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Abstract: In the context of improving the dimensioning of observation and telecommunication, the 1

characterization of the propagation canal is very important. Thus, accurate models of propagation 2

phenomenona in their environment and above a rough surface (maritime or terrestrial) are of major 3

interest for many applications (such as radar, communications, and teledetection). To provide 4

solutions to this problem, in this paper, we propose a fast, memory-efficient, and accurate asymptotic 5

method for 2D tropospheric propagation for a large band of frequency that accounts for relief, as well 6

as ground composition and roughness. This latter is a two-way split-step wavelet scheme with an 7

intrinsic stopping criterion. For overseas propagation, roughness effects are considered through a 8

hybrid method. A complete theoretical comparison with SSF in terms of memory and time efficiency 9

is proposed. Simulations in various environments (ground, sea, and snow), as well as different 10

frequencies (UHF, S, and X-band) are performed to validate the method and highlight its advantages. 11

To highlight the interest of the developed methodology, this latter is applied to different real-life 12

applications, such as the prediction of radar coverage and the optimization of an antenna location. 13

Keywords: tropospheric propagation; split-step method; wavelet; rough surface; atmospheric duct 14

1. Introduction 15

Accurate modeling of tropospheric long-range propagation is important for many 16

applications in surveillance, communication, and remote sensing, for instance, the 17

optimization of an antenna position based on the location conditions. This is also 18

particularly important for predicting the coverage of new systems or the impact of 19

man-made structures on the coverage of existing systems (e.g., the impact of solar 20

panels or wind turbines on system performance) [1]. Fast and accurate modeling of 21

the electromagnetic wave propagation is also important for inverse problems such as 22

refractivity from clutter (RFC) [2,3] or radio-occultation [4,5]. In this context, one must 23

consider different interactions of electromagnetic waves with the propagation medium, 24

such as relief, atmospheric ducts, or rough surfaces. 25

Due to the mesh-size limitation, rigorous methods are not suitable. Indeed, the 26

discretization steps must be of the order λ/10 for methods such as the finite difference 27

time domain [6], the method of moments [7], or the finite element [8]. Assuch, we use an 28

asymptotic method. Ray-based methods [9] could be thought of, since they are accurate and 29

model a wide range of physical phenomenon, such as the diffraction effects [10], but in our 30

case they are limited due to the caustic problem, the shadow area problem, or the number 31

of rays needed to account for all the physical phenomenon [11,12]; whereas the relief is a 32

limitation for the Gaussian beam method [13,14]. Thus, we use an asymptotic model based 33

on the parabolic wave equation (PWE) [15–17], which is adapted here, and commonly 34

used in this context. As a matter of fact, the effects of the refraction, terrain, relief, and 35

diffraction are considered in this model [16,17]. This latter is based on a simplification of the 36

Helmholtz equation by only considering the forward propagation in a paraxial cone [16,17]. 37

Therefore, no backward propagation is introduced in the model. 38

The two main computational schemes commonly used to solve the PWE are either a 39

finite difference (FD) [18] one or the split-step Fourier (SSF) method [16,17]. The latter 40
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is widely used in our context, since it allows wide steps in the propagation direction. 41

Indeed, with the FD scheme, a mesh size of λ [17] is required, while, with SSF, the step 42

size in the propagation direction is of order the 100λ [17]. In this scheme, the propagation 43

is performed in two steps. First, the field is propagated through a layer of free space 44

in the spectral domain. Second, the effects of refraction are considered in the spatial 45

domain through a phase screen [17]. The discrete mixed Fourier transform [19,20] allows 46

us to take into account impedance ground conditions. The relief can also be considered 47

with different methods [17,21,22], such as the staircase model [17]. To avoid spurious 48

solutions, a self-consistent algorithm has been proposed [23]. Furthermore, to overcome 49

the problem of the backward propagation, a two-way SSF [24–26] algorithm has been 50

introduced, allowing us to precisely consider multiple reflections and multi-path effects. 51

Recently, a wavelet-based scheme has been developed in 2D [27–30] and 3D [31,32] to 52

improve the memory efficiency of the method and to accelerate it to propagation. This latter 53

follows the same steps as SSF, but the free-space propagation step is performed in the wavelet 54

domain instead of the Fourier one. Indeed, the lower complexity of the fast wavelet transform 55

(FWT) [33] over the fast Fourier transform (FFT) and the compression performed on the wavelet 56

coefficients allow us to obtain an efficient method [29]. 57

The objective of this article is to propose a fast, memory efficient, and reliable asymp- 58

totic model for 2D tropospheric electromagnetic wave propagation for a large band of 59

frequencies that accounts for relief, ground composition and roughness, and refraction. 60

The contributions are thus threefold. First, a two-way SSW scheme is proposed, which 61

departs from the two-way SSF method [25,26], indeed the stopping criteria are shown to 62

be intrinsic here. Second, the hybrid approach proposed in [34] to take into account the 63

ground roughness effects is introduced into SSW. Third, numerical tests are proposed to 64

validate and test the method related to practical problems, such as a radar coverage or the 65

optimization of an antenna location. 66

The remainder of this article is organized as follows.Section 2 introduces the method. 67

Firstly, the model and the discretization are explained. Secondly, a brief reminder of the 68

1D discrete wavelet transform is performed. Thirdly, an overview of the SSW scheme is 69

provided. First, SSW is described for solving the one-way PWE. Second, the method is 70

generalized for the two-way case. Third, the hybrid approach to consider the rough sea sur- 71

face is introduced. Finally, a comparison between SSF and SSW in terms of the complexity 72

and of the memory usage is proposed. Section 3 is devoted to the numerical experiments 73

in various conditions. Section 4 concludes the paper and discusses the advantages and 74

limitations of the proposed method. Finally, perspectives for future works are outlined. 75

2. Materials and Methods 76

2.1. Description of the Propagation Model and Discretization 77

In this section, we first describe the hypothesis, the domain, and its discretization. 78

