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Abstract The determination of the velocities, accelerations and the gravitational field
intensity at a given location in a galaxy could potentially be achieved in an unexpected manner
with the environment of the observer, for instance, the local mean mass density in the galaxy.
This idea, mathematically supported by the asymmetric distance concept, is illustrated here by
a study regarding the rotation of spiral galaxies. This suggestion is new in the astrophysics
field (in the following, it is called the κ-model) and could help to mimic the main effects seen
in modified Newtonian dynamics (MOND) theory, modified gravity (MOG) models, or other
related models built with the aim of eliminating dark matter that are already well-established
theories. Thus, starting from selected examples of galaxies, in sections 5, 6 and 7 we show that
there is an equivalence between MOND and the κ-model. In particular, on the opposite side, we
have the speculative nature of the dominant paradigm, the elusive dark matter, a matter whose
properties always remain undefined despite intense theoretical, experimental and observational
efforts for over 50 years.
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1 Introduction

Alternative theories to dark matter attribute the flatness of the galactic rotation curve either
to a departure from the law of inertia (modified Newtonian dynamics (MOND)) in the very
low acceleration regime (Milgrom, 1983, 2009) or to a failure of Newtonian gravity at a large
scale, emulated by a variable gravitational constant G (Moffat, 2006, 2008), and neither invoke
an additional very large quantity of dark matter. Many other models that do not involve dark
matter have also been proposed (Capozziello and De Laurentis M., 2012; O’Brien and Moss,
2015; Ludwig, 2021). One of them, conformal gravity (CG), has generated extensive interest
since it claims to explain the flat rotation curve of galaxies without dark matter. The majority
of the CG is based on the Mannheim-Kazanas vacuum solution of the CG field equations for
a static, spherically symmetric spacetime (Mannheim and Kazanas, 1989). Nevertheless, the
conformal equivalence of the Mannheim-Kazanas and Schwarzschild–de Sitter metrics strongly
suggests that the prediction of a flat rotation curve for the galaxies by this type of model may be
a gauge artifact since performing a similar analysis in the Schwarzschild–de Sitter metric yields
rotation curves without any flat region (Hobson and Lasenby, 2021).

Negative masses have also been invoked (Farnes, 2018; Benoit-Lévy and Chardin, 2012;
Manfredi, Rouet, Miller and Chardin, 2018). However, a careful analysis of the negative mass
concept identifies a number of incompatibilities with existing observations (Socas-Navarro, 2019).
Regardless, we can ask what is the benefit of replacing an unobserved exotic entity, i.e., dark
matter, with another unobserved, even more exotic entity, for instance, a fluid composed of
negative mass. On the other hand, a correlation between the radial acceleration traced by
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rotation curves and that predicted by the observed distribution of baryons has been reported
(McGaugh, Lelli and Schombert, 2016). This radial acceleration relation seems tantamount to
a natural law for rotating galaxies and is not compatible with the hidden presence of a large
amount of exotic mass.

There are other channels that have yet to be explored. The assumption developed in the
present paper, namely, that both gravitational field intensity and the measurement of the veloc-
ities and accelerations of a particle could depend on the mean mass density estimated in a given
location, has not been considered thus far. However, this idea, even though very simple, offers
new perspectives because of its originality and its various consequences (Pascoli, and Pernas,
2020). The key strengths of this concept are as follows:

1. The basic elements of this assumption are very natural and reside within the framework of
the Newtonian mechanics. Let us recall that Newtonian mechanics is relevant only when
the velocities are low and the gravitational field is weak, but this is the case here, even
though the model can still be derived from a relativistic context1. The concept, hereinafter
named the κ-model, postulates an enhancement, resp. a diminution, of the self-gravity in
the regions where the mean mass density is weak, resp. high, in a galaxy. An associated
effect is that the measured distances become apparent and asymmetric. This statement
is not explicit in the context of either the MOND paradigm (Milgrom, 1983, 2019) or
modified gravity (MOG) theories (Moffat, 2006, 2008). In addition, the κ-model remains
in the strict framework of a preserved Newtonian law of gravity, at least from a formal
point of view. More generally, all the physical laws, locally expressed, remain unmodified
in the κ-model.

2. The persistence of a spiral substructure in ”grand design” galaxies and the flatness of the
rotation curves are shown to be interrelated in an unexpected manner.

3. Some problems such as the bullet cluster that are seemingly difficult to solve in the frame-
work of the various alternatives to the dark matter paradigm (for instance, MOND) could
perhaps be naturally explained under this framework. This is because gravity, where it
acts, is now modulated by the local mean density. Another issue is related to the accel-
erating expansion of the Universe (Frieman, Turner and Dragan, 2008; Weinberg, 2008).
However, this problem could also be solved in the framework of the κ-model, eventually
leading from two distinct paradigms (dark matter and dark energy) to a single one. All
these important issues, where a possible density-dependent aspect of the gravitational
force is put in evidence, are considered later.

2 The κ-model

The equations of this framework are the usual Newtonian (nonrelativistic) equations, except
they are weighted by a coefficient κ, as explained immediately below 2. For a system composed
of N identical particles of mass m (index i = 1..., N), we write

d

dt

(
κi[ρ̄]

dσi

dt

)
= −Gm

N∑
j=1, j ̸=i

κi[ρ̄](σi − σj)

[κi[ρ̄] ∥σi − σj∥ ]3
(1)

1See(Pascoli, and Pernas, 2020) for an attempt to develop the κ-model in a relativistic context.
2The relativistic expression is not useful here, even though the relativistic transcript would be easy to form in

the kappa model framework.
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2.1 A formal deduction of equation (1) from the gravitational Newtonian law

Here, we start with the Newton gravitational law, as it is confirmed to be accurate at the local
level (the solar system). Let us define two very distant particles M and M ′ with respective
masses m and m′, denoted by the vectors R and R′ (arbitrary origin). We write formally for
the particle M , assuming that the gravitational constant G is universal

dP

dt
= −Gmm′ (R−R′)

∥R−R′∥ 3

where P is the momentum of particle M , and we can write a similar equation for M ′. At
this stage, there is no observer (no reference frame) to measure the kinematic quantities. As
is well known in mechanics, without a reference frame, both the velocity and acceleration are
undetermined. Likewise, dP

dt cannot be added to dP′

dt apart from in a purely formal manner. In
addition, in the κ-model, the norms of R and R′ are now themselves left undetermined. Thus,
in To solve this pair of equations, we must choose a representation: a fictitious inertial observer
A is assumed to be located near M (resp. B near M ′), each of these observers is equipped with
a scale factor κ (resp. κ′). Then, A locally expresses R,R′ and P: R −→ κσ, R′ −→ κσ′

and P −→ κ(mdσ
dt ), and B does the same thing but with a scale factor κ′. We can note that

there exists some – even though obviously very remote – mathematical analogy with quantum
mechanics when we pass from the operational notation to the Schrödinger representation for the
position R and momentum P of a point particle (R̂ −→ R, P̂ −→ − iℏ∇).

