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The dispersion of microscopic particles in shear flows is influenced both by advection and thermal
motion. At the nanoscale, the interactions between such particles and their confining boundaries,
along with their size, cannot be neglected. Here, using evanescent-wave microscopy with sub-
micrometric observation zones, we study the transport of charged nanoparticles in linear shear flows,
near a charged, planar wall on one side, and an open, particle-consuming boundary on the other
side where the particle leaves the observation zone. By varying the concentration of electrolytes,
we show how electrostatic interactions between particles and surface affect dispersion. In addition,
an absorption-like condition at the open boundary induces an exponential decay of the particle
number, which alters the transport efficiency. The combination of these two effects reduces the
overall dispersion by an order of magnitude, as captured by our theoretical model. Our findings
might have implications in biological contexts as well as in technological devices based on the
transport of confined diffusive objects at small scales.

A key aspect of microscale material transport is the
coupling between advection by a flow and Brownian dif-
fusion across the flow’s streamlines. The diversity of sam-
pled velocities over a given time frame dominates the ex-
tent to which material is spread out, and dispersion en-
hancement can be orders of magnitude compared to pure
molecular diffusion. This Taylor-Aris dispersion [1] is the
principal mechanism for solute dispersal in several natu-
ral and technological contexts: examples include nutrient
and drug transport [2, 3], chemical reactions in porous
media [4, 5] or in a variety of biological processes [6–11].
At nanometric distances from bounding surfaces, parti-
cles cannot be considered as simple tracers since they
are subject to: physico-chemical forces of intermolecular
origin (e.g. electrostatic or van der Waals [12]); hydro-
dynamic interactions with the boundary [13–16] which
reduce the mobility close to the surface; as well as re-
action/absorption at the interface [4, 17–22]. Crucially,
such interactions may modify the diffusion-mediated ve-
locity sampling and therefore the extent of dispersion.

Taylor dispersion has many applications in situations
where such nanoscale physico-chemical interactions are
important, with biophysical ones as emblematic exam-
ples. As such, the seminal theoretical work of Taylor has
been extended [23] to cases of non-spherical [24] or ac-
tive [25, 26] colloids, dispersion near pulsating walls [27]
and in particular, with interacting and absorbing inter-
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faces [4, 18–21, 28–31]. Despite this extensive theoretical
effort, only a few experiments focussed on the strong ef-
fect of these interactions or the absorption [32–34]. Par-
ticle absorption or chemical reactions at the interfaces
modify dispersion in a non-trivial way [22, 27, 31]. If the
absorption is weak, the relative spreading is enhanced
since the concentration is reduced near the surfaces. At
larger absorption rates, the concentration decrease is too
fast for an efficient redistribution to occur, which reduces
Taylor dispersion. The latter case is also accompanied
with a substantial reduction of the total number of trans-
ported particles. Such a reactivity is critical for e.g. drug
delivery [35, 36] or monitoring chemical reactions [37–39],
determination of molecular diffusion coefficients [40–42],
protein conformation [43], or peptide speciation [44], to
give but a few examples.