Then, the two-way parabolic wave equation model is introduced. In what follows, we 79

assume a exp(jωt) time dependence and a slowly varying refractive index n. Moreover, 80

with the studied frequency range, we assume no ground-wave propagation. 81

2.1.1. Domain and Discretization 82

In this article, we study the propagation over the ground, which is at z = 0, along the 83

x-direction. Thus, the usual 2D Cartesian coordinate system (x, z) is used, with z as the 84

altitude. We assume that the source is placed at xs ≤ 0, and the field is thus computed in 85

the domain [0, xmax]× [0, zmax]. In this context, the field can be decomposed into transverse 86

electric (TE) or transverse magnetic (TM) components. In this work, only the TE component 87

is studied, since the computations remain the same for the TM case. The TE part of the field 88

is denoted by ψ and is a solution of the Helmholtz equation. 89

Next, for obvious numerical reasons, the domain must be discretized. First, a sampling 90

along the z-axis is performed as follows: 91

z[pz] = ∆zpz with pz ∈ {0, · · · , Nz}, (1)
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92where Nz corresponds to the number of discretization points, and ∆z = zmax/Nz the 93

vertical step. At a position x, the discrete version of a field ψ at altitude pz is denoted by 94

ψx[pz]. Second, a mesh along the propagation direction x is also performed with a step ∆x 95

and a number of points Nx. 96

2.1.2. Parabolic Wave Equation Model 97

To study the tropospheric long-range propagation, a convenient model is the parabolic 98

wave equation (PWE) [17]. By only accounting for the forward propagation in a paraxial 99

cone along the propagation direction, this asymptotic model reduces the Helmholtz 100

equation [16,17] as follows: 101

∂u f

∂x
= −jk0

(√
1
k2

0

∂2

∂z2 + 1− 1

)
u f − jk0(n− 1)u f , (2)

with u f being the reduced field in the forward direction and k0 the free-space wave number. 102

Note that Equation (2) corresponds to the wide angle PWE [17], with a paraxial cone of 103

almost 40◦. Nevertheless, one of the main limitations of this model is that it does not 104

account for backward propagation. Thus, a two-way version of the PWE has been proposed 105

in [24]. This latter is given by the system of equations: 106

∂u f

∂x
= −jk0

(√
1
k2

0

∂2

∂z2 + 1− 1

)
u f − jk0(n− 1)u f (3)

∂ub
∂x

= jk0

(√
1
k2

0

∂2

∂z2 + 1− 1

)
ub + jk0(n− 1)ub, (4)

where ub corresponds with the backward propagation term, as defined in [24–26], and only 107

appears when reaching an obstacle, where reflections are introduced. It is important to note 108

that the backward and forward equations are the same within the sign of k0. Therefore, for 109

these two equations, a two-way model is introduced, which allows us to take more precisely 110

into account the reflection on obstacles along the propagation [26]. In the following sections, 111

a numerical scheme to efficiently solve these equations is proposed. 112

2.2. Brief Reminder on the 1D Discrete Wavelet Transform 113

Since wavelets are at the center of the SSW propagation method, in this section, we 114

provide a brief overview of the 1D multilevel discrete wavelet transform (DWT). For more 115

information, the interested reader is referred to [33]. 116

In the DWT, wavelets are used as the decomposition basis in place of the Fourier atoms 117

for the Fourier transform. In a few words, wavelets correspond to short-length oscillating 118

functions located both in space and frequency. 119

To perform the DWT, first a wavelet family is constructed. This family leans on a 120

mother wavelet, denoted by ψ, of zero mean. This latter is then dilated on L levels in 121

order to cover the spectrum. Indeed, with L increasing, the lower parts of the spectrum are 122

covered. This function is also translated by p to cover the spatial domain. The dilated and 123

translated functions are part of the family denoted by: 124

F =
{

ψl,p

∣∣∣(l, p) ∈ [1, L]×Z
}

, (5)

125where Z corresponds to the set of relative integers. In order to cover the lowest part of the 126

spectrum and the continuous part, the scaling function φL,p of non-zero mean is added to 127

the family. Thus, an orthonormal basis is obtained. An example of the spatial and spectral 128

coverage of this multi-resolution basis is pictured in Figure 1. In Figure 1a, the spatial 129

coverage of wavelets of each level is shown, while in Figure 1b the spectral coverage for 130

each level is plotted. 131
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Figure 1. Example of a wavelet basis. (a) In the spatial domain. (b) Spectral coverage.

We can now decompose the reduced field on this basis through the DWT [33] as 132

follows: 133

ux[·] =
Nz/2L−1

∑
p=0

aL,pφL,p[·] +
L

∑
l=1

Nz/2l−1

∑
p=0

dl,pψl,p[·]. (6)

In this equation aL,p represents the approximation coefficients and corresponds to the 134

decomposition on the scaling function. The details coefficients, denoted by dl,p, correspond 135

to the decomposition of the field on the family F . Finally, Nz/2l − 1 corresponds to the 136

number of coefficients for each level; thus, Nz must be a power a of 2 for the SSW method. 137

In the rest of this paper, the wavelet decomposition is denoted by W. 138

To compute the approximation and details coefficient, an efficient method is the fast 139

wavelet transform (FWT) [33]. This latter is of complexity O(Nz), lower than the FFT. 140

An important property of the wavelets for the FWT is the number of vanishing moments, 141

nv. A smooth signal is described with fewer coefficients, with nv increasing [33]. Thus, few 142

coefficients are needed to describe the field, and they mostly describe its discontinuity [33,35]. 143

A compression, denoted by CV , with hard threshold V is thus applied on the decomposition 144

only to keep the important information. Finally, different wavelet families can be used for 145

the decomposition. Here, the symlet family, which is almost symmetric with nv = 6, and a 146

maximum level of decomposition L = 3 are chosen. For more information about these choices, 147

the reader is referred to [28]. 148

2.3. Two-Way SSW Over Rough Surfaces 149

In this section, the computational method is developed. First, a reminder of the one- 150

way SSW algorithm is provided. Second, its generalization to solve the two-way PWE is 151

introduced. Third, we remind the reader of the hybrid approach of [34] to treat rough sea 152

surfaces and incorporate them to SSW. Finally, a theoretical comparison of the complexity 153

and the memory usage between SSF and SSW is proposed. 154

2.3.1. Overview of the One-Way SSW Scheme 155

Before describing the two-way scheme, a brief reminder of the conventional one- 156

way SSW method [29] is provided. This latter is an iterative method that computes the 157

propagation, marching in on distances from the source. A step of propagation from x to 158

x + ∆x is described through the following four steps: 159

1. The FWT, operator W, and the compression operator with threshold Vs, denoted by 160

CVs , are applied to the reduced field ux to obtain a sparse set of wavelet coefficients: 161
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Ux = CVs Wux. (7)

