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Introduction

The tropospheric long-range propagation is a topic of major interest for a large number of applications in communication, surveillance, and navigation. The parabolic wave equation (PWE) model [START_REF] Levy | Parabolic Equation Methods for Electromagnetic Wave Propagation[END_REF] is widely used in this context. In the literature, the PWE is iteratively solved with split-step Fourier (SSF) by going back and forth in the spectral and spatial domain [START_REF] Dockery | An improved impedanceboundary algorithm for Fourier split-step solutions of the parabolic wave equation[END_REF][START_REF] Kuttler | Improved Fourier transform methods for solving the parabolic wave equation[END_REF]. This method allows to make large steps in the propagation direction [START_REF] Levy | Parabolic Equation Methods for Electromagnetic Wave Propagation[END_REF].

To accelerate the computation, wavelet-based methods have been proposed in optics [START_REF] Kremp | Fast split-step wavelet collocation method for WDM system parameter optimization[END_REF] and electromagnetics [START_REF] Iqbal | An improved split-step wavelet transform method for anomalous radio wave propagation modeling[END_REF][START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF][START_REF] Bonnafont | A local splitstep wavelet method for the long range propagation simulation in 2D[END_REF]. Recently, an efficient split-step wavelet method (SSW) [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF][START_REF] Bonnafont | A local splitstep wavelet method for the long range propagation simulation in 2D[END_REF][START_REF] Bonnafont | Split-step wavelet with local operators for the 3D long-range propagation[END_REF] has been introduced to solve the PWE in electromagnetics in both 2D and 3D. This method computes the field by marching on in distances as SSF, but the propagation is performed in the wavelet domain instead of the spectral domain. Each iteration follows two steps. First, the field is decomposed in the wavelet domain and compressed, introducing the signal compression error (threshold V s ). Second, the coefficients are propagated using a compressed wavelet-to-wavelet propagator, introducing the propagator compression error (threshold V p ). These errors accumulate throughout the propagation and need to be quantified. Indeed, Zhou et al. [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF] have shown that SSW is faster than SSF if a good compression is performed.

The main contribution of this letter is that we derive a theoretical formula of the accumulated compression error after N x iterations. This allows to set both thresholds a priori for a given accuracy and scenario. We also show that the heuristic formula proposed in earlier works [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF][START_REF] Zhou | Modeling the atmospheric propagation of electromagnetic waves in 2-D and 3-D using Fourier and wavelet transforms[END_REF] is too optimistic.

For conciseness, the method and the proof are developed in 2D. Nevertheless, the results remain valid in 3D using similar calculations. After a general presentation of SSW (Section 2), the error formula is derived (Section 3) and tested via numerical experiments (Section 4) in 2D.

Overview of split-step wavelet

Configuration and discretization

In this article, an exp( jωt) time dependence is assumed, where ω is the angular frequency. The domain is 2D of size [0, x max ] in x and [0, z max ] in z. The field is known at x = 0 and the source is placed at x ≤ 0. On the z-axis a sampling is made with z p z = p z ∆z and p z ∈ {0, • • • , N z -1}. On the x-axis a sampling is made with x p x = p x ∆x and p x ∈ {0, • • • , N x -1}.

Brief reminder of the discrete wavelet transform

The wavelet family is computed by dilating and translating a mother wavelet of zero mean on L levels [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]. Dilations allow covering the lower parts of the spectrum. To obtain an orthonormal basis, a scaling function of nonzero mean is added. This function covers the lowest part of the spectrum. Using this basis, a multi-level decomposition is obtained. We recall one important property of the wavelets used in the following demonstrations. The number of vanishing moments n v of a wavelet ψ is defined as

∀k ∈ [0, n v ], z k ψ(z)dz = 0. ( 1 
)
This property describes how well a wavelet decomposition can approach a smooth function with few coefficients.