Here, we study the dispersion of nanoparticle ensem-
bles in a linear, near-surface flow by using evanescent-
wave microscopy. Elaborating further on a previous dy-
namical study [45], this experimental setup allows for a
precise study of Taylor dispersion at the nanoscale. Par-
ticularly, we systematically vary the weight of surface
interactions in the dispersion process by: (i) tuning the
repulsive electrostatic interaction between the nanopar-
ticles and one surface; and (ii) exploiting the constitu-
tive finite observation zone and open boundary. Specif-
ically, as schematically indicated in Fig. 1(a), particles
inevitably leaving the observation zone are treated as
permanently absorbed. Using an extended version of
the moment theory [46–50], we show that an order-of-
magnitude reduction of the dispersion occurs when both
types of interactions, i.e. (i) and (ii), are present, as
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Figure 1. (a) Side-view schematic of the experimental setup
addressing Taylor dispersion at the nanoscale. In a channel of
height h, nanoparticles with radius a = 55 nm are advected
by a linear shear flow, vx(z) = γ̇z, and diffuse. An elec-
trostatic potential Uel(z) characterises the repulsion between
the particles and the bottom surface at z = 0, with various
Debye lengths `D. Particles that reach the upper surface at
z = h are below the sensitivity threshold of the camera, and
are thus considered as absorbed. (b) Superposition of exper-
imental trajectories (x-y top-view) with lag times τ = 2.5
ms (top row), 25 ms (middle row), and 50 ms (bottom row),
showing three successive positions of fluorescent nanoparticles
in (i) pure water, (ii) 5.4 mg/L NaCl aqueous solution, and
(iii) 54 mg/L NaCl aqueous solution.

compared to the case in which such interactions are ab-
sent.

We used objective-based, total internal reflection fluo-
rescence microscopy (TIRFM) [51] to study the nanoscale
motions of colloidal particles (Fisher Scientific F8803),
with radius a = 55 nm, advected by a pressure-driven
flow (Elveflow OB1, pressure drops from 20 to 70 mbar)
as schematically indicated in Fig. 1(a). Particles were
observed at 400 Hz (Andor Neo-SCMOS) in a 20 µm-
tall polydimethylsiloxane (Dow RTV) microchannel with
200 µm width and 8 cm length. The fluorescence was
achieved using an excitation laser (Coherent Sapphire,
wavelength 488 nm) with the fluorescence intensity, I,
related to the apparent particle altitude, zapp, through
zapp − a = Π ln(I0/I). Here Π is the evanescent decay
length and I0 is the intensity of a particle with center at
z = a. We varied the laser power Plaser from 15 to 150
mW, allowing for a variation of the height h of the obser-
vation zone. The particles’ electrostatic interaction with
the solid glass surface was tuned by changing the con-
centration of NaCl (Sigma) in ultrapure water (18.2 MΩ
cm, MilliQ). A particle-tracking algorithm (see videos in
the Supplementary Information, SI) allowed us to study
approximately 105 particle trajectories for this study; en-
sembles of ca. 102 such trajectories with three delay
times per column are shown in Fig. 1(b). From these
ensemble trajectories, the linear near-wall velocity pro-
file vx(z) = γ̇z with γ̇ the shear rate, and the variance of

the displacement, σ∆x were obtained (cf. Fig. 1).
In Fig. 2(a), the normalised streamwise dispersion co-

efficients, Dx = σ2
∆x/(2τ), are shown as a function of the

delay time τ . The variance along the streamwise direc-
tion, indicated in Figure 1(b), is σ2

∆x = 〈(∆x− 〈∆x〉)2〉.
Here ∆x(τ) = x(t+ τ)− x(t) is the displacement, and t
the time at which a particle is first observed ; we note in
particular that we do not use sliding averages due to the
non-equilibrium nature of the experiment. In Fig. 2(a),
Dx has been normalised by the experimental averaged
transverse diffusion coefficient D̄y = 〈σ∆y(z)〉/(2τ), and
by the squared shear rate, as in Ref [45]. At least five
shear rates are used for each condition. Remarkably, we
note a strong modification in the dispersion coefficient on
changing the salt concentration: the data for the high-
est salt concentration gives nearly a three-fold increase
in the dispersion, as compared to ultrapure water. Addi-
tionally, for pure water, decreasing the laser power gives
a further decrease by a factor of 2 between the highest
and lowest laser powers employed.