The scale factor (the mathematics) is then linked to the mean density by equation (2)
introduced below (the physics). Eventually, we assume that the fictitious (inertial) observers
A and B are motionless with respect to each other, an assumptions that is easily verified by
spectroscopic measurements. Another deduction of equation (1) issued from the variational
principle is given in appendix A.

2.2 Coefficient κ

In equation (1), the coefficient κ is no longer a constant (equal to κE) as in the basic Newtonian
equations. In contrast, κ is now defined as a functional of the mean local density ρ̄3. Obviously,
at the local scale from our perspective, i.e., at the scale of the Earth or the solar system, we
can take κi = κE = Const, ∀i and analyze a group of particles contained in the solar system
(planets, asteroids, etc.); these equations exactly express the usual Newtonian law.

By considering the fact that κ is assumed to be a smooth linear function and that ρ̄ is an
exponential function in a typical galaxy (Binney and Merrifield, 1998), it appears intuitive to
impose a natural and simplest form, i.e., a logarithmic relationship between κ and ρ̄. Let

κ[ρ0]

κ [ρ̄]
= 1 + Ln(

ρ0
ρ̄
) (2)

where the index 0 labels the maximum value of the density distribution (Ln is the symbol for
the Napierian logarithm). This law is assumed to be universal and available for any galaxy.

At this level, the system of equations (1) and (2) can be admitted from the outset as a
postulate of the model, and we could simply end here, leaving the deduction from first principles
aside. However, the reader can refer to appendix A for a synthetic demonstration of the dynamics
formula represented by equation (1).

Let us examine equation (1). The inertia term is modulated by the factor κ (as in MOND).
On the other hand, from the right-hand side, we can see that wherever the mean density is high
(resp. low), the gravitational ”sensation” between two masses is low (resp. high). Two masses
are more strongly gravitationally linked with each other in the outer regions (low density, low

3Note that the densities in equation (2) are the densities estimated by the same observer or, more precisely,
that ρ0 and ρ̄ are simultaneously measured by this observer.
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κ) of a galaxy than in the inner regions (high density, high κ). This bears some resemblance to
electromagnetism in a situation where two charged particles are placed in a medium of relative
dielectric permittivity ϵr different from unity (ϵr > 1). The electric field between these charges
is lower than that of vacuum. However, this analogy must not be taken too far. There exists
an important difference: no background medium exists in the κ-model, and the coefficient κ
induces no refractive effect. The light still propagates in a straight line with the same speed
c for all frequencies, and κ is frequency-independent, contrary to ϵr, which depends on the
frequency. Likewise, the trajectory of any free particle is rectilinear in the κ model (when the
gravitational force is eliminated).

3 Computational details

Equation (1) seems to be ”easily” treated by any standard and well-known method of smoothed
particle hydrodynamics (SPH), for instance, by using a code available online. Unfortunately,
these codes are most often based on the default 4th order Runge-Kutta algorithm. In the present
situation, the process of solving is more complex given that the factor κ is now a functional of
the mean density. Then, we are facing a self-consistent problem, and a more stable numerical
algorithm than the 4th order Runge-Kutta order method must be used, even though using a
higher order Runge-Kutta algorithm considerably increases the CPU runtime.

Thus, to solve the system of equations (1) and (2), an SPH code based on a 6th order Runge-
Kutta ordinary differential equation (ODE) algorithm in MATLAB was used throughout. This
package is currently implemented on an SGI Altix UV 100 (MatriCS Platform) at UPJV.

A damping term is added to each equation of the system of equations (1) in order to simulate
a radial pseudoviscosity effect when the density is larger than a fixed threshold (the inner region).
This term has the simple form

−αi[κi
dσi

dt
.
κiσi

∥κiσi∥
]
κiσi

∥κiσi∥
(3)

where the damping coefficient αi = α
√

4GM
∥κiσi∥3

(M is defined in the following, and α is a

numerical coefficient, possibly adjusted, which we have taken equal to 1)4.
The characteristic time is taken to be equal to the free fall of an outer particle, ∼ 108 years

(reference unit taken for the time in figures 1, 3, and 6). We start with an initial discoidal
configuration of radius ∼ 10 rG, where rG ∼ 10 kpc (reference unit taken for the distances in
figures 1, 3, and 6), this radius is estimated by a terrestrial observer provided with a coefficient
κ = κE . The total mass of gas M is set to be equal to 1044 g (this mass is only baryonic
in the κ-model). The initial disk configuration of thickness ∼ 0.6 kpc, is assumed to be cold
and homogeneous. The mean density ρ̄ is automatically recalculated after 10 time steps. This
means that the density is obtained by counting the number of particles of mass m in a volume
of (0.6 kpc)3. Eventually, an initial low shear velocity field of the form vx = 10 κEσx

10 (κEσx in
kpc and vx in km/s) is assumed to pervade the disk. The coefficient κ is a constant = κini in
the initial, assumed to be homogeneous, distribution of baryonic matter and is, for example,
κini
kE

∼ 0.15 , which appears to be a reasonable value according to trial. This is for the physics
content; then, the equations are properly normalized.

The Cartesian coordinates (x, y) are used. An initial uniform distribution of 10 000 =
100 × 100 of identical particles of mass m are selected5. To distinctly exhibit the asymmetric
substructures, the quantity reported in figures 3.a, 3.b and 6.a, 6.b is not directly ρ̄ (x, y) but
rather the difference

4From a physical point of view, we can still imagine that when the system of particles shrinks, the energy of
the free fall is rapidly transformed in infrared radiation which are on the spot evacuated from the system.

