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The dispersive spreading of microscopic particles in shear flows is influenced both by advection and
thermal motion. At the nanoscale, interactions between such particles and their confining boundaries
become unavoidable. We address the roles of electrostatic repulsion and absorption on the spatial
distribution and dispersion of charged nanoparticles in near-surface shear flows, observed under
evanescent illumination. The electrostatic repulsion between particles and the lower charged surface
is tuned by varying electrolyte concentrations. Particles leaving the field of vision can be neglected
from further analysis, such that the experimental ensemble is equivalent to that of Taylor dispersion
with absorption. These two ingredients modify the particle distribution, deviating strongly from the
Gibbs-Boltzmann one at the nanoscale studied here. The overall effect is to restrain the accessible
space available to particles, leading to a striking, ten-fold reduction in the spreading dynamics as
compared to the non-interacting case.

Diffusion is a fundamental microscopic transport
mechanism that can be effectively enhanced by orders
of magnitude in the presence of a hydrodynamic velocity
gradient. In the process commonly known as Taylor dis-
persion [1], particles starting from the same position are
advected along the flow while the concentration profile is
broadened due to Brownian diffusion across streamlines,
cf. Fig. 1(a). Such enhanced broadening, i.e. disper-
sion, is the principal mechanism for solute dispersal in
many natural and technological contexts [2–10]. At nano-
metric distances from surfaces, however, particles can no
longer be considered simple tracers since they are subject
to: intermolecular forces [11]; mobility-reducing hydro-
dynamic interactions with boundaries [12–15]; as well as
reaction/absorption at the latter [4, 16–18]. Such interac-
tions modify the spatial structure of particle-probability
distributions, but there is yet no observation about how
this modification could affect the diffusive-like transport
dynamics of Taylor dispersion. The object of this Let-
ter is thus to link nanoscale probabilistic structure to
spreading dynamics.

Taylor dispersion has many applications in situations
where such physico-chemical interactions are important,
with biophysical ones as emblematic examples. As such,
the seminal theoretical work of Taylor has been signif-
icantly extended [4, 17, 19–27]. Particle absorption or
chemical reactions on the boundaries induces a gradual
and substantial loss of particle number. This particle loss
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may strongly modify particle probability distributions,
also complexifying models for dispersion [18, 23, 27]. Re-
activity is critical for several applications in chemistry
and life science [28–36].

Several experimental works noted that such interac-
tions or absorption [37] bias diffusion coefficient evalua-
tions using the Taylor dispersion method [28]. In typi-
cally millimetric capillary tubes, the induced error was
noted as a few tens of percent [38]. Such errors may be-
come more significant in smaller systems, for instance in
applications for peptide diffusion and the determination
of aggregate sizes [35, 39], among others [40]. State-of-
the-art Taylor dispersion studies also focused on the ge-
ometry of a flow domain [10] at micro- and milli-metric
scales. Other recent experiments, reaching micro- and
nano-scales [41] focussed on pre-asymptotic dispersion
dynamics [42–44], but not on the link between nanoscale
statistical distributions and Taylor dispersion.

In this Letter, we study nanoscale Taylor dispersion
in a near-surface shear flow. First, we systematically
vary the role of surface interactions by tuning the repul-
sive electrostatic interaction between the nanoparticles
and the lower surface, becoming important for disper-
sion when the corresponding interaction scale is compa-
rable to that of confinement. Second, we employ a finite
observation zone with an open upper boundary, parti-
cles leaving this zone formally correspond to permanently
absorbed ones. Our experiments thus allow a study of
nanoscale dispersion under adsorption, without the ob-
vious inconvenience of a polluted, physically absorbing
surface. Such a particle loss is found to strongly modify
the observed particle probability distribution relevant for
dispersion. Using an extended moment theory [45–49],
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Figure 1. (a) Side-view schematic of the experimental setup.
In a channel of height h, nanoparticles with radius a are ad-
vected by a linear shear flow, vx(z) = γ̇z, and diffuse. Electro-
static potentials Uel(z) with Debye lengths `D repel particles
from the bottom surface at z = 0. Particles reaching the up-
per limit at z = h are considered as absorbed. (b) Reconstruc-
tions of three successive experimental positions of fluorescent
nanoparticles, with top-, middle- and bottom-row lag times
τ = {2.5, 25, 50} ms, in (i) pure water, (ii) 5.4 mg/L, and
(iii) 54 mg/L NaCl aqueous solution, see SI Videos 1 and 2.