According to the classical Taylor-Aris theory of
advection-diffusion, the long-time dispersion coefficient
obeys Dx/D0 − 1 = Pe2/30 for a linear shear flow
bounded by reflecting walls [45], where D0 is the bulk
diffusion coefficient of the nanoparticles, and Pe =
γ̇h2/(2D0) is the Peclet number comparing advection and
diffusion. We note that h and D0 are identical for the
three different data sets at 150 mW in Fig. 2(a). There-
fore, the classical Taylor-Aris theory, supposing non-
interacting and finite-sized particles in flows bounded by
rigid walls, is clearly inappropriate here. This observa-
tion motivates a detailed investigation into the role of the
interactions of the nanoparticles with the rigid wall, that
of the open boundary, as well as their combined effects
on dispersion.

We first note that both the particle and glass surfaces
are negatively charged, giving a repulsive interaction that
can be modeled via a Debye-Hückel energy potential [12]
of the form:

Uel(z) = kT
a
˜̀
B

exp

(
−z − a

`D

)
. (1)

Here `D is the Debye length, ˜̀
B = e2/(εkT )

× [tanh(eψp/(4kT )) tanh(eψw/(4kT ))]
−1

is a modified
Bjerrum length [12], and e, ε, ψp and ψw are the ele-
mentary charge, the dielectric permittivity of the liquid,
the particle and wall surface potentials, respectively. At
equilibrium, the particles have a Boltzmann distribution,
leading to a concentration cB ∝ exp [−Uel/(kT )], with kT
the thermal energy.

In Fig. 2(bi−iii) are shown the experimental altitude
probability distributions (APDs), P for identically im-
posed pressure drops and different salinities; in part (iii)
is shown a variation of laser illumination intensity. These
distributions are normalised by their maximum values
and no filtering concerning the time of observation is
made; all particles observed in TIRFM are thus rep-
resented and we call these the quasi-equilibrium APDs
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(QE-APD) since they are well-described by equilibrium
statistics near the wall. Indeed, the lines in Fig. 2(b)
are model fits particularly including the Boltzmann dis-
tribution, cB(z) with the potential given in Eq. (1) as
the only energetic contribution — other necessary in-
gredients described elsewhere in detail [45, 52, 53] in-
clude: the finite camera sensitivity giving rise to a large-
distance cutoff; and, objective optics and particle poly-
dispersity that modify the direct correspondence between
distance and intensity. The good agreement for the
full fits here suggests that the electrostatic repulsion
mainly [54] determines the distribution of particles near
the wall. Quantitatively, the Debye lengths obtained
from the QE-APD fits are `D = {67, 32, 10} ± 3 nm
for [NaCl] = {0, 5.4, 54}mg/L, respectively, in agreement
with the Debye-Overbeek theory [12]. Furthermore, we

find a salinity-independent ˜̀
B = 13 ± 3 nm consistent

with expected particle and wall potentials of approxi-
mately 100 mV. For different salinities, the main effect
on the dispersion results is affected through a modified
velocity sampling in the depletion regions. Before con-
sidering this effect in detail, we qualitatively describe the
aforementioned large-distance, camera-sensitivity cutoff.

The observation height, h, beyond which the camera
sensitivity does not allow fluorescence detection, is a key
ingredient for the QE-APD fits, and can be tuned by
changing the laser power, as shown in Fig. 2(biii). One
striking feature of this tunability is to control where a
particle’s trajectory is no longer considered. Since a par-
ticle leaving the observation zone is equivalent to one ab-
sorbed, the open boundary acts as an ideal particle sink.
Such a sink is expected to modify the probability distri-
bution of particles in the observation zone [4, 33], and
thus the particle dispersion, as a depletion of particles
near the sink builds up.

In Fig. 3(a), experimental time-dependent (TD-)APDs
are shown for pure water [55], displaying different delay
times since the particles’ first observation. As the typ-
ical time scale to diffuse out of the observation zone is
given by h2/D0, the TD-APDs are plotted for different
values of the dimensionless time D0τ/h

2. A temporal
evolution of the TD-APD is observed, and a remarkable
long-time steady-state is reached for times approaching
the diffusion time h2/

(
D0π

2
)

predicted by Taylor [1].
This long-time, steady distribution is crucially different
from the QE-APD shown in black for comparison. We
verified that the steady, long-time distribution does not
depend on the initial distribution.