5The study should be resumed with a larger number of particles, but the excessive CPU time due to the
self-consistent process currently precludes this.
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δρ̄(x, y) = ρ̄(x, y)− ρ̄
(√

x2 + y2
)

(4)

where ρ̄
(√

x2 + y2
)

is the density averaged over the polar angle. The latter gives a circular

distribution in the galactic plane. Eventually, only one particle out of 10 is reported in the
figures to clearly distinguish the substructures.

4 Results

When the simulation is running, the disk rapidly shrinks by self-gravity, and a weak spiral
substructure naturally quickly appears, just after ∼ 6 108 years6. This weak substructure is
shown in figure 1, with the axisymmetric background excluded. In figure 2, the trajectories of
some individual particles are also displayed, and we can observe a rapid and chaotic falling of
these particles toward the center7 and the consecutive circularization of the orbits.
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Figure 1 Formation of the spiral substructure
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Figure 2

6This characteristic time is almost twice as long in the dark matter model, where the shrinkage is lower. The
galaxies form much more rapidly with the κ-model than with the dark matter paradigm.

7The irregularities seen along on the trajectories are due to close encounters between particles over the free
fall process. During this process, the particles that are ejected from the galaxy are no longer taken into account.
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The axisymmetric disk on which a spiral pattern is superimposed then stabilizes; the sys-
tem becomes quasi-steady after approximately 2 109 years (t = 20). An impressive large-scale
coherent ”grand design” galaxy appears. This is evidenced in figures 3.a and 3.b.
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Figure 3 The quasi-permanent spiral in the κ-model

That the spiral pattern and the central bulge are self-maintained with time is also clearly seen
in these figures. This result is quite remarkable, and this is not the case within the framework
of the dark matter paradigm, where the spiral substructures are just transient phenomena over
a few rotational periods of the galaxy. However, some local and relatively strong deformations,
such as those due to self-gravity, persist even after two milliards of years, and the galaxy after
formation does not rotate as a rigid body, in contrast to what one might think in the framework
of the κ-model. There remain a very large number of stars that exhibit elliptic, not fully
circularized, motions, a phenomenon that also contributes to the deformations. In the framework
of the κ-model, a galaxy is a ”living” object, and it should not be seen as a perfect and immutable
wheel. Accordingly, the substructure spiral is always evolving, albeit much more slowly than
in other contexts, such as, for instance, in density wave theory, where the lifetime of the spiral
substructure appears very short unless the density wave is constantly fed.

In parallel, a quasi-flat rotation curve for the velocities is obtained (figure 4; r = κEσ).
Let us note that for practical (observational) reasons, we do not report the velocities in this
figure but rather the measured shift of the frequencies ν. Let us specify that the radial velocity
measurements supply the true velocities (in fact, the radial part), i.e., those measured by an
inertial observer on site8. We have also reported Keplerian velocity curve (2) in the same figure,
which makes κ = κE everywhere. However, for r ≳ 5, κ becomes constant again, and rotation
curve (1) falls off in a Keplerian manner (not shown in the figure).

8The curve that is displayed is not properly covered for r ≤ 0.3. A three dimensional model for the bulge
is needed. Curve(2) is obtained from the mass density derived by resolving equations (1) and (2) and then
recalculating the velocities.
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Figure 4 Galactic rotation curve:
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(1) κ-model (2) pure Newtonian model
Figure 5
Variation in κE/κ along a galactic radius

4.1 The resolution of the winding dilemma

The winding problem has always been recurrent in the simulation of ”grand design” galaxies
(Shu, 2016) and remains partially unsolved. However, against all odds, the two interlinked
effects, i.e., the flatness of the rotation curve and the almost steady nature of the spiral design,
can easily be understood in the framework of the κ-model. Let us define two inertial observers
A and B situated along a galactic radius, each of them measuring the (true) velocity of one
particle, resp. M for A and M ′ for B, located near them. We have

vA (M) = vB
(
M ′)

expressing the flatness of the rotation curve as measured by spectroscopy9).
However, vA (M) = κAσ(M)θ̇(M) and vB (M ′) = κBσ(M

′
)θ̇(M ′), where θ is the polar angle

defined from a radial baseline with origin at the galaxy center (in the κ-model, a given direction
is well identified and is the same for all observers). Following figure 3, the coefficient κ (or more
rigorously, the measurable ratio κ

κE
) is approximately proportional to 1

κEσ in the outer regions

of a galaxy10; thus, we obtain

θ̇(M) = θ̇(M ′) (5)

for any pair of points located along a galactic radius. The points remain steadily aligned with
time along the galactic radius (a straight line plotted from the galactic center). This noteworthy
outcome enables us to now understand why we can simultaneously observe a quasi-steady ”grand
design” substructure and a flat rotation curve, two effects that seemingly to contradict each
other. Let us note, however, that the persistence of the spiral substructure is not absolute and
that ultimately, the latter may slowly distort with time. The main reason for this is that the
orbits of stars are not perfect circles but rather ellipses with slight eccentricities. On the other
hand, the factor κ fluctuates with the variation in the density within the spiral substructure.

In this respect, comparison with the results obtained in the framework of the dark matter
paradigm is quite interesting. In the latter simulations, we obviously take the same initial con-
ditions for the baryonic matter. We can conclude from this comparison that the κ-model yields
something similar to the results from the dark matter paradigm in many aspects but without
dark matter; however the spiral substructure is self-maintained and is much more impressive.

9In the Universe, the radial velocities are estimated from spectroscopic measurements. These velocities are the
same as those measured by a local inertial observer. However, the tangential velocities are deduced from proper
motions and parallax measurements. These apparent quantities are linked to the terrestrial observer who measures
them by trigonometry, postulating a unique, and most likely imaginary, background. These two methods are very
different, and this difference is expressed in the framework of the κ-model. The first method (spectroscopy)
supplies true (radial) velocities, whereas the second method (observations of proper motions) supplies apparent
(tangential) velocities.

