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MOMENT THEORY

A. Advection-diffusion model

We suppose a dilute suspension of spherical nanoparticles of radius a, flowing in a 2d (xz) channel where x is the
streamwise direction. A rigid wall is located at z = 0, with a no-slip condition. The nanoparticles are submitted
to electrostatic interactions, which generate an external force −U ′el(z) on the particle, where Uel is a Debye-Hückel
energy potential defined in Eq.(1) of the main text. The center-of-mass position of the nanoparticles can be described
in terms of concentration field, denoted c(x, z, t), and which follows the Fokker-Planck equation
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where vx and Dx, Dz are the velocity and diffusion constants. We stress that the diffusion coefficient of a nanoparticles
near a no-slip surface is modified with respect to its bulk value and depends on the distance from the surface relative
to the particle radius. Following Ref. [1], the diffusion coefficients are taken as
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where z is the center-of-mass altitude of the particle.
In the experimental setup described in the main text, the particles positions are measured with evanescent-wave

microscopy. Thus, particles beyond a certain distance h from the wall are no longer detected. To model this feature of
the experiment, we first assume that the initial distribution is localized at a given x position and with a certain initial
distribution along z such that c(x, z, t = 0) = cini(z)δ(x), where δ(x) is the Dirac distribution. The range of accessible
center-of-mass altitudes is then restricted to the observation zone z ∈ [a, h], where the lower bound is due to steric
interactions. We then only consider the particles that stay in the observation zone in the entire dynamical process. It
means that the dynamics is governed by the stochastic process of Eq. (S1), conditioned that the trajectories z(t′) < h
for time t′ < t, where t is the observation time. This implies that the concentration field must vanish at the boundary
of the observation zone, meaning

c(x, z, t) = 0, at z = H, (S3)

which is equivalent to an absorption condition with an infinite absorption rate [2]. The impermeability condition at
the wall imposes that the mass flux vanishes, which reads:

Dz(z)

[
∂c

∂z
+
U ′el(z)

kT
c

]
= 0, at z = a, (S4)

where the sphere is in contact with the bottom wall. In practice, the height of the observation zone is typically
500 nm, which is much smaller than the thickness of the overall channel, i.e. 20µm. The velocity field is therefore
approximated with a linear shear flow vx(z) = γ̇z (schematically indicated in Fig. 1 of the main text and confirmed
experimentally in Ref. [3]).

We note that the system considered here is intrinsically out of equilibrium and the number of particles is not
conserved. Therefore, the Fokker-Planck equation shown in Eq. (S1) does not have a trivial steady-state solution
in contrast with Ref. [4]. Assuming that the concentration vanishes as |x| → ∞ such that limx→±∞ xµ∂νxc = 0 for
arbitrary integers µ, ν, the moments of the distribution [5] are defined as
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where bar denotes the vertical average c̄ =
∫H
a
c(z)dz. Integrating Eq. (S1), one can show that the pth moment follows
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B. Zeroth moment

Evaluating Eq. (S6) for p = 0, we find that the zeroth moment c0 verifies(
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with an initial condition c0(z, t = 0) = cini(z). We search for a separable solution, and inject the ansatz c0(z, t) =
f(z) exp(−λt) in Eq. (S7). The solutions satisfy[
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together with the boundary conditions
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f(z) = 0, z = a, (S9)

f(z) = 0, z = h. (S10)

By setting p(z) = Dz(z)/cB(z), w(z) = 1/cB(z) and q(z) = −[Dz(z)U
′′
el(z) + D′(z)U ′el(z)]/cB(z), one can show that

Eq. (S8), takes the form of a Sturm-Liouville equation [6]
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where cB is the Boltzmann distribution
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Using results from eigenvalue theory, Eq. (S8) has a countable ensemble of solutions (λk, fk(z))k∈N∗ that satisfies the
boundary conditions Eq. (S9) and (S10), where 0 < λ1 < λ2 < ... < ∞. The eigenvalues are orthogonal under the
definition of the scalar product

〈f, g〉 =

∫ H

a

f(z)g(z)w(z) dz =

∫ H

a

1

cB(z)
f(z)g(z) dz. (S13)

The general solution of Eq. (S7) with its initial condition is

c0(z, t) =
∑
k∈N∗

a0,kfk(z) exp(−λkt), a0,k = 〈cini, fk〉, (S14)

where fk are taken to be normalized, i.e. 〈fk, fk〉 = 1. Then integrating Eq. (S14), we find that the total mass of
particles, characterized by m0(t), is given by

m0(t) =
∑
k∈N∗

a0,kfk exp(−λkt), (S15)

and decays over time. The time-dependent altitude probability distribution (see Fig. 3(b) of the main text) are related
to the zeroth-moment via

P(z, t) =

∫
c(x, z, t)dx∫

c(x, z′, t)dxdz′
=
c0(z, t)

m0(t)
. (S16)