We now turn to a theoretical analysis of the dynami-
cal evolution of the time-dependent APD. Our modelling
includes both conservative surface interactions and parti-
cle consumption, as well as the finite size of the particles
through z-dependent mobilities. We consider a popula-
tion of nanoparticles initially located at the origin x = 0
(see Fig. 1) and distributed vertically with an initial con-
centration profile c(x = 0, z, t = 0) = cini(z)δ(x). The
space- and time-dependent concentration field c(x, z, t)
follows the advection-diffusion equation under external

Figure 2. (a) Time dependence of the rescaled particle disper-
sion coefficient, normalised by the squared shear rate. Each
line corresponds to an average over at least 5 different shear
rates, the shaded area displaying the associated standard de-
viation. (b) Normalized quasi-equilibrium altitude probabil-
ity distributions (QE-APDs) of the apparent distance zapp
between the center of mass of the particle and the glass sur-
face, for varying salt concentrations: (i) [NaCl] = 54 mg/L
(red), (ii) [NaCl] = 5.4 mg/L (yellow), and (iii) ultrapure
water (blue). In (biii), the laser power of the TIRFM is indi-
cated with the shade of blue (only three examples are shown
for clarity). The same color code is used in (a).

forcing [28]:

∂c

∂t
+vx(z)

∂c

∂x
= Dx(z)

∂2c

∂x2
+
∂

∂z

(
Dz(z)

[
∂c

∂z
+
U ′el(z)

kT
c

])
,

(2)
where Dx and Dz are the streamwise and cross-stream
diffusion coefficients, reflecting the modification of the
particles’ altered mobility due to the no-slip boundary
condition at the hard wall (see SI). The particle flux
vanishes at the wall, imposing the boundary condition

Dz

[
∂c
∂z +

U ′
el(z)
kT c

]
= 0 at z = a. As nanoparticles are no

longer followed after they leave the observation zone the
concentration field vanishes at the open boundary, i.e.
c(x, z, t) = 0 at z = h. Such a Dirichlet boundary con-
dition is equivalent to a localized first-order chemical (or
absorption) reaction with an infinite reaction rate [20].

There are multiple methods available in the literature
in order to derive the moments of the concentration field
described by Eq. (2), including: the moment theory [46–
50], invariant manifold methods [27, 56], Green-Kubo for-
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Figure 3. (a) Rescaled experimental altitude probability dis-
tributions, for different dimensionless lag times (since first
observation), as indicated in the legend. Here, the liquid is
ultrapure water, the laser power is 150 mW and the pressure
drop is 30 mbar. The black curve shows the steady distribu-
tion (as in Fig. 2(biii)). (b) Theoretical counterpart of (a),
with 2 × 10−3 ≤ D0τ/h

2 ≤ 2 × 10−1. The dashed line cor-
responds to a Boltzmann distribution cB ∝ exp[−Uel/(kT )],
with Eq. (1) and the parameters obtained through fitting in
Fig. 2(b), that is set as an initial condition in the theory. (c-d)
Experimental (c) and theoretical (d) fractions of particles re-
maining in the observation zone, as functions of dimensionless
lag time, for the three salinities used in the experiments. The
color code for ultrapure water at various laser powers is the
same as in Fig. 2, and shades of red (resp. yellow) indicate
the same varying laser power for a [NaCl] = 54 mg/L (resp.
[NaCl] = 5.4 mg/L) concentration. The curves for different
salinities (with Debye lengths as indicated in the legend) are
shifted vertically for clarity.

mula [31, 57], and large-deviation theory [58, 59]. Here,
we use a moment theory that involves computing the
time-dependent streamwise pth (with p ≥ 0) moments
cp(z, t) =