we quantitatively recover our experimental observations.
In contrast to the few tens of percent noted above for
macroscopic systems, we observe a ten-fold Taylor disper-
sion reduction when both boundary effects are present,
as compared to the case when they are absent.

We used objective-based, total internal reflection flu-
orescence microscopy (TIRFM) [44, 50], observing in-
dividual, negatively charged, a = 55 nm-radius, la-
tex colloidal particles. The particles were suspended
in pressure-driven shear flows near an interface between
salted water and glass (see Supplementary Material §I
and §II at Ref. [51] for videos and experimental details).
These observations yield the particle positions (the ap-
parent height zapp and x, y in-plane positions), resolved
to within a few tens of nanometers. The former al-
lows access to altitude probability distributions (APDs),
whereas sequential particle observations were linked into
temporal trajectories (ca. 105 of them for this study), see
SM Video 1. Displacements ∆x = x(t+ τ)− x(t) over a
delay time τ from a particle’s first observation time t were
thus recorded and used to determine the near-wall shear
rate, γ̇ (see SM §II). Also obtained were the variances of
the stream-wise, σ2

∆x = 〈(∆x − 〈∆x〉)2〉 (see Fig. 1(b)),
and transverse displacements, σ2

∆y, allowing to calculate
dispersion and diffusion coefficients. Independent tra-
jectories were superimposed at common spatio-temporal
origins, as in Fig. 1(b) and SM Video 2, to visualise the
evolution of particle ensembles. Particle volume fractions
were small enough to ignore inter-particle interactions.

Taylor-Aris theory predicts a rescaled, long-time dis-
persion coefficient Dx/D0 − 1 = Pe2/30 for a linear
shear flow bounded by reflecting walls [44, 46]. Here,

Dx = σ2
∆x/(2τ), D0 is the bulk diffusion coefficient of the

nanoparticles, and Pe = γ̇h2/(2D0) is the Peclet number
comparing transport by advection and diffusion, h being
the observation zone height. In Fig. 2(a) are shown the
normalised streamwise dispersion coefficients as a func-
tion of τ , with at least four shear rates used for each
condition (see SM §II-D for unscaled data). The normal-
isation uses the depth-averaged Dy = σ2

∆y/(2τ) (note the

angle brackets in the axis label), which closely approxi-
mates the bulk diffusion coefficent D0 [44]. Importantly,
we note a strong modification in the dispersion coeffi-
cient on changing the salt concentration: the data for
the highest salt concentration gives nearly a three-fold
increase in the dispersion, as compared to ultrapure wa-
ter, as also indicated in Fig. 1(b). We note furthermore
that h and D0 are identical for the three different data
sets at laser illumination power of 150 mW in Fig. 2(a).
Therefore, the classical Taylor-Aris theory, supposing
non-interacting tracer particles in flows bounded by rigid
walls, is clearly inappropriate here. This observation mo-
tivates a detailed investigation into the influence of the
interactions with the walls on dispersion.

At equilibrium, the particles’ concentration follows a
Gibbs-Boltzmann distribution with cB ∝ exp [−U/(kT )],
where U is an interaction potential and kT the thermal
energy. In Fig. 2(bi−iii) are thus shown experimental
APDs, P for identically imposed pressure drops of 30
mbar and different salinities; the distributions are nor-
malised by their maxima and no filtering concerning the
time of observation is made. Since the particles and glass
surfaces are negatively charged, a repulsive electrostatic
interaction that can be obtained from DLVO theory [11]
is expected:

Uel(z) = kT
a
˜̀
B

exp

(
−z − a

`D

)
. (1)

Here `D is the Debye length, ˜̀
B = e2/(εkT )

× [tanh(eψp/(4kT )) tanh(eψw/(4kT ))]
−1

is a surface-
modified Bjerrum length [11], and e, ε, ψp, and ψw are
the elementary charge, the dielectric permittivity of the
liquid, the particle and wall surface potentials.