Thus, only the coefficient of the field higher than Vs is kept, leading to a faster propaga- 162

tion. 163

2. The wavelet coefficients are propagated through a free-space layer from x to x + ∆x 164

using the sparse wavelet-to-wavelet propagator, denoted by P: 165

Ux+∆x = PUx. (8)

Contrary to SSF ,where a diagonal operator is used for the free-space propagation of 166

plane wave, here, a wavelet-to-wavelet propagator is needed. Thus, we are required 167

to use the method described in [29] to compute the propagation step in the wavelet 168

domain. In a few words, a minimal number of wavelet propagations on one step are 169

computed using the SSF scheme. The sparse wavelet decomposition of these local 170

propagations, using an FWT and compression with threshold Vp , is then stored in 171

a set of local propagators. This latter is pre-computed but can be computed again 172

throughout the propagation if needed [29]. After that, this set is used to obtain all the 173

local propagations associated with all of the non-zero wavelet coefficients of the field, 174

which are then summed to obtain the vector of the propagated wavelet coefficients 175

Ux+∆x. 176

3. The free-space propagated field is then obtained through an inverse FWT as follows: 177

u f s
x+∆x = W−1Ux+∆x. (9)

4. Finally, the effects of the environment are accounted for in the spatial domain. In 178

particular, the refraction effects from the atmosphere are computed through a phase- 179

screen operator [16], denoted by R, as follows: 180

ux+∆x = Ru f s
x+∆x. (10)

The operator R is a diagonal and accounts for the refraction at each step. Its elements 181

are defined as: 182

R[pz, pz] = exp(−jk0(n[pz]− 1)∆x). (11)

These steps have been described assuming no ground conditions. To account for the 183

ground effects, the local image method [30] is used here. As a matter of fact, given the 184

local aspect of the wavelets, the local image method allows us to consider the ground with 185

only Nim � Nz more coefficients, whereas adding Nz coefficients would be needed with 186

the usual image method. Indeed, a local replica of the field multiplied by the reflection 187

coefficient Z0 is generated. Then, the total field corresponding to the field in the computa- 188

tional domain and in the thin image layer is propagated in one step. Then, only the field in 189

the computational domain is kept. Thus, by choosing Nim wisely, no parasite reflections 190

reach the computational domain. Note that this latter value is calculated as the maximum 191

support of the wavelets after one step of propagation. Since the support of a wavelet is 192

very small compared to the domain size, this method is thus efficient. Finally, the relief is 193

considered through the staircase model [17]. 194

2.3.2. Generalization to the Two-Way SSW 195

In this part, the generalization to solve the two-way PWE is introduced. Briefly, it 196

corresponds to applying the one-way SSW algorithm by switching back and forth between 197

the forward and backward propagations when reaching obstacles. 198

First, as mentioned before, the forward field u f is propagated with a step ∆x using the 199

one-way SSW. Second, the backward field ub propagated along the axis x with a step −∆x. 200

Since the only difference between (3) and (4) is the sign of k0, and, furthermore, the sign for 201

the propagation step is also changed between forward and backward propagations, the 202

propagator remains the same for both u f and ub [26]. 203
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Therefore, when reaching an obstacle, the backward field is initiated and propagated 204

toward the opposite direction using the same one-way SSW computational scheme. This 205

technique allows us to consider more accurately multiple reflections and the multi-path 206

effect with the PWE [24], but the computation time and the memory load are increased. 207

As mentioned above, the retro-propagated field needs to be initiated. To do so, we use 208

the conditions at the obstacle position xo. Since the staircase model is used, the condition 209

on the transverse component gives the following equation at the obstacle: 210

exp(jk0xo)u f (xo) + exp(−jk0xo)ub(xo) = t exp(jk0xo)u f (xo), (12)

with t =
√

1− r2 as the transmission coefficient and r as the Fresnel reflection coefficient. 211

Note that if the transverse condition of the obstacle corresponds to a PEC, then t = 0 and 212

the reflection is the total as mentioned in [24,26]. Thus, when reaching an obstacle, the 213

previous equation allows us to compute the initialization of the retro-propagated field. 214

Note that, since the staircase model is used here, the corner diffraction is ignored [26]. 215

Then, to reduce the amount of computations and thus, the computation time, a 216

stopping criterion must be introduced [25,26]. Using the compression introduced through 217

the wavelet decomposition, we show that the stopping condition is intrinsic here, differing 218

from [25,26] and using an advantage of the wavelet transform. 219

To prove this proposition, we use properties of the wavelet decomposition [33,36]. First, let 220

us introduce the operator norm, which is defined as: 221

‖P‖op = sup
u 6=0

‖Pu‖2

‖u‖2
. (13)

Second, if the propagation is performed in free space, with not-evanescent waves and 222

no boundaries, then we have: 223

‖Pu‖2 = ‖u‖2, (14)

since the energy remains the same in the domain. Otherwise, the energy can only leave 224

the domain, in the apodization area for example, or remain constant, thus in all generality 225

we have: 226

‖P‖op ≤ 1. (15)

Note that this result is straightforward considering the 1/
√

r decrease of the field 227

magnitude (2D Green’s function). Therefore, it follows for the reduced field that: 228

∀n ≥ 0, ‖un‖2 ≤ ‖u0‖2. (16)

This means that propagated fields always have a norm less or equal to the previous 229

fields and, in particular, the initial field. Next, the Moyal relation [33] is used to obtain a 230

condition on the wavelet coefficients of the field as follows: 231

∀n ≥ 0, ‖Un‖2 ≤ ‖U0‖2. (17)