∫
R x

pc(x, z, t) dx recursively; here and for the
following, details are provided in the SI. Using a modal
decomposition, the solution is found to be of the form:

cp(z, t) =

∞∑
k=1

cp,k(z, t) exp(−λkt) , (3)

where cp,k are polynomial functions of t of degree p,
and λk are the eigenvalues of the corresponding Sturm-
Liouville problem, with λ1 < λ2 < · · · . We show in
Fig. 3(b) the theoretical APD at different times for an
ensemble of particles initially distributed according to a
Boltzmann weight, cini(z) = cB(z) using the same elec-
trostatic parameters and the same h with an absorbing

top wall as obtained by fitting in Fig. 2(b). We recover
the main qualitative features of the experimental obser-
vations: (i) a depletion zone develops near the open
boundary; and (ii) the TD-APD converges towards a
steady distribution at long times, corresponding to the
spatial structure of the slowest eigenmode (see SI).

Importantly, the slowest eigenmode has an nonzero
eigenvalue λ1, which means, in particular, that the total
number of particles, m0, decays exponentially in time at
long times. This is a consequence of the non-equilibrium
features of the system, and in particular the absorb-
ing boundary condition at the limit of the observation
zone. In Fig. 3(c), we show the experimental fraction

m0(t) =
∫ h

a
c0(z, t) dz/

[∫ h

a
c0(z, 0) dz

]
of particles re-

maining in the observation zone, as a function of the
dimensionless lag time. No matter the strength of the
electrostatic interactions and the laser power, a tempo-
rally exponential decay of the number of particles is ob-
served at long times. Similarly, in Fig. 3(d), we show the
theoretical fraction of particles remaining in the obser-
vation zone, as a function of the dimensionless lag time,
for the three Debye lengths found by fitting in Fig. 2(b).
As expected, we find once again an exponential decay at
large times. This behaviour is set by the smallest eigen-
value λ1, through m0 ∝ exp (−λ1τ), and does not depend
on the initial concentration profile of the particles.

From a microscopic point of view, the nanoparticles
diffuse out of the observation zone, such that the typi-
cal decay time scale is set by the time ∼ h2/D0 needed
for the particle to reach the absorbing boundary at the
top of the observation zone. Besides, the decay time
also depends in a non-trivial manner on the electrostatic
and hydrodynamic interactions via the ratios between
the typical length scales in the problem and the chan-
nel size. Altogether, the theoretical decay rate reads

λ1 = D0

h2 F
(

`D
h ,

˜̀
B

h ,
a
h

)
, where F is an unknown dimen-

sionless function to be determined by solving the eigen-
value problem described in the SI. In Fig. 4(a), we com-
pare experiments and theory for the dimensionless decay
time D0/

(
λ1h

2
)

as a function of the Debye-length-to-
channel-size ratio. As expected, the stronger the elec-
trostatic repulsion from the wall (i.e. the larger De-
bye length), the faster the particles leave the observation
zone. While we note that there is a small-but-systematic
deviation between the measured time constants and the
predictions of the moment theory, especially for the un-
modified water (blue), the overall trend between the two
is in agreement.

Taylor-Aris dispersion arises from a particle’s continu-
ous sampling of different velocities through its diffusion
along the velocity gradients. Since the open boundary
of our experiments affects the TD-APDs, as described in
Figs. 3(a,b) and as dictated by the spatial structure of the
slowest eigenmode, our theoretical approach allows a pre-
diction regarding dispersion. Indeed, computing the first
and second moments of the concentration, we are able to
extract the dispersion coefficient of the particles remain-
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Figure 4. (a) Dimensionless decay time of the number of
particles in the observation zone as a function of the ratio be-
tween the Debye length and the size of the observation zone.
The salinity and laser power is indicated with the same color
code as in Fig. 3. The theoretical prediction with an absorb-
ing boundary condition (see SI) is displayed with solid lines.
(b) Dimensionless reduced long-term dispersion coefficient as
a function of the ratio between the Debye length and the size
of the observation zone. The theoretical predictions with an
absorbing boundary condition along with electrostatic and
hydrodynamic interactions (see Eq. (4)) are displayed using
solid colored lines. Also shown are: (black dashed line) the
Taylor-Aris prediction; (dashed colored lines) predictions for
a closed channel with one reflecting boundary condition [28]
(SI) and one wall with electrostatic and hydrodynamic in-
teractions; (black dashed-dot line) the non-interacting tracer-
particle model with one open boundary. In the SM Figure S1,
all models are schematically described.