We note that the theoretical initial distribution is normalized, i.e.
∫ h
a
cini(z)dz = 1, such that the m0(t) corresponds

to the fraction of particles remaining in the observation zone, as plotted in Fig. 3(d) of the main text. The eigenvalue
λk and eigenfunction fk are evaluated numerically using a home-made version of the SLEIGN2 code described in
Ref. [6].
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C. First moment

Evaluating Eq. (S6) for p = 1, the governing equation for the first moment c1 is(
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with c1(z, t = 0) = 0. The latter equation can be solved using again the eigenvalue theory [5] and its general solution
is of the form
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with the same boundary conditions as in Eqs. (S9) and (S10). The function ζk can be expanded on the basis of fk as
ζk =

∑
j∈N∗ Akjfj , such that we can write the solutions as
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)
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]
fj(z) exp(−λkt), (S20)

where δij is the Kronecker symbol. The solvability condition imposes that the right hand side of Eq. (S19) is
orthogonal to the functions fj 6=k, which implies γ1,k = 〈fk, vxfk〉. Introducing the expansion of ζk in Eq. (S19), the
matrix coefficients Akj can be evaluated as

Akj = − (1− δjk)

λk − λj
〈fj , vxfk〉, (S21)

where Akk are arbitrary constant and have been set to zero. Finally, the initial condition sets a1,k = −
∑
j∈N∗ a0,jAjk.

Integrating Eq. (S18) vertically, we find the vertical-averaged first moment
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The average distance 〈x〉 traveled by the particle remaining in the observation zone can be expressed as

〈x〉 =

∫
xc(x, z, t) dxdz∫
c(x, z, t) dxdz

=
m1(t)

m0(t)
, (S23)

which allows us to find an closed expression for the average velocity of the particles observed in the channel 〈V 〉 = 〈x〉/t.

D. Second moment

Considering Eq. (S6) for p = 2, the governing partial-differential equation reads(
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[
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+
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]))
c2(z, t) = 2Dx(z)c0(z, t) + 2vx(z)c1(z, t), (S24)

with c2(z, t = 0) = 0. The solution of the latter equation is more tedious to find than the solution of the first moment,
but it relies on the same method as in the previous section. We seek for solutions of the form:

c2(z, t) =
∑
k∈N∗

(
a2,kfk(z) + ψk(z) + γ2,ktfk(z) + a0,kγ1,kt [2ζk(z) + γ1,ktfk(z)]

)
e−λkt, (S25)
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where ψk are solution of
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with the boundary conditions Eqs. (S9) and (S10). Here again, we expand ψk in the basis of fj , i.e. ψk(z) =∑∞
j=1Bkjfj(z), and find the corresponding coefficients using the solvability condition and initial condition as

γ2,k = 2a0,k〈fk, Dxfk〉+ 2a1,k〈fk, vxfk〉+ 2a0,k〈fk, (vx − γ1,k)ζk〉 (S27a)
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]
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∑
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Bjk (S27c)

Integrating Eq. (S25) across the observation area, we can find the vertical-averaged second moment
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The variance of the distribution in the streamwise direction is defined as

〈(x− 〈x〉)2〉 =

∫
x2c(x, z, t) dxdz∫
c(x, z, t) dxdz

−
(∫
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)2

, (S29)

such that the dispersion coefficient reads

Dx =
〈(x− 〈x〉)2〉

2t
=

1

2t

(
m2(t)

m0(t)
− m2

1(t)

m2
0(t)

)
. (S30)

E. Long-time asymptotic expression

As shown above, the moments of the concentration field are found to follow a modal decomposition cp(z, t) =∑∞
k=1 cp,k(z, t) exp(−λkt), where cp,k are polynomial functions of t of degree p, and where 0 < λ1 < λ2 < · · · .

Therefore, there is no steady-state solution and the concentration fields decays to zero at long times. Nevertheless,
in the long-time limit, the concentration is governed by the slowest relaxation mode λ1, and the probability density
function of particles remaining in the channel converges toward a steady state. For time larger than t � 1

λ2−λ1
, we

truncate the expansion to its leading order and the moments cp≤2 follow

c0(z, t) ' a0,1f1(z)e−λ1t, (S31)

c1(z, t) ' (a1,1f1(z) + a0,1[ζ1(z) + tγ1,1f1(z)]) e−λ1t, (S32)

c2(z, t) ' (a2,1f1(z) + ψ1(z) + tγ2,1f1(z) + ta0,1γ1,1 [2ζ1(z) + tγ1,1f1(z)]) e−λ1t. (S33)

Similarly, the vertical-averaged moments can be truncated to

m0(t) ' a0,1f1e−λ1t, (S34)
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m1(t) '
(
a1,1f1 + a0,1[ζ1 + tγ1,1f1]

)
e−λ1t, (S35)

m2(t) '
(
a2,1f1 + ψ1 + tγ2,1f1 + ta0,1γ1,1

[
2ζ1 + tγ1,1f1

])
e−λ1t. (S36)

Introducing the latter expansion into Eq. (S16), the long-time altitude probability distribution converges toward a
steady state, independent of the initial distribution and is given by