10More rigorously, this coefficient is a mean κ obtained by curve fitting (the curve in figure 5).
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To perform this comparison, we add a halo of dark matter with a density distribution pro-
portional to r−2 in the outer regions (halo mass) and we take MDM ∼ 10 MB and κ = κE
everywhere, i.e., the orthodox strategy for rehabilitating the common background, where we
can set r = κEσ. Then, with the dark matter superimposed on the baryonic component taken
into account, we can see that a spiral pattern with a central bar effectively appears to be essen-
tially due to self-gravity, but there are now are now multiple, transient and discontinuous outer
arms with very short lifetimes (figures 6.a, 6.b).
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Figure 6 The transient spiral in the dark matter model

In any case, a flocculent galaxy pattern seems to emerge from the simulations, but definitely
not a permanent ”grand design”. Certainly, at t = 20, figure 6a clearly mimics a spiral-type
structure but with four arms instead of two; however, at t = 30, the situation becomes confusing;
the galaxy core is getting denser, and the arms are more spiraled and are unrecognizable. This
effect is well known, and the same conclusion is drawn by the other published N-body simula-
tions within spherical dark matter models, even those using very sophisticated SPH, grid-based
procedures, including complicated physics such as cooling, star formation, and energy injection
from supernovae (Guedes, Callegari, Madau and Mayer, 2011). We can compare figure 6 of
the present paper and figure 2 of (Guedes, Callegari, Madau and Mayer, 2011) obtained after a
series of state-of-the-art simulations; on the one hand, we see that they are fairly similar, but
on the other hand, we are far from the set objective for a realistic ”grand design” galaxy. Obvi-
ously, additional aspects can be artificially introduced in the calculations such as a permanent
density wave within the gas driven by a rotating central bar (Shu, 2016), a triaxial distribution
of dark matter forming a rotating halo with angular momentum (Martinez-Medina, Bray and
Matosa, 2015), or a Yukawian gravitational potential (Brandao and de Araujo, 2012). However,
even though all these proposals are interesting, a solid experimental/observational basis is still
lacking. The interaction with a galaxy companion to sustain a ”grand design” substructure may
be much more realistic (Dobbs, Theis, Pringle. and Bate, 2010), even though there exist cases
of ”grand design” galaxies without the presence of a companion.

By contrast, starting from an initial homogeneous cold gas pervaded with a shear velocity
field, it is remarkable that, in a very simple way, the κ-model naturally directly leads to a
quasi-steady ”grand design” spiral galaxy with very clearly well-formed and distinct arms. A
bar also appears in the central region, and the arms are formed by self-gravity, which is much
higher in the outer regions (weak mean density) than in the inner regions (high mean density)
of the galaxy. Another noticeable point is that the spiral substructure becomes stronger with
time instead of the weakening phenomenon generated in other models with dark matter or even
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in MOND or in MOG. These results provide strong support for the self-consistent κ-model, the
important conclusion being that the knowledge of the sole distribution of visible baryonic matter
is sufficient to understand the dynamics of a galaxy and that the introduction of exotic particles
is not needed.

5 Two selected examples

The preceding simulation can, however, appear to be a toy model. Most interesting is the
practical application. For this, we choose two examples, a high luminosity galaxy (New General
Catalogue of Nebulae and Clusters of Stars (NGC) 6946) and a low luminosity galaxy (NGC
1560). These two examples are taken from the review of Famaey and McGaugh (2012, see the
references therein for the original data sources).

Figure 7 Surface density profiles (stars + gas) of two galaxies: the high surface brightness
(HSB) spiral NGC 6946 and the low surface brightness (LSB) galaxy NGC 1560 (from Famaey
and McGaugh, 2012, figure 13)

We assume here that the galaxies to be studied are stabilized and that the orbits of the
stars are circular. The Newtonian velocities vNewt could then be obtained from equation (1),
making κi ≡ κE , , ∀i in it11. The true velocities v (measured by spectroscopy) are then deduced
from the Newtonian velocities vNewt by the following: ”magnification” relation (this deduction
is made in appendix B)

v =

(
κ

κE

)(κE
κ

) 3
2
vNewt =

(
κE
κ0

) 1
2(κ0

κ

) 1
2
vNewt (6)

where

κ0
κ

= 1 + Ln(
Σ0

Σ

δ

δ0
) (7)

Equation (7) directly derives from equation (2), where Σ represents the surface density and δ
the mean thickness of the matter (stars + gas) along the line of sight. The index 0 represents the
maximum value of Σ for a given galaxy. Assuming a uniform thickness, we take δ = δ0 = Const
throughout the calculations. Figure 8 displays the ratio (κ0

κ )
1
2 for the two selected galaxies

calculated with equation (7).

11We can see that in equation (1), the factor (κE
κi

) is factorizable in front of the sum over j. This sum expresses
the Newtonian force acting on a particle with index i.
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Figure 8 Variation in (κ0
κ )0.5 as a function of the radial distance R

The global ratios κE
κ0

are unknown, but we can attempt to supply an estimate by again

employing equation (2)12. With Σ⊙ = 60 M⊙ pc−2 (from Famaey, and McGaugh, 2012, figure

19; Moni Bidin et al, 2012, figure 5), we find that
(
κE
κ0

)0.5
= 0.36 for NGC 6946 and 1.24 for NGC

1560. We, however, note that a better fit of the v-curves is realized by taking
(
κE
κ0

)0.5
= 0.46

(instead of 0.36) for NGC 6946 and 1.30 (instead of 1.24) for NGC 1560. In any case, the
calculation of these global magnifications factors is certainly vitiated by various biases.

For instance, we know that the inclination angle i of a galaxy can strongly impact the
velocity curves [26]. For NGC 6946, a variation of 7◦ in the inclination angle, starting from

i = 38◦ for this galaxy (Carignan et al, 1990), is equivalent to increasing the factor
(
κE
κ0

)0.5

from the value predicted by the κ model (0.36) to its fit value (0.46). Eventually, even though
to a lesser extent, the distance of this galaxy is highly uncertain (Elridge and Xiao, 2019). This
important parameter intervenes in the estimate of the absolute luminosity, subsequently in that

of the surface density, and eventually in that of the ratio
(
κE
κ0

)0.5
.

The estimate of Σ⊙ can also play a role. Thus, for NGC 1560, passing from Σ⊙ = 60 to

70 M⊙ pc−2 increases the numerical value for
(
κE
κ0

)0.5
from 1.24 to the value taken for the fit in

figure 10, 1.30 (with an insignificant change for NGC 6946). Note that a value ∼ 90 M⊙ pc−2

is given in [Sofue, Honma and Omodaka, 2009, Table 4]. However, this value is well above the
estimates of other authors (Famaey and McGaugh, 2012; Moni Bidin et al, 2012) and is very
likely overestimated.