Now recall that a compression with a hard threshold is performed at each step with 232

SSW. The threshold is expressed as follows: 233

Vs = vs‖U0‖∞. (18)

Thus, the normalized threshold vs has the same effect as the stopping criterion used 234

in [26]. Moreover, throughout the propagation, this latter value can be changed to reduce 235

the number of backward propagations and thus the computational time. Additionally, a 236

theoretical formula has been obtained to assess the error of compression of SSW with the 237

number of iterations [37]. 238

In conclusion, in SSW the two-way generalization is performed by propagating the 239

backward field initiated with the condition with the one-way SSW method (12) when reach- 240

ing an obstacle. The stopping criterion here is implicit with the compression performed on 241
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the wavelet coefficients. This numerical method is used for large-scale obstacles, such as 242

knife-edge or relief, to account for the multi-path effect and reflections; it is not used for 243

small scale obstacles, such as sea waves, where this effect is negligible. 244

2.3.3. Introduction of Rough Surfaces 245

In this section, we introduce the hybrid method to model a rough sea surface 246

of [34] in SSW. 247

The main idea of the method is to also consider the sea surface geometry and not just 248

an attenuation through a roughness parameter in the reflection coefficient. 249

To consider the sea effect, one uses the sea spectrum, denoted by Sz, such as the Pierson– 250

Moskowitz [38] one or the Elfouhaily [39] one. An example of this latter one is pictured 251

in Figure 2. In this paper, the latter is considered, since it is the more accurate regarding 252

the experimentation data. When considering snowy clutter, a Gaussian spectrum [40] is 253

used as in [41]. In a normal approach, this spectrum is used to compute the roughness 254

coefficient with the Ament [42] or Miller and Brown [43] ones. Thus, roughness surfaces 255

are only accounted for through an attenuation coefficient, and no shadowing effects are 256

considered. In the hybrid method [34], the sea spectrum is divided into two parts. The 257

lowest part allows us to compute the geometry of the sea surface, while the higher part is 258

used to calculate a new roughness coefficient. In the following, we only use the Miller and 259

Brown one, since this is more accurate. 260

Figure 2. Splitting of the Elfouhaily spectrum. The red and blue parts correspond to the high and
low roughness parts, respectively.

For better readability, the method is explained for rough sea surfaces, but the approach 261

remains the same for any other rough surfaces, such as a snow clutter. Firstly the Elfouhaily 262

spectrum is divided in two from the propagation parameters. The division limit is given 263

by: 264

kmax = Nx
2π

xmax
. (19)

This limit is shown in Figure 2. 265

First, we consider the part below the limit kmax, in blue in Figure 2. This lower part of 266

the spectrum is used to generate a random sea surface as follows. A random altitude profile 267

is generated as a Gaussian white noise vector B of size Nx. Then, this latter is convolved to 268

the inverse Fourier transform of the square root of the sea spectrum,
√

Sz corresponding to 269

sea waves, to obtain a random sea surface geometry along the propagation axis x. Note 270

that, for efficiency, the convolution is performed as a product in the spectral domain. Thus, 271

the sea surface geometry z, corresponding to the altitude at each point on the axis x, is 272

given by: 273
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z(x) = F−1
(√

SzF(B(x))
)

, (20)

with F being the Fourier transform operator and F−1 its inverse. Therefore, using (20) 274

random sea surface geometries are generated. Second, the higher part of the spectrum is 275

used to compute the attenuation coefficient as follows, see the red part of Figure 2. The 276

new standard deviation of the low roughness waves is computed with: 277

hsc = 4

√∫ ∞

kmax
Sz(k)dk. (21)

This is used to compute a new Miller and Brown roughness coefficient ρ [34], which is 278

defined as: 279

ρ = exp
(

γ2
r

2

)
I0

(
γ2

r
2

)
, (22)

with γr = 2khsc sin(α), where α is the grazing angle, and I0 is the modified Bessel function
of order 0. The coefficient ρ corresponds to an attenuation due to the roughness of the sea
surface. Finally, the reflection coefficient Z for the local image method is computed as:

Z = ρZ0, (23)

with Z0 being the Fresnel reflection coefficient, see Section 2.3. 280

This method allows us take both the geometry of the surface, the shadowing effects 281

due to the waves, and the roughness and attenuation of the sea into account. This latter 282

factor can also be used to consider terrain roughness with the Gaussian spectrum [40,41]. 283

Note that the surfaces are randomly generated, thus Monte Carlo simulations are used to 284

obtain the effect of the sea on the field in given conditions. 285

2.3.4. Comparison of SSW and SSF 286

In this section, a complete comparison between SSF and SSW in terms of complexity 287

and memory usage is performed. 288

First, we denote by Ns and Np the number of non-zero coefficients of Ux and P. They 289

correspond to: 290

Ns = ]{Ux[i]/ ∀0 ≤ i ≤ Nz, Ux[i] 6= 0}, (24)

Np = ]{P[i, j]/ ∀(i, j) ∈ [0, Nz]
2, P[i, j] 6= 0}. (25)

Given that the signals we are dealing with are smooth functions, these numbers are 291

very low compared to Nz and N2
z , respectively. Moreover, they can be approximated 292

through the formula given in [35]. Using this, and since the signals we are dealing with are 293

smooth, one can see that, for example, Ns is of the order of 10 coefficients. Therefore, in 294

practice with an appropriate threshold we have: 295

Ns � Nz and Np � Nz. (26)

This result has been validated through numerical simulations in [28]. 296

Second, we can compare the memory usage of both methods for each propagation step. 297

In SSF, we need to store the diagonal operator of propagation; thus, we have NSSF
p = Nz. 298

We also need to store the spectral transformation of the field corresponding to NSSF
s = Nz. 299

Thus, in terms of memory efficiency, SSW is better than SSF, given that a good compression 300

is performed. 301

Third, the complexities of both methods are compared for one step of propagation. On 302

one hand, the complexity of the SSF method corresponds to the sum of the complexity of 303

the FFT, the propagation step, and the inverse FFT. This leads to a complexity of: 304