ing in the observation zone. This coefficient is found to
converge towards a steady value at long times, consis-
tent with the observations in Fig. 2(a). The long-term
dispersion coefficient Dx can be written as the sum of
the steady-state averaged streamwise molecular diffusion
coefficient 〈Dx〉 and a term induced by the advection-
diffusion coupling, as follows:

Dx = 〈Dx〉+

∫ h

a

1

cB(z)
[vx(z)− 〈V 〉] ζ1(z)f1(z) dz ,

(4)

where 〈V 〉 and f1(z) are the steady-state averaged veloc-
ity, and the steady TD-APD shown in Fig. 3(b), respec-
tively. The quantity ζ1 is an auxiliary function related
to the steady-state first moment of the distribution (see
SI).

In Fig. 4(b) are shown the rescaled, long-term disper-
sion coefficients for all of the salinities and laser powers
accessed in the experiments. In addition, we display the
predictions of Eq. (4) and of the theory in Refs. [28, 31] in
the case of a reflecting boundary condition at z = h. The
dispersion coefficient for this latter reflecting case reads
Dx = D̄x + f [Dz(z), cB(z), vx(z)] where f is a functional
(details in SI) depending in particular only on the APD
given by cB(z) and not on any other distribution. Lastly,
we show the case for non-interacting tracer-particles with

one open boundary, not depending on the salt concentra-
tion (black dashed-dot line). The reduction of the dis-
persion coefficient with increasing electrostatic repulsion
observed in experiments is well described by the present
model (solid colored lines), while we note once again a
small systematic deviation that is strongest for the pure
water case. Furthermore, Fig. 4(b) stresses that an ab-
sorbing boundary condition at the limit of the observa-
tion zone is necessary to accurately estimate the disper-
sion coefficient measured in the TIRFM experiments, and
thus that chemically-induced or absorption-induced leak-
age at boundaries is crucial for describing dispersion at
the nanoscale.

In conclusion, we have experimentally and theoreti-
cally studied the transport of an ensemble of finite-sized
charged nanoparticles near charged surfaces and within
an externally-imposed shear flow. In the experiment, the
nanoparticles are detected using total-internal-reflection-
fluorescence microscopy (TIRFM) in a finite-extent ob-
servation zone. In particular, our setup allows us to in-
vestigate the importance on the dispersion efficiency of
both a repulsive electrostatic interaction with a wall, and
an effective absorption at the open boundary of the obser-
vation zone. Supported by the moment theory, we show
that: (i) the number of particles is not conserved and
decays exponentially because of the absorbing boundary;
(ii) a steady-state out-of-equilibrium probability distri-
bution of the distance to the wall is reached at long times,
with a dynamically-driven depletion zone near the ab-
sorbing boundary; (iii) the dispersion coefficient largely
depends on the repulsive electrostatic interaction, and
is dictated by the steady-state distribution. In our sys-
tem, with the accessed experimental parameters, the dis-
persion coefficient appears to be an order of magnitude
smaller than the Taylor-Aris prediction. Therefore, at
the nanoscale, a precise description of the interactions of
the transported entities with the boundaries is essential
to fully understand and control of the dispersion. The re-
sults given here have clear implications for drug delivery,
confined chemistry, or biological processing.
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