Fortunately, while some uncertainty is associated with the global ratio
(
κE
κ0

)0.5
, the resulting

effect is a global shift of the mean height of the velocity curve13, which does not heavily affect
the details of the curve, such as bumps, wiggles, or the typical flatness in the outer regions. The
final results are presented in figure 9 (NGC 6946) and figure 10 (NGC 1560).

12The relation that has then been used is

κ1

κ2
= 1 + Ln(

Σ1

Σ2

δ2
δ1

)

respecting the condition Σ1δ2 > Σ2δ1.
13In the literature, the mean height of the observational velocity curve can also vary substantially; for instance,

for the Milky Way, we can compare (Sofue, Honm and Omodaka, 2009, figure 1) and (McGaugh, 2016, figures
5,6]
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�-model    

MOND 

Baryonic mass model  

Figure 9 NGC 6946: the observed rotation curve (black circles) is displayed together with
those predicted by the baryonic mass model (black line), MOND (red line) and κ-model (blue
line)

By examining the curves reproduced in figure 9, we can see that MOND and the κ-model
give very similar values for the velocities between 6 > r > 13 kpc. For r < 6 kpc, MOND
is slightly better than the κ-model, in contrast to r > 13 kpc, where the MOND curve does
not initiate a slow decrease, while this decrease is very noticeable in the curve of the κ-model.
However, the differences between MOND and the κ-model are small.

Regarding galaxies of lower baryonic surface densities, it is well known that Newtonian
prediction is very poor everywhere, even at smaller radii [29]. The galaxy NGC 1560 illustrates
this situation, whereas both MOND and the κ-model are fairly consistent with the observed
curve (figure 10).

�-model    

MOND 

Baryonic mass model  

Figure 10 NGC 1560: the observed rotation curve (black circles) is displayed together with
the theoretical curves predicted by the baryonic mass model (black line), MOND (red line) and
κ-model (blue line)

The results from both MOND and the κ-model are superimposed well between 3 > r > 6 kpc,
even though outside this interval, MOND seems slightly better. However, an optimal overlap
of the κ-model versus the observation could eventually be realized by an adjustment of the

11



thickness δ. Thus, the κ-model could predict that the thickness along the line of sight, δ, is
larger than δ0 for 1 > r > 3 kpc by a factor 1.5 and conversely smaller by the same factor for
6 > r > 10 kpc.

However, let us note that a comparison with the observational curve derived from other
sources (Sánchez-Salcedo and Hidalgo-Gámez, 1999) can lead to another interpretation of the
results. The x-axis of figure 10 has been adjusted for figure 11. In this case, we can see that
within the intervals 0 > r > 3 kpc and 8 > r > 10 kpc, the observational data are now located
in the area bounded by MOND and the κ model, namely, resp. above by MOND and below by
the κ-model for 0 > r > 3 kpc and the opposite for 6 > r > 10 kpc.

�-model    

MOND 

Figure 11 NGC 1560: Another observed rotation curve (black circles), derived from (Sánchez-
Salcedo and Hidalgo-Gámez, 1999), is displayed together with the theoretical curves predicted
by MOND (red line, reproduced from Sánchez-Salcedo and Hidalgo-Gámez (1999)) and the
κ-model (blue line)

6 AGC 114905: an ultradiffuse galaxy without dark matter?

The ultradiffuse galaxies are LSB galaxies with an extended light distribution (Conselice, 2018;
Mancera Piña et al, 2021). Belonging to this peculiar category of galaxies, AGC 114905 seems
to pose a challenge to the standard dark matter model as well as to MOND. Figures 12 and 13
show the high-resolution HI interferometric observations obtained by Mancera Piña et al (2021)
for AGC 114905.
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Figure 12 SMD profile (stars + gas) of AGC 114905 (from figure 1 of Mancera Piña et al,
2021).

0 2 4 6 8

Radius [kpc]

0

20

40

60

V
c
 [

k
m

/s
]

AGC 114905

Baryons

MOND

DM 

� − ����� 

� − ����� 
�	
ℎ � 0.1� 

�	
ℎ �0 =  � 

�/10 

Figure 13 The rotation curve of AGC 114905 (from figure 5 of Mancera Piña et al, 2021).
The red points show the observational data. The inclination angle is equal to 26◦. The dark
matter halo is represented by a red line, MOND by a green dashed line and the κ-model by a
blue line.

As shown in figure 13, we note that MOND and the κ-model give very similar profiles.
The agreement between MOND and the κ-model, already identified in the preceding section,
naturally underlines that the domain of weak accelerations (MOND) is related to the domain of
weak mean densities (the κ-model).

Nevertheless, we see that all three theoretical models, dark matter, MOND and κ, fail to
represent the observational curve. Mancera Piña et al (2019) suggest that a drastic modification
of the inclination angle, from 26◦ within the range 10◦ − 15◦, would be needed in order to find
agreement between the dark matter or MOND prediction and the observational profile of AGC
114905. The same reasoning can be applied to the κ-model. These authors further stated that
a radially varying inclination could potentially alleviate the tension between the rotation curve
shapes, especially for MOND. However, Mancera Piña et al, (2021) also specify that inclinations
as low as 10◦ − 15◦ are very likely inconsistent with the observational data.
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Thus, even though the discrepancy between the κ-model and the observational data could
be reduced by lowering the inclination angle, Mancera Piña et al (2021) find this proposal
unreasonable. However, apart from the inclination parameter, the thickness of the galaxy plays

a role in the κ-model because the latter factor influences the global magnification ratio
(
κE
κ0

)0.5

(equation (7)). For instance, a drastic reduction in the mean thickness δ by a factor 10 (at
constant Σ given this quantity is measured) would bring the κ-model curve within the error
bars of the observational data (figure 13). Thus, rather than seeing AGC 114905 as a galaxy
deprived of dark matter, such an explanation, i.e., by considering the mean thickness, would
lead to envisaging this galaxy as a very smeared and hence ultrathin object.

7 The Milky Way

The curve of rotation of the Milky Way has been extensively studied, but the observational
curves appear to strongly vary with the type of disk tracer. We can compare, for instance,
figure 2 of Bhattacharjee, Chaudhury and Kundu (2014), figure 11 of Huang et al. (2016) or
figure 1(d) of Sofue (2020), where we can see that the data exhibit extensive scattering. Here,
our aim is to fit the panel of observational rotation curves of the Milky Way with the κ−model.
For that, the baryonic surface mass density (SMD) is needed. This is the sole component given
that we exclude the dark matter halo. We use two SMD profiles, one from Famaey and Mc
Gaugh (2012) and the other very close to the SMD profile of Sofue (2020, figure 2).