O(Nz log (Nz)) +O(Nz) +O(Nz log (Nz)) = O(Nz log (Nz)). (27)



9 of 22

On the other hand, the complexity of SSW corresponds to: 305

O(Nz) +O
(

NsNp
)
+O(Nz) = O

(
NsNp

)
. (28)

Thus, since NsNp ≤ Nz, when a good compression is applied, the complexity of SSW 306

is also lower than the one of SSF. 307

Therefore, SSW is theoretically better than SSF in terms of both memory and time 308

efficiency, which is useful in our context. Indeed, Monte Carlo simulations are needed to 309

compute the effects of the sea on the propagation. It is also necessary for the generalization 310

to 3D [31,32]. 311

3. Results 312

In this section, numerical simulations are performed. First, we validate the one-way 313

and two-way SSW computational schemes. Second, a propagation test with knife-edge 314

obstacles in the S-band is performed to compare the results to [25,26]. Next, the SSW 315

scheme with the hybrid method is validated with two different scenarios: propagation in a 316

maritime environment and propagation over snowy clutter. Finally, the method is applied 317

on different problematic scenarios, such as the prediction of a radar coverage, optimization 318

of an antenna location, and as the direct method in the RFC context. All these tests are 319

performed at different frequency ranges. 320

3.1. Validation of SSW 321

In this section, we aim to validate one-way SSW by comparing the results to the exact 322

solution for a complex source point (CSP) [13]. 323

Therefore, the propagation from a CSP at f0 = 300 MHz is studied along the x axis. 324

The computations are performed in a domain of size x ∈ [0, 4000] m and z ∈ [0, 2048] m. 325

The steps are ∆x = 50 m and ∆z = λ/2 = 0.5 m along the x and z axes. The source is placed 326

at xs = −50 m and zs = 1024 m with a width of W0 = 5 m. For comparison with the exact 327

solution, we assume n = 1, and the domain has been defined such that the propagation 328

can never reach the ground. The thresholds in SSW are set so as to obtain a maximum 329

compression error of −20 dB at the end. 330

The results are plotted in Figure 3a–c. In the first image, Figure 3a, we have plotted 331

the propagation obtain with SSW. Figure 3b shows the difference between SSW and the 332

exact solution on the computational domain. The last, Figure 3c, pictures the fields at the 333

last iterations obtained with SSW and the exact solution. 334

In Figure 3b, it can be seen that the error between the exact solution and SSW is below 335

−20 dB, which is negligible, as expected. Moreover, the error is mainly outside a cone along 336

the propagation direction, which is due to the paraxial approximation, the compression 337

introduced in SSW, and also to the mesh size as mentioned in [44]. Moreover, one can see in 338

Figure 3c that both fields are matching on the last iteration until −50 dB. Thus, the one-way 339

SSW scheme works well. 340

Furthermore, in this case, the propagation for 80 iterations has been performed in 1 s, 341

and the memory size of the propagator is of the order 1 kB, showing that the method is 342

also efficient. Further studies have been carried out in [28,44] to validate the method; these 343

show the effects of the different parameters. 344
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(a) (b)

(c)

Figure 3. Propagation in free space for comparison with the exact analytical solution of the CSP.
(a) Normalized field obtained with SSW. (b) Normalized difference between SSW and the analytical
solution. (c) Comparison of the exact solution and of the field obtained with SSW at the last iteration.
(a) Normalized reduced field u (dB) obtained with SSW. (b) Normalized difference between SSW and
the exact solution. (c) Exact solution and field obtained with SSW at the last iteration.

In conclusion, the one-way SSW works well and is efficient in terms of both computa- 345

tion time and memory usage. 346

3.2. Validation of the Two-Way SSW 347

In this section, we validate the two-way SSW method. To do so, a plane wave at 348

f0 = 300 MHz (UHF-band) is propagated in the x direction until a PEC of the size of the 349

computational domain is reached. We expect that the total field will be negligible. 350

For this scenario, the domain is of size xmax = 1000 m and z ∈ [0, 1024] m. The mesh 351

size is ∆x = 50 m along the x-axis and ∆z = λ/2 along the z-axis. A PEC wall of 1024 m is 352

placed at xo = xmax. Until this obstacle, we propagate in free-space. Thus, an apodization 353

window below and above the computational domain is used to avoid parasite reflections. 354

In addition, to validate the two-way method, we assume n = 1 to only account for the 355

propagation scheme. We plot the normalized total field in dB, sum of the incident and 356

reflected fields, in Figure 4. 357
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Figure 4. Normalized reduced field (dB) obtained with SSW.

As can be seen in Figure 4, the total field is negligible in the propagation domain, as 358

expected. Indeed, at the PEC wall, where the reflections begin, it is below −60 dB, while 359

increasing to below −35 dB at the origin of the domain. Thus, the two-way version of SSW 360

works well in a canonical test. 361

3.3. Propagation Over Two Knife-Edge Obstacles 362

Now that two-way SSW has been validated, the method is used to compute the 363

propagation over the ground, while considering two knife-edge obstacles, as in [25,26]. 364

Here, the propagation from a complex source point [13] in the S-band, f0 = 3 GHz, 365

is studied. The source is placed at xs = −50 m and zs = 50 m with a width of W0 = 5 m. 366

The computation domain is (x, z) ∈ [0, 60,000]×[0, 512] m2. The steps along both axes are 367

∆x = 200 m and ∆z = 0.1 m. To validate the method in this case, a PEC ground condition is 368

considered, and we assume n = 1. We also consider two knife-edge reliefs placed at 20 km 369

and 40 km at altitude 100 m and 150 m, respectively. Here, the thresholds are set using 370

the theoretical formula in [37], such that a maximum error of −20 dB with SSF is obtained. 371

Note that the thresholds also correspond to the implicit stopping criterion of SSW. 372

The normalized reduced field obtained with the two-way SSW method is plotted in 373

Figure 5b. The results for the one-way version of SSW are also picture in Figure 5a in order 374

to compare both results. 375

(a) (b)

Figure 5. Propagation of the normalized field u (in dB) computed with the one-way and two-way
SSW, respectively. (a) One-way SSW. (b) Two-way SSW.