The lines in Fig. 2(b) are model fits to the experimen-
tal APDs particularly including the Boltzmann distri-
bution cB(z) with the potential of Eq. (1) as the only
energetic contribution — other necessary ingredients,
see [44, 52, 53], include: the finite camera sensitivity
giving the observation zone height, h; and, objective op-
tics and particle polydispersity, modifying the direct cor-
respondence between distance and intensity. The good
agreement for the full fits here suggests that the elec-
trostatic repulsion mainly [54] determines the distribu-
tion of particles near the wall. Therefore, we call these
the quasi-equilibrium APDs (QE-APD). Quantitatively,
the Debye lengths obtained from the QE-APD fits are
`D = {67, 32, 10} ± 3 nm for [NaCl] = {0, 5.4, 54}mg/L,
respectively, in agreement with the DLVO theory [11].

Furthermore, we find a salinity-independent ˜̀
B = 13± 3
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Figure 2. (a) Time dependence of the scaled, shear-rate nor-
malised, dispersion coefficient. Each line corresponds to aver-
aging at least four shear rates, the shaded area displaying the
associated standard deviation. (b) Normalized QE-APDs as
a function of distance, zapp, for varying salt concentrations:
(i) [NaCl] = 54 mg/L, (ii) [NaCl] = 5.4 mg/L, and (iii) ul-
trapure water. In (biii), the three laser powers are shown.
The same color code is used in (a).

nm consistent with expected particle and wall potentials
of approximately −120 mV, see SM §II.A. For the differ-
ent salinities, the decreased electrostatic repulsion allows
particles to access to a larger part of the velocity gradi-
ent, enhancing the dispersion. For an observation zone
height of approximately 800 nm, a 50 nm Debye-length
modification gives a two-fold change in the dispersion co-
efficient.

Besides intermolecular interactions, the height h is a
key ingredient for the QE-APD fits. This height can
be tuned by changing the laser power, as shown in
Fig. 2(biii). Accordingly, for pure water, decreasing the
laser power gives a further factor of 2 decrease in the nor-
malised, steady Dx between the highest and lowest laser
powers in Fig. 2(a). On exceeding h a particle’s trajec-
tory is no longer considered, as indicated by the crossed-
out particle in Fig. 1(a), and thus the open boundary
acts as an ideal particle sink. This sink progressively
modifies the structure of the particle distribution in the
observation zone [4, 38], as shown next.

In Fig. 3(a), experimental time-dependent (TD-)APDs
are shown for pure water, displaying different delay times
since the particles’ first observation. As the typical time
scale to diffuse out of the observation zone is given by

h2/D0, the TD-APDs are plotted for different values of
the dimensionless time D0τ/h

2. A temporal evolution of
the TD-APD is observed, and a steady-state is reached
for times approaching the diffusion time h2/

(
D0π

2
)

pre-
dicted by Taylor [1]. Remarkably, this long-time, steady
distribution is different from the QE-APD, thus repre-
senting a violation of the Gibbs-Boltzmann distribution,
shown in black for comparison.

To assess the effect on the aforementioned probabilis-
tic modifications on the dispersion, theoretically we con-
sider a population of nanoparticles initially located at
the origin x = 0 (see Fig. 1) and distributed vertically
with an initial concentration profile c(x = 0, z, t = 0) =
cini(z)δ(x). The concentration field c(x, z, t) obeys the
advection diffusion equation [19]

∂c

∂t
+vx(z)

∂c

∂x
= Dx(z)

∂2c

∂x2
+
∂

∂z

(
Dz(z)

[
∂c

∂z
+
U ′el(z)

kT
c

])
,

(2)
where Dx and Dz are the streamwise and cross-stream
diffusion coefficients. These latter depend on z due to
hydrodynamic forces induced by the no-slip boundary
condition at the hard wall (see SM Eq. (S3)). Zero par-

ticle flux at the wall, imposes Dz

[
∂c
∂z +

U ′
el(z)
kT c

]
= 0 at

z = a. As nanoparticles are not followed after they leave
the observation zone, the concentration field vanishes at
the open boundary, i.e. c(x, z, t) = 0 at z = h. This
Dirichlet boundary condition is equivalent to a chemical
absorption reaction with an infinite reaction rate [17].