• The SMD for the distances 8 < r < 12 kpc

Figure 14 reproduces the SMD of Famaey and Mc Gaugh (2012, figure 29). Other profiles are
also supplied in Mc Gaugh (2016), but these profiles are mostly the same except for a few details.
The results are displayed in figure 15. We adopted a global magnification factor of 0.46 (against
0.43 for NGC 6946). We observe that both MOND and the κ−model adequately reproduce
the sequence of wiggles of observational curve. These wiggles, which are already present in the
Newtonian curve, are found in the observational curve following Sencisi’s rule (Sancisi, 2004). In
the framework of the κ−model, the interpretation of this effect is that the observational curve is
simply a magnification of the Newtonian curve, a phenomenon that is very well illustrated here.
Let us note that this patent fact remains unexplained in the framework of dark matter models.

2
 

Figure 14 The SMD of the Milky Way between 8 and 12 kpc (from figure 29 of Famaey and
Mc Gaugh, 2012)
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MOND 

Baryons 

Figure 15 The observed rotation curve of the Milky Way between 8 and 12 kpc (from figure
29 of Famaey and Mc Gaugh, 2012). The MOND curve is represented by the green dashed line,
and the profile issued from the κ-model is displayed by the blue line.

• The SMD profile for the distances 0 < r < 100 kpc

The SMD profile for the distances 0 < r < 100 kpc is taken from Sofue (2020). It is
reproduced in figure 16. With this SMD, the velocity of the Sun v⊙, located at r⊙ = 8 kpc
from the galactic center, is ∼ 240 kms−1 and the total mass of the Miky Way without dark
matter (i.e. bulge + disk) is ∼ 7 1010 M⊙. The latter value is very close to that one obtained
elsewhere (Licquia and Newman, 2015).
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Figure 16 The SMD of the Milky Way between 0 and 100 kpc obtained from figure 3 of Sofue
(2020) deprived of the dark matter halo

The Newtonian profile in figures 17 and 18 is produced from the SMD (figure 16) following
the same methodology as that described in Sofue (2020).

In figure 17, the Newtonian and κ− model curves are superimposed on various observational
curves obtained using various disk tracer samples for 0 < r < 25 kpc (figure 2 of Bhattacharjee,
Chaudhury and Kundu, 2014). The κ-model curve is produced by still using the same global
magnification factor (namely 0.46) than in figure 15. The observed rotation velocity shows
obvious deviation from the predicted Newtonian r−1/2 law, but the κ−model curve fits the data,
i.e., all error bars overlap the κ−model curve. The error bars are, however, very large, which is
linked to the difficulty of accurately estimating the distances and measuring the velocities from
inside the Milky Way.
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Figure 17 A collection of data for the rotation curve of the Milky Way between 0 and 25 kpc
obtained using various disk tracer samples (from figure 2 of Bhattacharjee, Chaudhury and
Kundu, 2014). The κ-model curve is represented by the blue line.

The domain 0 < r < 100 kpc is supplied in figure 18. This time, the Newton and κ−model
curves are superimposed on four dark matter profiles calculated by Lin and Li (2019). Each
of these dark matter profiles have two free parameters. The observational data are taken from
Huang et al. (2016). We can see that the dark matter profiles and the κ−model profile fit
equally the data, except around 20 − 40 kpc, where the observational results are above all the
curves. We can conclude that the rotation curve can be reproduced in the framework of the
κ−model, that is, an overall value of ∼ 210− 250 kms−1 for 4− 20 kpc (with a higher margin
of error), beyond which the value declines steadily to 175 kms−1 at 100 kpc. Obviously, we can
claim that the same conclusion is drawn from the dark matter models, but the key difference is
that in the latter case, a conspiracy is needed between the dark matter halo and the baryonic
distribution of matter to reproduce the quasi-flat part of the rotation curve.
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Figure 18 The observational rotation curve of the MilkyWay between 0 and 100 kpc compared
to various dark matter profiles (from figure 2 of Lin and Li, 2019). The κ-model curve is
represented by a thick blue line.

None of the theoretical profiles seen in figure 17 and figure 18 take into account the spiral
arms and rings, which also affect the rotation velocity. The presence of two prominent bumps
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on the rotation curve has been reported (Huang et al., 2016). Let us note that these two
bumps, located at 12 − 13 and 19 − 20 kpc, are not explained by the dark matter halo (figure
12 of Huang et al, 2016). Huang et al. suggest that two quite massive caustic rings of dark
matter on the order of 1010 M⊙ are needed to explain these bumps (Duffy and Sikivie, 2008;
Huang et al, 2016). Despite this interesting proposal, we cannot exclude the fact that these
bumps could be simply an artifact of the measurements. We may then wonder whether the
addition of such structures composed of dark matter is somewhat artificial. As acknowledged by
Huang et al (2016), at present, the observational evidence linking the dips seen in the rotation
curve to hypothetical caustic rings of dark matter is still marginal. Unfortunately, this type of
methodology is typical of the dark matter paradigm, which eventually suits all situations but
which is ultimately not really predictive. Nor should it be forgotten that the rotation curve of
the Milky Way still remains more poorly described than the curves of other galaxies, where no
such intriguing bumps are apparent. Thus, Sofue (2020), in a review on the current status of the
study of rotation curve of the Milky Way, presents an SMD distribution that is fitted by taking
into account just the bulge, the disk composed of stars and gas, and the Navarro-Frenk-White
(NFW) dark halo with no mention of a hypothetical series of dark matter rings. Ultimately, the
κ−model is an even more economical solution, as it takes in account only the baryonic matter;
i.e., the Milky Way may be conveniently parameterized by a bulge and a disk to produce an
acceptable fit of the observational curve as it is known today.

In conclusion, taking into account the various uncertainties regarding the measured velocities,
the surface density profiles, the inclination of the galaxies and the estimate of the distances, the
analysis of the individual examples performed clearly shows that with the sole consideration of
the observed distribution of baryonic matter, both MOND and the κ-model can satisfactorily
predict the observed rotation curves of galaxies. Such a prediction is not possible using the dark
matter paradigm, unless we take a fine-tuned distribution of dark matter especially suited to
each type of galaxy.

