etc.). In this project, we have used a 

combination of different methods to augment the number of training cases. In the case of 

Kulaga-Yuskevitz, we randomly smooth and sharpen the cropped images to generate low 

and high-quality images to improve generalization capabilities of the network. We also 

used mixup [35] to linearly combine inputs and outputs (alfa=0.3). Mixup is a data-agnostic 

data augmentation method that has been proven beneficial specially when using a small 

training dataset [38]. In the case of Winterburn dataset, we used the same approach but in 

addition we increased the training dataset using automatic segmentations of the Kulaga-

Yuskevitz dataset with the HIPS method [18] which is a patch-based multi-atlas label 

fusion based method (using as atlases the training cases of each fold). In the table 3 the 

results of the proposed method with and without data augmentations are shown. As 

expected, data augmentation strategies helped to improve the results in both datasets. 

The improvement in Winterburn dataset was more important given the small size of the 

training set (N=6).    

Table 3. Data augmentation results 

Protocol No data augmentation Data augmentation 

Kulaga-Yoskovitz 0.9001±0.0130 0.9025±0.0130 

Winterburn 0.7202±0.0288 0.7354±0.0240 

 

A last experiment was performed to evaluate the effect of the TTBN technique. In table 4 

the results of both datasets are shown. As can be seen, TTBN helped in both data sets, 

but the improvement in the Winterburn dataset was relatively greater. 

Table 4. Training Time Batch Normalization results. 

Protocol Standard prediction TTBN prediction 

Kulaga-Yoskovitz 0.9025±0.0130 0.9037±0.0129 

Winterburn 0.7354±0.0240 0.7418±0.0188 

 

For the final results of both datasets, we estimated each structure dice, average dice 

among structures and whole hippocampus dice. In table 5 the k-fold cross validation 

results for both datasets are shown. An example result of DeepHIPS for both protocols is 

shown in figure 3. 
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Table 5. Mean DICE and standard deviation for each structure segmentation over the Kulaga-

Yoskovitz and Winterburn datasets.  

Structure\Protocol Kulaga-Yoskovitz Structure\Protocol Winterburn 

Average 0.9037±0.0129 Average 0.7418±0.0188 

CA1-3 0.9245±0.0106 CA1 0.7805±0.0170 

CA4\DG 0.8887±0.0237 CA2\CA3 0.6686±0.0436 

Subiculum 0.8980±0.0155 CA4\DG 0.8096±0.0301 

  SR\SL\SM 0.7066±0.0197 

  Subiculum 0.7439±0.0338 

Hippocampus 0.9618±0.0051 Hippocampus 0.9123±0.0106 

 

Figure 3: Example results of Winterburn and Kulaga-Yoskovitz protocol automatic segmentation 

using DeepHIPS. Images generated using ITK-SNAP v 3.4.0. 
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3.2. Standard resolution vs High resolution 

The proposed method uses high resolution MR images but these sequences are not 

always available either in research or in clinical environments. However, it would be 

desirable to be able to analyze legacy data. For this reason, we evaluated the proposed 

method using standard resolution (1x1x1 mm3) images upsampled to 0.5x0.5x0.5 mm3 

using B-spline interpolation and a super-resolution technique [28]. To do it, we reduced the 

resolution of the HR images by a factor 2 and later we upsampled them using the 

described methods.  

Tables 6 and 7 show the results for both datasets. The results confirm that the proposed 

method can produce competitive results when using standard resolution images. Note that 

the results using LASR are better than using B-spline interpolation for both datasets and 

closely resembles those obtained using the original HR images. This important result 

shows that the proposed framework can efficiently process usual 1x1x1 mm3 MR data. 

Recent advances in deep learning based superresolution [39] can further reduce the gap 

between original HR data results and the upsampled standard resolution images. 

However, this is beyond the objectives of the work and will be studied in a future research.  

 

Table 6: Winterburn dataset mean DICE and standard deviation for each structure segmentation 

using the B-spline interpolation and LASR to the previously downsampled image to be segmented. 

Best results in bold. Results using the HR images are also provided for comparison. 

Structure B-spline LASR  HR  

Average 0.7218 ± 0.0239 0.7317 ± 0.0216 0.7418±0.0188 

CA1 0.7252 ± 0.0183 0.7738 ± 0.0167 0.7805±0.0170 

CA2\CA3 0.6376 ± 0.0606 0.6504 ± 0.0529 0.6686±0.0436 

CA4\DG 0.7943 ± 0.0333 0.8001 ± 0.0314 0.8096±0.0301 

SR\SL\SM 0.6837 ± 0.0178 0.6916 ± 0.0199 0.7066±0.0197 

Subiculum 0.7251 ± 0.0411 0.7424 ± 0.0344 0.7439±0.0338 

Hippocampus 0.9049 ± 0.0097 0.9095 ± 0.0100 0.9123±0.0106 
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Table 7: Kulaga-Yoskovitz dataset mean DICE and standard deviation for each structure 

segmentation using the B-spline interpolation and LASR to the previously downsampled image to 

be segmented. Best results in bold. Results using the HR images are also provided for comparison. 

Structure BSpline LASR  HR  

Average 0.8957 ± 0.0135 0.8988 ± 0.0134 0.9037±0.0129 

CA1-3 0.9171 ± 0.0107 0.9203 ± 0.0102 0.9245±0.0106 

CA4/DG 0.8787 ± 0.0253 0.8823 ± 0.0259 0.8887±0.0237 

Subiculum 0.8913 ± 0.0163 0.8937 ± 0.0167 0.8980±0.0155 

Hippocampus 0.9571 ± 0.0056 0.9593 ± 0.0065 0.9618±0.0051 

 

3.3. Method comparison 

The proposed method was compared with state-of-the-art related methods. Specifically, 

for the Kulaga-Yoskovitz dataset we compared with HIPS method [18] and a recent deep 

learning-based method named ResDUnet dedicated to hippocampus subfields 

segmentation [27]. In both cases we used published results in their papers for the 

comparison. In table 8 we show the results of the comparison. We included also the inter 

and intra-rater accuracy for comparison purposes. As can be noticed, the proposed 

method outperformed previous state-of-the-art methods. It is also worth to note that the 

proposed method improved the inter-rater accuracy and got very close to the intra-rater 

accuracy.   