First, the error between the one-way SSW and SSF is below −45 dB, as expected. 376

Second, with the one-way method, see Figure 5a, only the forward propagation is computed. 377
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Thus, the reliefs induce only shadow areas and diffraction in the propagation direction. 378

As can be seen in Figure 5b, with the two-way algorithm, we also consider the reflections 379

due to the relief. Therefore, the multi-path effect in between the relief is considered here, 380

but the computation time is increased to account for all the backward propagations. Note 381

that only the implicit stopping criterion has been used here, even if the multiple reflections 382

between both obstacles are considered. Additionally, the results are in line with those 383

obtained in [26], showing that the method works well. Therefore, if we want to accurately 384

compute the coverage of a given antenna while accounting for complicated structures, the 385

two-way version is better. Nevertheless, if the computation is limited, for example in the 386

RFC inversion problem, or if only the last iteration is needed, we can use the one-way 387

version of SSW. 388

3.4. Propagation Above the Sea 389

In this section, we validate the one-way SSW method with the hybrid approach for the 390

propagation in a maritime environment. The results are thus compared to the ones obtain 391

with SSF [34,41]. 392

In this scenario, we model the propagation from the Saint-Mathieu Lighthouse (Plougour- 393

den in France) and the airport of Ouessant (France) at f0 = 9 GHz (X-band). The considered 394

source is a CSP placed at (xs, zs) = (−50, 2) m, and its width is W0 = 2 m. The relief 395

between the source and ending points is obtained through the data provided by the "Insti- 396

tut Nationale de l’Informations Géographique et Forestière" (IGN) [45]. Thus, the islands 397

between both places are also considered, such as the island of Molène. 398

The computational domain is of size [0, 26,000] × [0, 123] m2. The mesh sizes are 399

∆x = 50 m and ∆z = 0.03 m along the x and z axes, respectively. For the different ground 400

conditions, we consider the parameters of a dry ground (εr = 20 and σr = 0.02 S/m), for 401

the terrain, and of the water (εr = 80 and σr = 5 S/m), for the sea surface. We generate the 402

sea surface geometry using the hybrid approach described in Section 4. A wind speed of 403

U10 = 10 m/s is considered. We also consider an evaporation duct at the sea surface [46]. The 404

wavelet parameters remain the same for this test. 405

The results are plotted in Figure 6. Figure 6a shows the propagation of the reduced 406

field u computed with SSW. In Figure 6b, we show the normalized difference between SSW 407

and SSF along the propagation. 408

(a) (b)

Figure 6. Propagation above a rough sea surface. (a) Propagation of the normalized field u (in dB).
(b) Normalized difference between SSW and SSF.

First, in Figure 6, one can see that we account for both the effects of the refraction and 409

of the sea surface geometry. Indeed, the electromagnetic waves are straight-lined near the 410

sea, in the surface duct. In addition, one can also note the effects of the surface geometry 411

with the diffractive pattern in the propagation. Second, the error is below −45 dB. Thus, 412
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the SSW with the hybrid approach is validated in this case. Furthermore, the results are in 413

line with those obtained in [34,41]. Finally, only one simulation has been performed here. 414

Since the sea surface generation is random, a Monte-Carlo approach should be considered 415

and is performed in Sections 3.7 and 3.8. 416

To conclude, we note that using this approach allows us to model more precisely the 417

effects of the sea. This is of high importance for the RFC inverse problem [2,3], where an 418

accurate and fast forward model is needed. This latter is studied in Section 3.8 for various 419

sea conditions. This is also of serious concern for the prediction of radar coverage and 420

optimization of antenna location near the sea, as will be seen in Section 3.7. 421

3.5. Two-Way Propagation in Snowy Condition 422

In this section, we test the SSW method while considering snowy ground conditions [41]. 423

In this scenario, we study the propagation from a CSP in the UHF-band ( f0 = 500 MHz) 424

over a snowy ground. The snow dielectric parameters are taken from [47], so as to compute 425

the reflection coefficient for the local image method. Therefore, we have εr = 30 and 426

σr = 3× 10−5 S/m. The hybrid method is used to take into account both the snow surface 427

and the attenuation. A triangular relief is also considered. 428

The source of the parameters remain the same, except that the source altitude is 429

zs = 70 m. Finally, the computations are performed in the following domain: (x, y) ∈ 430

[0, 15,000] ×[0, 308] m2. The mesh sizes along x and z are ∆x = 50 m and ∆z = 0.3 m. 431

The propagation is computed both with the one-way and two-way SSW methods. For the 432

two-way method, to avoid unnecessary computations, backward computations are only 433

computed for reliefs of more than 2 m in altitude. Finally, the wavelet parameters remain 434

the same. 435

The results are plotted in Figures 7 and 8, for the propagation computed with one-way 436

and two-way SSW, respectively. The normalized reduced field on the overall domain 437

is shown. 438

Figure 7. Propagation over a rough terrain obtained with one-way SSW.
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Figure 8. Propagation over a rough terrain obtained with two-way SSW.

First, one can note the interest of using the hybrid approach. Indeed, the effect of 439

the roughness of the snow clutter can be seen as an interference pattern due to the relief 440

introduced by the snow surface. Second, for both methods, as expected, the results beside 441

the triangular relief are the same. Nevertheless, in front of the relief, the two-way method 442

allows us to consider the reflection toward the source. Thus, we have obtained an accurate 443

propagation method in various environments. 444

3.6. Application to the Prediction of Radar Coverage 445

In this numerical experiment, the two-way SSW method is applied to predict the 446

coverage of the Toulouse airport radar (France) in one direction. 447

To do so, we model the antenna propagation pattern as a CSP [13] in the VHF band (at 448

f0 = 300 MHz). The parameters of the source are as follows : xs = −50 m, zs = 10 m and 449

W0 = 5 m. The 2D propagation between the Toulouse airport and Montauban is modeled 450

here with the two-way SSW method and the SSF scheme in order to compare them. The relief 451

between the two places is taken into account using IGN data [45]. To account for a realistic 452

effect, a tropospheric duct modeled with a tri-linear profile of refraction [46] is accounted for. 453

The parameters for M are M0 = 330 M-units, zb = 300 m, and zt = 250 m, and the gradients 454

are c0 = 0.118 M-units/m and c2 = −0.5 M-units/m; see Figure 9 for a presentation of 455

the parameters. 456
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Figure 9. Tri-linear profile of atmosphere.