In addition, there is observational evidence that the peculiarities seen in the Newtonian
curve at a location are nicely transcribed to the observed curve at the same location, as attested
in figures 10 and 15. This is a rather astonishing fact that has already been pointed out by
other authors (Famaey and McGaugh, 2012; McGaugh, 2016) and that is named Sancisi’s law
(Sancisi, 2004)14. Here again, this phenomenon seems to be very difficult to mimic using the
dark matter paradigm, given that the gravitational force is a long-range force. Mass removal
from a particular location does not create a trough in the observed velocity curve at the same
location. An unlikely conspiracy between dark matter and baryonic mass is then needed for
the trough in the Newtonian curve to be replicated on the observed velocity curve at the same
place. This fact is clearly favors models such as MOND and the κ-model, the latter assuming
a ”simple” magnification of the velocity curve produced on the spot from the baryonic model.
Thus, following a pair of equations (6 and 7), this magnification increases as the mean density
(or, in an equivalent manner, the factor κ) in the galaxy weakens. This circumstance is very well
illustrated when comparing a high luminosity galaxy (e.g., NGC 6946), where the magnification
is relatively weak, and a low luminosity galaxy (e.g., NGC 1560), where the magnification is
strong.

Ultimately, let us note that in spiral galaxies, the surface brightness profile typically varies
in an exponential manner (Binney and Merrifield, 1998). Following the κ-model, this feature
naturally implies a very extended radial range with near-constant rotation velocity. A remarkable
example is Malin 1, which is a spiral galaxy exhibiting an extremely large low surface brightness
disk of gas that is five times wider than the Milky Way (figure 19). Thus, Lelli, Fraternali, and
Sancisi (2010) provide a flat rotation curve up to 100 kpc for Malin 1 using HI data. However,

14The mass discrepancy-acceleration relation (MDAR) formula (McGaugh, 2016) was a first attempt to quantify
the phenomenon. Unfortunately, even though very noteworthy, this relation is purely empirical and is not based
on a specific theoretical background.
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Malin 1 is a relatively isolated galaxy, and it is very likely that the flat profile does not continue
forever for any galaxy, especially when in the outermost regions of the disk, interaction with the
environment, i.e., the influence of a neighboring galaxy, begins to be detected.
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Figure 19 The observed rotation curve of Malin 1 between 0 and 100 kpc compared to the
dark matter, MOND and κ-model profiles (from figures 7 and 9 of Lelli, Fraternali and Sancisi,
2010). The κ-model curve is represented by a blue line.

8 Conclusion

The κ-model is a nice application of the notion of the - here apparent - asymmetric distance
well known in mathematics that essentially leads to privileging local physics rather than global
physics. Undoubtedly, the κ-model is no longer the whole of the story and might even ultimately
be a pure mathematical construction or a simple exercise of the mind. Nevertheless, regardless of
these considerations, it should not be discarded too hastily, mainly due to the strong support of
its conclusions, i.e., the unification of some properties of galaxies under a sole umbrella, mainly
an unexpected, but however possible, correlation between the appearance of a quasi-steady spiral
substructure and the flat rotation curve in galaxies. Another greatly interesting aspect of the
κ-model is that it is not artificially parametrized and is sufficient by itself, with the presence
of only baryonic matter, which is a major issue. In this sense, it is more easily refutable than
any other theory postulating the existence of a large variety of exotic particles with unknown
characteristics that can be changed at will.

An extension of this work is required. For elliptical galaxies and globular clusters, a three-
dimensional model is needed. However, a forthcoming analysis of the data obtained for both
the train wreck and bullet clusters should enhance the understanding of the density-dependent
character of the measured gravitational force, which has been assumed. Perhaps the κ-model
could also help to eliminate the necessity of dark energy. After the formation of the galaxies,
the mean value of the factor κ increases15. This phenomenon leads to a slow decline in the mean
gravitational forces between the galaxies, which could eventually be interpreted as an apparent
acceleration of the Universe.

Data availability statement: The author confirms that the data supporting the findings of
this study are available within the article and the reference list.

15The harmonic mean of κ for a set of particles (a spiral galaxy, an elliptical galaxy or a cluster of galaxies)

can be defined by κE
<κ>

=

√ ∫
κ3
E
d3σ ρ(κEσ) (

κE
κ

)2∫
κ3
E
d3σ ρ(κEσ)

The two integrations under the square root must be performed

over the volume containing the set of particles.

18



Acknowledgements: I would like to thank the reviewer for his fruitful comments, which helped
to improve the manuscript.

Conflicts of Interest: The author declares no conflicts of interest.

9 References:

Bhattacharjee, P., Chaudhury, S., & Kundu, S., 2014, ApJ, 785
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Appendix A

Here, we explain the origin of form (1) for the dynamics equation. We introduce the formal
action

S =

∫
dt

[
1

2
m

(
dM

dt

)2

− V (M)

]
(8)

where m is the mass of a test particle and V (M) the potential experienced by this particle
located at a given point M . An arbitrary variation δM from M gives

δS = δ

∫
dt

[
1

2
m

(
dM

dt

)2

− V (M)

]
=

∫
dt δ

[
1

2
m

(
dM

dt

)2

− V (M)

]
(9)

=

∫
dt

[
m
dM

dt
δ

(
dM

dt

)
− δV (M)

]
(10)

To continue the calculations, we must now exchange d and δ.
The exchange of d and δ
Let three observers A, B and C be located in a plane (figure 12). We can define this plane by
imagining a common direction perpendicular to M0M1 and M0M2. This operation is possible
because any orientation is well defined in the κ-model. With the help of this figure, we write16

dM ≜ M0M1[dσ]|A ≡ dM∥ = M2M1∥[dσ]|C −→ κdσ (a)

The first expression signifies that the observer A measures M0M1 and obtains κdσ and that
observer C measures M2M1∥ and obtains the same value. Other very similar relations follow

δM ≜ M0M2 [δσ] |A ≡ δM∥ ≜ M1M2∥ [δσ] |B −→ κδσ (b)

M2M
”
4

[
dσ′] |

C
−→ (κ+ δκ)dσ′ ≡ M2M4 [dσ + δdσ] |A −→ κ (dσ + δdσ) (a′)