An overview of SSW

SSW computes the field iteratively by going back and forth from the wavelet to the spatial domains. As for the SSF, the refraction and relief are taken into account in the spatial domain, thus we only describe the free-space propagation part. The initial field u 0 is supposed known. Denoting u p x the field and U p x its wavelet decomposition at distance p x ∆x, a step of SSW is computed as follows. First the wavelet coefficients U p x are computed by applying a FWT on u p x (denoted W). Then, the coefficients are compressed (operator C V s ) with a hard threshold V s (i.e., all coefficients below V s are set to 0). A sparse vector of size N z is obtained. This first compression repeated on N x horizontal steps induces an error term denoted by δ s N x . Then, the coefficients are propagated using a precomputed matrix P

U p x +1 = PC V s U p x . (2) 
This sparse matrix contains all the wavelet-to-wavelet propagations and is of size (N z , N z ) [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF]. A compression with hard threshold V p is performed. Iterated N x times, this second term of error in the method is denoted by δ m N x . The free-space propagated field is obtained by coming back in the space domain using an inverse FWT. The total compression error is denoted by δ N x = δ s N x + δ m N x . In [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF] the experimental upper bound was supposed to be of order N 0.5

x V s and N x V p for the signal and propagator compressions, respectively. We derive here new and more accurate expressions.

Derivation of the compression error formula

In the following section, we introduce the normalised thresholds v s and v p such that V s = v s U 0 ∞ and V p = v p P max [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF]. We also remind that the operator norm of P corresponds to

P op = sup U =0 PU 2 / U 2 . (3) 
From power conservation, the operator norm of the freespace propagator P is equal to 1 ( P op = 1). If there are no evanescent waves and the propagation does not reach any boundaries, then we have Pu 2 = u 2 . In other cases (apodization, environment losses, evanescent waves, ...), then we have Pu 2 ≤ u 2 .

Signal compression error

The objective of this section is to study how the signal compression error accumulates with N x . We first assume that V s = 0 and V p = 0. The propagator has no compression. The error due to the threshold V s on signal (operator C V s ) after N x iterations is defined by

δ s N x = ŨN x -U N x 2 / U 0 2 , (4) 
with ŨN x = (PC V s ) N x U 0 and U N x = P N x U 0 the compressed and uncompressed propagated coefficients, respectively.

For one iteration, the error is given by

δ s 1 = PC V s U 0 -PU 0 2 / U 0 2 . (5) 
We introduce ε 0 the compression term due to C V s defined by

C V s U 0 = U 0 + ε 0 . (6) 
Using ( 3) and introducing ( 6) in ( 5) we obtain δ s 1 ≤ ε 0 2 / U 0 2 . For the smooth signals we are manipulating the wavelet coefficients decrease exponentially to 0 [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF]. Therefore, we rewrite the norm of the error as follows

ε 2 2 = v 2 s U 0 2 ∞ N z -M-1 ∑ m=0 |ε 0 m | 2 , (7) 
with the coefficients |ε 0 m | ≤ 1 corresponding to the normalised amplitudes of the wavelet coefficients of the error indexed in decreasing order, and M N z the number of significant coefficients. Following [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF][START_REF] Devore | Compression of wavelet decompositions[END_REF], error components are bounded by

|ε 0 m | ≤ C ε (m + 1) -n v , (8) 
with m ∈ [0, N z -M -1], n v the number of vanishing moments and C ε a constant depending only on the smoothness of the field and of the wavelets. Putting ( 8) in [START_REF] Bonnafont | A local splitstep wavelet method for the long range propagation simulation in 2D[END_REF], an upper bound for ε 0 2 is obtained

ε 0 2 ≤ v s U 0 ∞ C ε N z -M-1 ∑ m=0 (m + 1) -2n v . (9) 
For n v ≥ 2 the sum converges close to 1 (e.g. for n v = 2 the sum is about 1.082). Also, C ε is inferior or close to 1 as illustrated with numerous numerical tests in Section 4 and in [START_REF] Bonnafont | Modeling the atmospheric long-range electromagnetic waves propagation in 3D using the wavelet transform[END_REF]. Thus, the bound on the error due to signal compression after one iteration is given by

ε 0 2 v s U 0 2 and δ s 1 v s , (10) 
where means inferior or close to as widely used in the wavelet community [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF]. In practice, this result shows a very good accuracy with numerous numerical tests performed in [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF][START_REF] Sarkar | Wavelet Applications in Engineering Electromagnetics[END_REF].