This latter models a tropospheric duct as a three layers refractive index that varies 457

linearly in each layer with a different gradient. Thus, zb corresponds to the altitude until 458

the first change of gradient from c0, positive, to c2, negative, and zt to the transition altitude, 459

with zb + zt the altitude of the second change of gradient from c2 to c0. 460

The computational domain is of size x ∈ [0, 42, 000] m and z ∈ [0, 512] m and sampled 461

with steps ∆x = 100 m and ∆z = 0.5 m. We consider a dielectric ground condition of 462

parameters εr = 20 and σr = 0.02 S/m, which correspond to the conditions of a dry ground. 463

Finally, the wavelet parameters remain the same. 464

For this scenario, we first plot in Figure 10a,b the field computed with the one-way and 465

two-way schemes, respectively. Second, the normalized difference between both schemes 466

is pictured in Figure 11. 467

(a) (b)

Figure 10. Prediction of the radar coverage for the Toulouse airport using the one-way and two-way
methods. (a) One-way method. (b) Two-way method.
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Figure 11. Normalized difference between the one-way SSF and two-way SSW schemes along
the propagation.

Figure 10 shows the differences in the prediction of the radar coverage between the 468

one-way and two-way methods. Indeed, in between both reliefs the two-way SSW scheme 469

takes into account the backward propagation. Thus, an interference pattern appears, but no 470

shadowy areas above 300 m appear due to the multiple reflections, which is very important 471

in the context of radar coverage. Therefore, a landing plane, such as the gray one, is spotted 472

by the radar. Otherwise, after 20 km, one can see that both methods give the same result. 473

Moreover, the difference between both methods is small, as can bee seen in Figure 11. Thus, 474

even with the reflections, an airplane can be spotted. 475

Note that, as pictured in Figure 11, the difference between both schemes is localized in 476

between the relief, as expected, and is of order −10 dB, which is small. Moreover, the error 477

after the second relief is due to the compression introduce in SSW. Therefore, the choice 478

between the two-way and one-way schemes to predict radar coverage mostly depends on 479

the environment. If more reliefs, such as metallic structures, are considered, then reflections 480

are important and should be considered even if the computation time increases. 481

Nevertheless, this scenario shows that the method works well and is useful to compute 482

radar coverage in given conditions. 483

3.7. Application to the Optimization of an Antenna Location 484

We now study the propagation in a maritime environment, as in [34,41]. In particular, 485

we apply the SSW method with the hybrid approach for the sea to optimize the antenna 486

location for given conditions. 487

For the following tests, the propagation is studied in the X-band with f0 = 9 GHz. 488

The source is placed in the harbor of Toulon (France). Thus, the propagation is modeled 489

above the Mediterranean sea until 20 km from the source. The propagation domain is, 490

thus, of size x ∈ [0, 20, 000] m and z ∈ [0, 125] m. The considered source is a CSP placed at 491

xs = −50 m with a width of 2 m. The altitude of the source above the ground will vary 492

along the numerical tests and is the parameter to be optimized here. The goal is to obtain 493

the best possible coverage. The steps are as follows: ∆x = 50 m and ∆z = 0.03 m. 494

The sea dielectric parameters are εr = 80 and σr = 5 S/m [47]. Sea surfaces and the 495

attenuation parameters are computed through the hybrid approach using the Elfouhaily 496

spectrum. We consider a wind speed of U10 = 10 m/s. Since the surface generation is 497

random, 50 Monte-Carlo simulations are performed. 498

We also consider a tropospheric duct above the sea, modeled with a tri-linear atmo- 499

spheric index [46]. The parameters are as follows : M0 = 330 M-units, zb = 20 m, and 500

zt = 50 m, and the gradients are c0 = 0.118 M-units/m and c2 = −0.5 M-units/m. The 501

wavelet parameters remain the same. 502

We first consider an antenna located zs = 5 m above the ground. In this case, the 503

predicted coverage is plotted in Figures 12 and 13. In these figures, we plot the mean of 504
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the sum of the 50 reduced fields obtained through the Monte-Carlo simulations and the 505

worst-case scenario in terms of ship detection, respectively. 506

Figure 12. Mean reduced field over 50 Monte-Carlo simulations computed with the SSW method. In
this case the source is placed zs = 5 m above the ground.

Figure 13. Worst-case scenario for the antenna coverage in terms of ship detection. In this case the
source is placed zs = 5 m above the ground.

From the results pictured in Figures 12 and 13, we can conclude there is a shadowy 507

area at 15 km where ships would not be spotted, as pictured with a gray ship that can not 508

be seen. Thus, the coverage of this antenna needs to be improved. In order to do so, we 509

change the antenna location to zs = 20 m above the ground. 510

As before, we plot in Figure 14 the mean of the sum of the field obtained through 50 511

Monte-Carlo simulations with the SSW scheme. As before, we also plot the worst-case 512

scenario in Figure 15 to verify that a ship will still be detected. 513
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Figure 14. Mean reduced field over 50 Monte-Carlo simulations computed with the SSW method. In
this case the source is placed zs = 20 m above the ground.

Figure 15. Worst-case scenario for the antenna coverage computed with the SSW method. In this case
the source is placed zs = 20 m above the ground.