The moments of the concentration field described by
Eq. (2) can be computed in many ways, including:
the moment [45–49], invariant manifold [23, 55], Green-
Kubo [27, 56], and large-deviation methods [57, 58].
Here, we use a moment theory involving time-dependent
streamwise pth (with p ≥ 0) moments cp(z, t) =∫
R x

pc(x, z, t) dx recursively (see SM §III). Using a modal
decomposition, the solution is found to be of the form:

cp(z, t) =

∞∑
k=1

cp,k(z, t) exp(−λkt) , (3)

where cp,k are polynomial functions of t of degree p,
and λk are the eigenvalues of the corresponding Sturm-
Liouville problem, with λ1 < λ2 < · · · . We show in
Fig. 3(b) the theoretical TD-APD at different times for
an ensemble of particles initially distributed according
to a Boltzmann weight cini(z) = cB(z), using the same
electrostatic parameters and the absorbing wall at h ob-
tained by fitting the data in Fig. 2(b). The main qualita-
tive features of the experimental observations are recov-
ered: a depletion zone develops near the open boundary
while the TD-APD converges towards a steady distribu-
tion, corresponding to the spatial structure of the slowest
eigenmode with λ = λ1 (see SM Eq. (S9)).

Importantly, the slowest eigenmode of Eq. (3) has a
nonzero eigenvalue such that the total number of parti-
cles m0 decays exponentially at long times. This decay is
a consequence of the absorbing boundary at the limit of
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Figure 3. (a) Rescaled experimental APDs, for the indicated
dimensionless lag times and for ultrapure water, Plaser = 150
mW and a pressure drop of 30 mbar. The black curve shows
the QE-APD (cf. Fig. 2(biii)). (b) Theoretical prediction
for (a), with 3 × 10−4 ≤ D0τ/h

2 ≤ 3 × 10−1. The initial
condition (dashed line) corresponds to cB ∝ exp[−Uel/(kT )],
with Eq. (1) and the parameters obtained through fitting in
Fig. 2(b). (c) Experimental and (d) theoretical remaining
particle fractions, as functions of dimensionless lag time. The
color codes are the same as in Fig. 2, and the shades indicate
the same varying laser powers as for water. Curves of different
salinity are shifted vertically for clarity.

the observation zone. In Fig. 3(c), we show the experi-

mental fraction m0(t) =
∫ h

a
c0(z, t) dz/

[∫ h

a
c0(z, 0) dz

]
of

particles remaining in the observation zone, as a function
of the dimensionless lag time. No matter the strength of
the electrostatic interactions and the laser power, a tem-
porally exponential decay of the number of particles is ob-
served at long times. Similarly, in Fig. 3(d), we show the
theoretical fraction of particles remaining in the obser-
vation zone, as a function of the dimensionless lag time,
for the three Debye lengths accessed accessed experimen-
tally. We again find an exponential decay at large times,
i.e. m0 ∝ exp (−λ1τ), independent of cini(z).

From a microscopic point of view, the nanoparticles
diffuse out of the observation zone, such that the typi-
cal decay time scale is set by the time ∼ h2/D0 needed
for the particle to reach the absorbing boundary at the
top of the observation zone. Besides, the decay time
depends on the electrostatic and hydrodynamic interac-
tions via the ratios between the typical length scales in
the problem and the channel size. Altogether, the theo-

retical decay rate reads λ1 = D0

h2 F
(

`D
h ,

˜̀
B

h ,
a
h

)
, where F

is an unknown dimensionless function to be determined
by solving the eigenvalue problem described in the SM
§III-B. In Fig. 4(a), we compare experiments and theory
for the dimensionless decay timeD0/

(
λ1h

2
)

as a function
of the Debye-length-to-channel-size ratio. As expected,
the longer the range of the electrostatic interaction (i.e.

the larger Debye length), the faster particles leave the
observation zone. While there is a small deviation be-
tween the measurements and predictions, especially for
the unmodified water (blue), the overall trends agree.