Table 8: Mean DICE and standard deviation for each structure segmentation over the Kulaga-

Yoskovitz dataset. Best results in bold.  

Structure HIPS ResDUnet Proposed Inter-rater Intra-rater 

Average 0.8879 0.8960 0.9037 0.8833 0.9113 

CA1-3 0.9158±0.0150 0.9200±0.0110 0.9245±0.0106 0.8760 ± 0.048 0.9290 ± 0.010 

CA4\DG 0.8863±0.0340 0.8790±0.0200 0.8887±0.0237 0.9030 ± 0.036 0.9000 ± 0.019 

Subiculum 0.8616±0.0210 0.8880±0.0160 0.8980±0.0155 0.8710 ± 0.053 0.9050 ± 0.016 

Hippocampus 0.9595 ---- 0.9618 ---- ---- 
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For the Winterburn dataset, we compared with HIPS method [18] that represents the state 

of the art in this dataset. In table 9, we show the results of the comparison. We included 

also the intra-rater accuracy for comparison purposes. As can be noticed the proposed 

method outperformed HIPS method by a large margin and got very close to the intra-rater 

accuracy.   

Table 9: Mean DICE in the MNI space and standard deviation for each structure segmentation 

using high resolution T1w, T2w and Multispectral respectively over the Winterburn dataset. Best 

results in bold.  

Structure HIPS Proposed Intra-rater 

Average 0.7158 0.7418 0.742 

CA1 0.7762±0.0251 0.7805±0.0170 0.780 

CA2\CA3 0.6179±0.0630 0.6686±0.0436 0.640 

CA4\DG 0.7750±0.0307 0.8096±0.0301 0.830 

SR\SL\SM 0.7018±0.0191 0.7066±0.0197 0.710 

Subiculum 0.7082±0.0597 0.7439±0.0338 0.750 

Hippocampus 0.9111 0.9123 0.910 

 

Regarding to the execution time, the proposed network takes around 1 second to segment 

a new case. The whole DeepHIPS pipeline (including preprocessing) takes around 2 

minutes while HIPS method takes around 20 minutes. 

4. Discussion 

In this paper, we have presented a new deep learning-based method for HR hippocampus 

subfield segmentation that we called DeepHIPS. We have validated the proposed method 

using 2 publically available datasets (Winterburn and Kulaga-Yoskovitz). 

Our proposed method first preprocesses the HR T1 and T2 images to improve their quality 

and to locate them into a standard space (MNI152) to finally crop the region of interest to 

process. From the architecture point of view, our model is a 3D UNET variant that uses 

deep supervision and low-resolution feedback to make easier the training process. We 

found that this variant worked better that the classic UNET.  

We have also proposed a novel loss function (GJL) based on the Jaccard similarity index 

that enables to improve the accuracy of the network borrowing ideas from a modified 
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version of the GDL (i.e. using linear volume weights instead of quadratic). We further 

improve the results using classical data augmentation techniques such as image mirroring 

and intensity transformation and more modern ones such as mixup.   

Finally, we improved the results of the network at test time by running Batch normalization 

layers in training mode instead of test mode. We found that when using small batch sizes 

(N=1 in our case) batch normalization layers didn´t behave properly due to the use of the 

stored mean and standard deviation during training. Using current sample statistics 

systematically improved the results in all our experiments despite the simplicity of the 

approach (especially in the Winterburn dataset with an improvement of nearly the 9%). We 

called this strategy Training Time Bach Normalization (TTBN).  

We compared the results of the proposed method with state-of-the-art methods in two 

datasets. In the Kulaga-Yoskovitz dataset we compared with HIPS method and a recent 

deep learning-based method named ResDUnet. The proposed method improved the 

results of both methods for all subfields and got closer to the intra-rater accuracy which 

can be considered as the upper bound of the method. For the Winterburn dataset, we 

compared with HIPS method and again, the proposed method improved the results for all 

subfields and the overall accuracy got very close to the intra-rater accuracy.  

We also studied the accuracy of the propose method using standard resolution images (1 

mm2) upsampled to HR (0.5 mm2) using superresolution method (LASR). Although the 

accuracy slightly dropped compared to the HR results we found it still very competitive 

making possible the use of legacy data.         

We are aware that the training libraries of the proposed method are quite small to ensure a 

good generalization (especially in the case of Winterburn) and our future efforts will be 

directed to increase the size of these libraries by manually labeling new cases and using 

semi-supervised approaches to automatically extend the training dataset size.  

From an efficiency point of view the proposed method is not only more accurate but also 

more efficient than previous state of the art (HIPS) reducing by a factor 10 the total 

execution time. 
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5. Conclusion 

In this work, we have presented a new method for HR hippocampus subfield segmentation 

based on a deep learning approach and we have validated it with two publically available 

datasets (Winterburn and Kulaga-Yoskovitz) showing competitive results in both accuracy 

and efficiency. We plan to make fully accessible the DeepHIPS pipeline through the new 

release of our online image analysis service volbrain (http://volbrain.upv.es) so 

researchers around the world can use our pipeline without requiring complex pipeline 

installations or the use of expensive hardware (GPUs, etc).      
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