For 2 iterations, we compare the propagations with and without compression

δ s 2 = (PC V s )(PC V s )U 0 -PPU 0 2 / U 0 2 . ( 11 
)
We define the second compression error ε 1 such as C V s PU 0 + Pε 0 = PU 0 + Pε 0 + ε 1 . The expression of the error is calculated as

δ s 2 = PPU 0 + PPε 0 + Pε 1 -PPU 0 2 / U 0 2 , ≤ ε 0 2 + ε 1 2 / U 0 2 . (12) 
Supposing ( 10) is true for the 2nd iteration, we obtain

ε 1 2 / U 0 2 v s ( U 0 2 + ε 0 2 )/ U 0 2 . (13) 
Since, with appropriate threshold, ε 0 2 is negligible to U 0 2 , we have δ s 2 2v s . By induction, the signal compression error after N x horizontal iterations fulfills

δ s N x N x v s . (14) 
The appropriate threshold V s = v s U 0 ∞ can now be computed with [START_REF] Bonnafont | Modeling the atmospheric long-range electromagnetic waves propagation in 3D using the wavelet transform[END_REF]. The same study is now performed on the error due to the compression of the propagator P in (2).

Propagator compression error

We now assume that V s = 0 and V p = 0. The error δ p N x due to the compression of the propagator after N x iterations is studied. It is defined by

δ p N x = ŨN x -U N x 2 / U 0 2 , (15) 
where ŨN x corresponds to the coefficients propagated N x times with the compressed operator denoted as P + ∆P.

From [8, pp 29-32], we have the norm operator of ∆P bounded by

∆P op = sup U =0 ∆PU 2 / U 2 ≤ v p . ( 16 
)
For one iteration the expression of the error is given by

δ p 1 = Ũ1 -U 1 2 / U 0 2 = ∆PU 0 2 / U 0 2 . ( 17 
)
Following ( 16), we have δ p 1 ≤ v p . This result is in line with the one obtained for optics [START_REF] Kremp | Fast split-step wavelet collocation method for WDM system parameter optimization[END_REF].

Using the same notations and methodology as for 1 iteration and since P op = 1, we obtain for 2 iterations using (16)

δ p 2 = Ũ2 -U 2 2 / U 0 2 , ≤ ∆PPU 0 2 + P∆PU 0 2 + ∆P 2 U 0 2 U 0 2 , ≤ 2v p + v 2 p . ( 18 
)
Neglecting the term v 2 p (v p 1), δ m 2 is shown to be smaller than or close to 2v p . By induction, we finally obtain

δ p N x v p N x . (19) 
Formula (19) allows to choose the adequate threshold V p for a given error and scenario.

Assuming that both errors are independent, we finally derive a closed-form expression for the accumulated compression error δ N x (v s + v p )N x . In practice, for a given maximum expected error δ max N x and number of iterations N x , the normalised thresholds are computed as

v s = δ max N x /(2N x ) and v p = δ max N x /(2N x ). (20) 
Thus, we derive the unnormalised thresholds

V s = δ max N x 2N x U 0 ∞ and V p = δ max N x 2N x P max . (21) 

Numerical tests

In this part, numerical experiments are performed to show that the thresholds v s and v p can be managed to assess a given final accuracy for a certain number of iterations N x , using expressions (20). First, a short-range simulation in free-space is performed to assess the accuracy of the formulas. Second, we perform a long-range simulation with relief and refraction.

Free-space scenario

We perform the tests in 2D. The source is a uniform aperture at f 0 = 300 MHz of size 10 m and is placed at z s = 1024 m in a domain of vertical size z max = 2048 m. The domain is of horizontal size x max = 2000 m. The steps are ∆x = 20 m and ∆z = 0.5 m. Thus, we have N x = 100. For the wavelet parameters, the symlet with n v = 6 and a maximum level of L = 3 are chosen.