Since the open boundary of our experiments affects the
TD-APDs, as described in Figs. 3(a,b) and as dictated
by the spatial structure of the slowest eigenmode, our
theoretical approach allows a prediction regarding dis-
persion. Computing the first and second moments of the
concentration, we extract the dispersion coefficient of the
remaining particles, see SM §III-E. This coefficient con-
verges to a steady value at long times, as in Fig. 2(a). The
long-term dispersion coefficient Dx can be written as the
sum of the steady-state averaged streamwise molecular
diffusion coefficient 〈Dx〉, cf. SM Eq. (S40), and a term
induced by the advection-diffusion coupling:

Dx = 〈Dx〉+

∫ h

a

1

cB(z)
[vx(z)− 〈V 〉] ζ1(z)f1(z) dz ,

(4)

where 〈V 〉 and f1(z) are the steady-state averaged veloc-
ity, and the steady TD-APD shown in Fig. 3(b), respec-
tively. The quantity ζ1 is an auxiliary function related to
f1(z) as in SM Eq. (S19).

In Fig. 4(b) are shown the rescaled, steady dispersion
coefficients for all of the experimental salinities and laser
powers (colored dots). The general increase of dispersion
coefficient with salinity seen is expected due to increased
access to the near-wall regions on electrostatic screening,
as in Fig. 2. For a quantitative description of the data,
we also display predictions of four different models (see
SM Fig. S3 for schematics).

The tracer theory of Taylor and Aris [1, 45] largely
over-estimates the data (black dashed line). Moment the-
ory for a wall with infinite adsorption rate, i.e. an open
boundary, but no lower surface interactions with the wall
(SM Eq. (S42); black, dashed-dot line) predicts a signif-

Figure 4. (a) Dimensionless decay time of the number of re-
maining particles vs. height-normalized Debye length; colors
as in Fig. 3. Theoretical predictions with absorbing bound-
ary conditions are displayed using solid lines (see SI). (b)
Reduced, steady dispersion coefficient as a function of the
height-normalized Debye length. Theoretical predictions are
described in the text, solid lines using the same theory as in
(a). SM Figure S3 schematically describes each model.
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icant global decrease in the dispersion coefficient. Both
these models are yet independent of salt concentration.
The theory of Refs. [19, 27] assumes a reflective bound-
ary at z = h and includes conservative interactions with
one wall. Dispersion coefficients from this theory read
Dx = 〈Dx〉 + f [Dz(z), cB(z), vx(z)], cf. SM Eq. (S44),
and are decreased as compared to the classical Taylor
model (dashed, colored lines), yet still overestimate the
measured dispersion coefficients.

Finally, the moment theory combining electrostatic in-
teractions and an open boundary at z = h, Eq. (4),
quantitatively captures the measurements (solid colored
lines), even while noting a small systematic deviation for
the pure water case. Fig. 4(b) stresses that using an
absorbing boundary condition at the limit of the ob-
servation zone is necessary to accurately estimate the
reduction of the dispersion coefficient measured in the
TIRFM experiments. Indeed, the relevant statistical dis-
tributions at the heart of Taylor dispersion phenomena
are thereby strongly modified. In contrast, the existing
theory [19, 27] depends only on the APD given by cB(z).

To conclude, our collective observations show that
chemical- or absorption-induced leakage at boundaries
and particle-surface interactions can play a dominant role
in Taylor dispersion at the nanoscale. Nanoscale trans-
port is routinely used to measure the physical proper-
ties of biological objects and processes, as in Refs. [34–
36, 39, 40, 59]. Here, we have demonstrated that the pre-
cise nature of particle-surface interaction must be care-
fully taken into account to yield accurate measurements.
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