M1M
′
4

[
δσ′] |B −→ (κ+ dκ)δσ′ ≡ M1M4 [δσ + dδσ] |A −→ κ (δσ + dδσ) (b′)

We must remark that dM∥ is dM parallelly displaced with respect to itself respecting the
conservation of the length during the transport (likewise for δM∥ vs δM). The observer C
located at M2 sees dM∥ exactly as observer A located at M0 sees dM; thus, dM and dM∥
have the same orientation and the same norm but their origins are distinct. However, these
two vectors are perceived differently by observer A located at M0. Figure 20 is the projection
of the full set of vectors on the background of this observer. Let us note that M0M1 is the real
path and M2M

”
4 is the corresponding varied path. Now, we set

dδM ≜ M2∥M
′
4 δdM ≜ M1∥M

”
4

16Notation: The arrow −→ indicates that a given observer measures the corresponding bipoint. The symbol
≜ indicates a definition, and the symbol ≡ signifies that the two compared vectors have the same orientation
and the same norm but that each of them is seen by a distinct observer.

20



Figure 20 Diagram of real and virtual paths: the thick full segment represents the real path,
the virtual path is indicated by a thick-dotted line.

After subtraction (a′)− (a) and (b′)− (b), we have

M1∥M
”
4

[
δdσ′] |C −→ κδdσ M2∥M

′
4

[
dδσ′] |B −→ κdδσ

We naturally have δdσ = dδσ, thus (omitting the indexes)

dδM = δdM

Let us specify, however, that for observer A located at M0, the vectors dδM and δdM (projected
on the proper background) are parallel, but their (apparent) lengths are different, resp. κ

κ+dκdδσ
and κ

κ+δκδdσ; for observer A, M3M4[dδσ] −→ κdδσ, even though these three vectors differ only
by a small third order term. Let us remark that (κ+ δκ) dσ′ − κdσ = κ (dσ′ − dσ) + δκdσ′ =
κδdσ′+δκdσ′. This quantity is equal to κδdσ (in both orientation and norm), but κδdσ′+δκdσ′

(origin M1∥) is evaluated by C, and κδdσ (origin M3) is evaluated by A.

After exchanging d and δ in equation (10), we obtain∫
dt

[
m
dM

dt

d

dt
δM−∇MV (M) δM

]

= m
dM

dt
δM

∣∣∣∣ extremities +

∫
dt

[
− d

dt

(
m
dM

dt

)
−∇MV (M)

]
δM (11)

For a stationary value of S, we have δS = 0. We also take δM = 0 at both extremities of
the portion of the real trajectory. Eventually, we obtain

d

dt

(
m
dM

dt

)
+∇MV (M) = 0 (12)

This is the same expression as the usual dynamics equation in Newtonian mechanics. The
physics is left formally unchanged. This is very interesting. For practical (computational)
reasons, however, we rewrite this equation

d

dt

(
mκ

dσ

dt

)
+∇(κσ)V (κσ) = 0 (13)

This is equation (1). The potential V (M) is the gravitational potential. The dressed po-
tential, experienced by an observer located at a point M and produced by a point source (mass
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M) located at an arbitrary origin (labeled by σ = 0), is17

V (κMσ) = −GMm
1

(κMσ)
(14)

We explicitly indexed the point where the potential is measured by κ18. For a shifted origin
(at O), we likewise have

V (κMσ) = −GMm
1

(κM ∥σ − σO∥ )
(15)

Equations (14) and (15) need to be explained. The coefficient κM , which is linked to the
observer located at M , determines the intensity of the potential measured by this observer. It
would seem that it is the measurement process itself that imposes the distance that separates
the observer from the attractive mass M on the observer. This circular reasoning may sound
irrational. In reality, both the measured distance and the apparent gravitational potential felt
by the observer depend on the mean density ρ̄ at M . It is the environment of the observer (and
obviously not the observer himself) that affects the measurements. There is nothing strange
about this. Thus, we can equivalently reason that by admitting that the attractive mass M is
perceived by the observer as M

κM
, the smaller κM is, the higher the apparent attractive mass and

vice versa (however, the true mass is always M).

Appendix B

Magnification formula
We assimilate a galaxy into a steady and axisymmetric thin disk. The stars travel in pure,

uniform circular motion, and the coefficient κ is independent of time. After removing the index
i for a test particle of unit mass and taking κE = 119, can simplify equation (1) to

d

dt
(
dσ

dt
) =

FNew

κ3
(16)

where the Newtonian force FNew acting on the test particle is

FNew = −Gm
N−1∑
j=1

(σ − σj)

∥σ − σj∥3
(17)

Because the trajectory of the test particle is circular and the force acting on it is purely
radial, equation (16) immediately gives

17For two masses m and m′ located at M and M ′, the interaction potential is asymmetric and VM =
−Gmm′ 1

(κMn∥σ−σ′∥) ̸= VM′ = −Gmm′ 1
(κM′ ∥σ−σ′∥) . The principle of reciprocal action seems to be altered, but

it must be kept in mind that the two masses are not isolated and are not located in the same environment. Thus,
this fundamental principle is not violated, but it is not directly applicable here. In contrast, the bare potential,
Vb = −Gmm′ 1

∥σ−σ′∥ , is symmetric (even though it is not measurable, given that ∥σ − σ′∥ is hidden.
18Let us specify that we cannot directly measure a potential (this quantity is defined up to a constant), but its

gradient (the force on a test particle of unit mass). However, this remark is simply a detail here.
19The full equations with the coefficient κE are

d

dt
(κ

E

dσ

dt
) = (

κE

κ
)
3
FNew

and

FNew = −Gm

N−1∑
j=1

κE(σ − σj)

[κE∥σ − σ]j∥]3
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(σθ̇)
2

σ
=

FNew

κ3
(18)

where θ designates the polar angle in the galactic plane from a reference direction taken in this
plane. This leads to

σθ̇ =
1

κ
3
2

(FNew σ)
1
2 =

1

κ
3
2

vNew (19)

where vNew is the Newtonian velocity. Eventually, the true velocity20 v is obtained by multiply-
ing equation (19) by κ. We obtain magnification formula 6 after reinserting in it the coefficient
κE .

20The true velocity refers to the local velocity that is observable by spectroscopy.
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