The RMS error between compressed and uncompressed propagations is computed for different values of N x and compared to the closed-form formulas. Thresholds are set to v s = v p = 1.6 × 10 -4 using (20) so as to obtain an error of -30 dB at the final range.

First, we compute and plot in Figure 1 the constant C ε ε 2 /V s at each step N x . This shows that the constant is inferior to or close to 1. Indeed, in this case, the field is smooth. The approximation proposed in Section 3.1 is relevant. The RMS error is computed and given in Figure 2. As expected, Figure 2 shows that the closed-form formula for the compression error is never reached. The computed thresholds allow to bound the error below the desired maximum. We also compute a linear regression to find the optimal α such that δ s N x ∼ v s N α x and δ p N x ∼ v p N α x . For the signal compression, we obtain α = 0.96 slightly lower than the value proposed here, i.e., 1, but greater than the heuristic value proposed in [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF], i.e, 0.5. This shows that the heuristic formula proposed in [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF] was too optimistic. For the propagator, α = 0.97 is obtained, close to the value proposed here and in [START_REF] Zhou | Modeling the longrange wave propagation by a split-step wavelet method[END_REF].

Numerical tests show the relevancy of the proposed formulas (20). Therefore, it can be used to tune the thresholds needed in SSW to obtain a given accuracy. In the next section, a numerical test in realistic conditions is performed.

Realistic scenario

The propagation of a complex source point (CSP) in a domain with a trilinear atmosphere and two triangular reliefs is computed. The CSP parameters are: a frequency f = 300 MHz, with coordinates x w0 = -50 m and z s = 50 m, with a waist size of W 0 = 5 m. We consider an atmosphere described by a trilinear duct [START_REF] Gossard | Radar observation of clear air and clouds[END_REF] In Figure 3, the field in dBV/m is plotted in (a) and the RMS error evolution is plotted in (b). We can see that the bound is not reached and that the final error is significantly smaller than the desired error. This is mostly due to the apodization layer in which energy is leaving the computational domain, reducing the total error. Therefore, our formula is conservative in a realistic domain, as expected. 

Conclusion

In this letter, we have derived a closed-form expression for the accumulated compression error in split-step wavelet (SSW). This formula allows to tune the thresholds V s and V p for a given accuracy.

First, we have given an overview of SSW to show where thresholds are applied. The compressions on the signal V s on the propagator V p introduce errors. We derived how each error accumulates while iterating to obtain a closed-form expression for the compression error. This latter allows to set a priori V s and V p for a given accuracy and scenario. Finally, numerical tests in 2D have been performed. Our proposed bounds are never reached, as expected, which shows their relevancy.

To conclude, the expression obtained in this article for the accumulated compression error is used in SSW [START_REF] Bonnafont | Split-step wavelet with local operators for the 3D long-range propagation[END_REF] to tune V s and V p for a given accuracy.
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 1 Figure 1: Evolution of C ε with N x .
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 2 Figure 2: Evolution of the RMS error.

  of base height z b = 241 m, thickness z t = 391 m and gradient c 2 = -0.5 M-units/m in the duct and c 0 = 0.118 Munits/m elsewhere. On the ground, we choose M 0 = 330 M-units. The relief is chosen as 2 small triangles of heights 100 m and 200 m. The impedance ground is of parameters ε r = 20.0 and σ = 0.02 S/m. The domain is of size x max = 100 km in horizontal and z max = 2048 m in vertical. An apodization window is added on top of the domain. The grid size is 200 m in horizontal and 0.5 m in vertical. We aim at obtaining an error of -30 dB at the final iteration. From (20) we apply the thresholds v s = v p = 3.16 × 10 -5 .

  (a) Field obtained with SSW (dBV/m). RMS error (dB) (b) RMS error (dB).
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 3 Figure 3: Results for the realistic test case.