P(z) =
f1(z)

f1
, (S37)

as observed in Fig. 3(b) of the main text. The average velocity of the particles observed in the channel also converges
toward a finite value given by

〈V 〉 =
〈x〉
t

= 〈f1, vxf1〉 =

∫ h

a

1

cB(z)
f21 (z)vx(z) dz. (S38)

The averaging here corresponds to a time average of the velocity as 〈V 〉 = 1
t

∫ t
0
vx(zt) dt, where zt denotes the vertical

position at time t. Interestingly, the long-time asymptotic time-average velocity of particle 〈x〉/t differs from the
ensemble-average velocity 〈vx〉 of particles remaining in the channel, which reads

〈vx〉 =

∫ h

a

P(z)vx(z) dz =

∫ h

a

f1(z)

f1
vx(z) dz. (S39)

One would expect the two averaged velocities defined in Eqs. (S38) and (S39) to be the same from the ergodic
theorem. Such a principle holds in equilibrium physics and the difference in the long-time velocity arises from the
nonequilibrium nature of the problem. Finally the long-time dispersion coefficient can be computed from Eq. (S30)
as

Dx = 〈f1, Dxf1〉+ 〈f1, (vx − 〈V 〉)ζ1〉 =

∫ h

a

1

cB(z)
f21 (z)Dx(z) dz +

∫ h

a

1

cB(z)
(vx(z)− 〈V 〉)ζ1(z)f1(z) dz. (S40)

which corresponds to the Eq. (4) of the main text.

F. Tracer non-interacting particles

Here, we focus on the limit of point-like particles when the radius of the particle is small with respect to the channel
size, i.e. a/h→ 0. The typical length scale of variation of the diffusion constant due to the hydrodynamic interactions
is given by the radius of the particle such that we neglect the spatial variation of Dx and Dz. Furthermore, we ignore
here the effect external forces, meaning that Uel(z) = 0. In that case, the Eq. (S8) simplifies and can be computed
exactly with its boundary condition Eqs. (S9) and (S10). The first mode is described by

λ1 =
π2D0

4h2
, f1(z) =

√
2

h
cos
(πz

2h

)
, cB(z) =

1

h
. (S41)

Using this expression in Eq. (S40), we can compute exactly the steady-state average velocity and dispersion coefficient

〈V 〉 =
γ̇h

2

(
1− 2

π2

)
≈ 0.29736 γ̇h, Dx = D0 +

240− 12π2 − π4

3π6

γ̇2h4

4D0
≈ D0

(
1 + 0.0083753 Pe2

)
. (S42)

This latter result can be compared, as in Fig. 4(b) of the main text, to the classical, Taylor-Aris tracer result for
reflecting boundaries on both the top and bottom of the channel. Recalling the discussion preceding Eq. (1) of the
main text, the Taylor-Aris result is DTA

x = D0

(
1 + 30−1 Pe2

)
.
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G. Dispersion coefficient in a 2d channel with reflecting boundary condition

The long-time dispersion coefficient in the case of a channel of size h with reflecting boundary conditions at both
interfaces can be found in Refs. [4, 7] and takes the form

Dx = D̄x +

∫ h

a

1

Dz(z)cB(z)

[∫ z

a

[vx (z′)− 〈V 〉] cB (z′) dz′
]2

dz , (S43)

where the long-time averaged velocity is here 〈V 〉 =
∫ h
a
cB(z)vx(z) dz.

MODEL SCHEMATICS

In Figure S1 we recall the models used to predict dispersion in a simple shear flow. As shown in Fig. 2(a), this
dispersion depends on experimental variations of the salt concentration (particle-wall interaction) and the laser power
(variation of the effective channel height) in the evanescent-wave microscopy observations reported here. Shown in
the first column of Figure S1 are schematics describing

• (a) the classical Taylor prediction [8, 9], with tracer particles and reflection conditions at the boundaries;

• (b) a model with no particle consumption, but with one interacting wall (potential and hydrodynamic interac-
tions), derived from Refs. [4, 7] and seen in Eq. S43;

• (c) a model considering tracer particles with a consumption condition at one wall, Eq. S42;

• and (d) the full model as Eq. 4 in the main text and derived above, also in Eq. S40.

For convenience, the line styles of Fig. 4 and the dispersion equations are also recalled.

Figure S1. Schematics (left column); line style of Fig. 4 of the main text (central column); and dispersion predicition (right
column) for the different models described in the text.
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VIDEO DESCRIPTIONS

• In Video S1 is shown a typical TIRFM image sequence with superimposed particle trajectories obtained with
in-house particle-tracking software based on the regionprops function of MATLAB . The pressure imposed
across the microfluidic system was 40 mbar with 150 mW laser illumination. The NaCl concentration was 5.4
mg/mL and delay times are indicated.

• As shown in the snapshots of Fig. 1(b), Video S2 displays the same data in Video S1, with the origins of the
displayed particles’ trajectories at a common point; a sample of 62 particles from each ensemble was used.
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