The first conclusion from Figure 14 is that, by changing the antenna location, shadowy 514

areas are no longer seen around the sea, even in the worst case scenario, see Figure 15. 515

Therefore, any ship, such as the gray one, can be spotted in this case. Nevertheless, in this 516

case, the propagation is more stuck in the tropospheric duct, and less energy exists above 517

60 m. This is not a problem in our context (ship detection). 518

This scenario shows that the method is also useful for the optimization of an antenna’s 519

location. Obviously more tests in different conditions should be performed to conclude 520

on the final antenna position. Furthermore, if the antenna altitude can be changed, this 521

method allows us to find a good position given the location conditions. 522
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3.8. Forward Model for the RFC Problem 523

In this last numerical test, we study the propagation above the sea from the antenna 524

of a ship, which corresponds to the forward model of RFC [2,3]. The main objective is to 525

show that the surface geometry must be taken into account in this context. Thus, different 526

conditions of wind to generate the sea surface are studied. Moreover, in the RFC scenario, 527

the goal is to have a fast forward model, thus we use the one-way SSW scheme. 528

Here, the propagation above the sea from a CSP at f0 = 9 GHz (in line with the 529

frequency used in RFC [48]) is modeled. The sea surface is generated through the hybrid 530

approach of Section 2.3 for different wind speeds U10 ∈ [5, 10, 15, 20] m/s. 531

For all wind conditions, the following parameters are the same. The source is located at 532

xs = −50 m and zs = 10 m above the ground (on the top of the ship). Its width is W0 = 2 m. 533

The computational domain is of size (x, y) ∈ [0, 20, 000]× [0, 123] m×m. The discretization 534

is performed with steps ∆x = 50 m and ∆z = 0.03 m. We consider an impedance ground 535

condition of parameters εr = 80 and σr = 5 S/m that corresponds to the parameters of 536

water. We also consider a surface duct of 20 m. The wavelet parameters are the same as in 537

the previous tests. Finally, for each wind speed, 50 Monte-Carlo simulations are performed. 538

In Figure 16a–d, we plot the means of the propagated field over all Monte-Carlo 539

simulations for the different wind speeds U10 ∈ [5, 10, 15, 20] m/s, respectively. 540

(a) (b)

(c) (d)

Figure 16. Means of the propagated fields over 50 Monte-Carlo simulations for different wind speeds.
(a) U10 = 5 m/s. (b) U10 = 10 m/s. (c) 15 m/s. (d) 20 m/s.

Figure 16 shows the effects of different sea surfaces geometry on the propagation 541

of electromagnetic waves. Indeed, for different wind speeds the sea waves are stronger, 542

thus the propagation is affected. As can be seen, the radiation lobes throughout the 543

propagation are different between the four figures (a) through (b). As a matter of fact, the 544

more the wind speed increases, the fewer lobes are presents, but the first lobe becomes 545
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larger. As can be seen in Figure 16 (d), we only have one lobe for a high wind speed. In 546

the RFC scenario [2,3], we measure the field at the last iteration in order to retrieve the 547

refractive index. Thus, if the sea geometry is not accounted for, one can see that error 548

would be introduced in the forward model. 549

4. Discussion 550

Characterizing the propagation canal is very important for many applications, such as 551

radar, teledetection, or communications. In this context, one needs to model the long-range 552

propagation in the troposphere while accounting for the relief and the ground composi- 553

tion and roughness. Thus, fast, accurate, and memory-efficient computational methods 554

are needed. To improve the accuracy of the existing SSW method, we have introduced 555

here a two-way version of SSW in order to consider back-propagations. Furthermore, a 556

hybrid approach to consider rough surfaces has been introduced to SSW. In addition, this 557

method is better both in terms of memory efficiency and computation time than the usual 558

SSF method. 559

First, the two-way PWE has been introduced. This allows us to take into account 560

both the forward and backward propagations, while the usual PWE only considers the 561

forward part. Second, the SSW scheme is introduced to solve the two-way PWE. We 562

show that no explicit stopping criterion is needed, since the compression introduced in the 563

wavelet decomposition works as an implicit stopping criterion. A complete comparison 564

between SSF and SSW in terms of time and memory efficiency is proposed. This shows 565

that, with good compression, SSW is better than SSF in both parameters. Finally, numerical 566

experiments are performed. They allow us to validate the method and show that two- 567

way SSW works well in various conditions (relief, sea, snow) and at various frequencies 568

(UHF-band, S-band, X-band). Applications of the method in different scenarios, such as the 569

optimization of an antenna location or the prediction of radar coverage, are also proposed. 570

We have thus shown that the newly developed two-way SSW is efficient for modeling 571

the tropospheric long-range propagation in various environments and useful for different 572

applications. Indeed, the low complexity of the wavelet transform and the compression 573

introduced in SSW allow us to obtain an accurate and a memory- and time-efficient numeri- 574

cal scheme. Additionally, using the wavelet properties, the stopping criterion for backward 575

propagation is implicit and can be changed throughout the propagation, departing from 576

the two-way SSF. This adds versatility to the method. Furthermore, ground conditions and 577

roughness are considered with this scheme, with no cost on the computation time. 578

Nevertheless, this method has limitations. First, the complexity and memory usage 579

rely mostly on the compression. Thus, if the signal we are dealing with is not smooth, then 580

the computation time increase. In addition, taking into account the backward propagations 581

with the two-way SSW scheme increases the computation time. Thus, given the scenario 582

and the accuracy needed, a choice between the one-way or two-way computational method 583

must be performed. Secondly, the method solves the wide-angle PWE, and the results are 584

valid in a cone of around 40◦. Third, the reliefs considered are limited in slope, since the 585

method is (for now) only developed for the staircase model. More reliable models of terrain 586

are under study, but this induces a change in the wavelet-to-wavelet propagator and in the 587

initial condition for the two-way SSW method. Finally, some physical phenomena are not 588

considered, such as the diffusion or complex interaction of the electromagnetic waves with 589

the sea waves. 590

Further works include more numerical tests. This could also lead to a basis of numer- 591

ous computed propagations for different inputs (ground condition, sea surface geometry, 592

refraction, etc.), which could be useful for inverse-problem or artificial intelligence-based 593

propagation schemes [49]. We are also investigating how to efficiently parallelize the 594

two-way version of SSW. Furthermore, other applications of this method should be stud- 595

ied, such as the ionospheric propagation with SSW [50]. We are also investigating a 596

hybridization of SSW with a wavelet-based method of moments (MoM) [51], similar to 597

SSF with the MoM [52], for a better accuracy when dealing with relief and man-made 598
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structures. To conclude, the generalization of the approach to 3D [31,32] would be an 599

evolution of the proposed work. 600
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