
HAL Id: hal-03693913
https://hal.science/hal-03693913

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hijacking an autonomous delivery drone equipped with
the ACAS-Xu system

Adrien Gauffriau, David Bertoin, Jayant Sen Gupta

To cite this version:
Adrien Gauffriau, David Bertoin, Jayant Sen Gupta. Hijacking an autonomous delivery drone
equipped with the ACAS-Xu system. ERTS2022, Jun 2022, TOULOUSE, France. �hal-03693913�

https://hal.science/hal-03693913
https://hal.archives-ouvertes.fr

Hijacking an autonomous delivery drone equipped
with the ACAS-Xu system
Adrien Gauffriau∗†, David Bertoin†§, Jayant Sen Gupta‡†

∗Airbus Operations, † IRT Saint-Exupery, ‡Airbus AI Research, §Institut de Mathématiques de Toulouse

Abstract—In this paper, we want to show that automated anti-
collision systems in aeronautical industry such as ACAS-Xu are
vulnerable to hijacking threats in a urban environment which is
less controlled than conventional airspace. Using reinforcement
learning methods, we demonstrate the possibility to hijack the
mission of a delivery drone equipped with the ACAS-Xu system
in a simulated environment. Our objectives are first, to illustrate
the security (interception) vulnerabilities of autonomous system
and secondly, to enrich reinforcement learning benchmarks with
a new one that comes from an industrial aeronautical application.

Keywords—Autonomous and connected systems, Resilience,
Artificial Intelligence, Reinforcement Learning, Security, ACAS-
Xu

I. INTRODUCTION

Autonomy is one of the hot topics where the potential of
artificial intelligence, both for perception and decision making
tasks, opens new possibilities. Nevertheless, autonomous sys-
tems also raise public acceptance and certification challenges.
If autonomous cars are one of the best known examples,
we see the emergence of autonomous systems in aeronautics,
including delivery drones, autonomous air cabs, or airplanes
[16]. This paper will focus on these particular systems.

Whereas most important concerns of the aeronautic certifi-
cation are dependability and safety, the ability of a system to
resist malevolent attack is also a major issue. Our work mainly
focus on this topic with the development of an attack (inter-
ception) of an avionics system. Aviation security is mostly
focused on ensuring that airports are secured by controlling
people and goods passing through. Once the aircraft is flying,
security is obtained by monitoring specific parts of the airspace
all aircraft should respect, like airways. Airways are designed
to ensure separation between pairs of aircraft, and any aircraft
not respecting these rules is identified, tracked, and eventually
neutralized. Nevertheless, what is valid to ensure security from
malevolent attackers for standard aviation will no longer be
applicable in the urban air mobility (UAM) context. Even if
the concept of airway is extended in UAM, the distance to
the ground, the distance between airways, and the potential
number of threats will make it extremely difficult for humans
to supervise all the traffic.

Systems like autonomous avoidance systems are thus
needed to ensure, among others, the safety, and security of
UAM. Nevertheless, new methods for attacks inspired by
video game testing (for instance [2] and [18]) may change
the paradigm that was traditionally used. In this work, we
illustrate this statement by developing an attack on the ACAS-

Xu avoidance system (see [10]) that will possibly be used by
future autonomous vehicles.

We consider the following setting: an autonomous delivery
drone (target), equipped with the ACAS-Xu system for col-
lision avoidance, whose mission is to reach a predetermined
delivery area, is attacked by another drone (attacker) that tries
to hijack it and lead it to a different delivery area. When
no risk of collision is detected, it follows the heading to the
delivery area. When an aircraft (drone) enters the risk zone
around the target, its heading is updated according to ACAS-
Xu recommendation. The attacker policy (its strategy) is coded
in a neural network which is trained to bring the target to the
alternate delivery area using reinforcement learning (RL). In
this paper, we want to show how vulnerable is a drone that uses
a systematic way to avoid collisions. We limited our study to
the horizontal recommendations of ACAS-Xu as it is preferred
to deal with non-cooperative traffic (see [13]).

This paper is organized as follows. Section II presents
the ACAS-Xu avoidance system. Section III presents the
related works. Section IV introduces the principles of rein-
forcement learning (RL). Section V presents an experimental
setup demonstrating the effectiveness of such attacks. Finally,
section VII summarizes and concludes this paper on future
perspectives.

II. OVERVIEW OF THE ACAS SYSTEM

Among the family of ACAS X, the ACAS-Xu is dedicated
to drones and urban air mobility. It provides a horizontal
resolution for conflicts using in real-time a set of lookup
tables (LUT) that were computed offline. Using geometric
parameters, the ownship consults the LUT on collision’s prob-
ability for five different advisories : COC (Clear of Conflict),
WL (Weak Left), WR (Weak Right), L (Left), R (Right).
The system does not rely on the fact that the intruder (the
attacker in our setting) also applies the same avoidance system.
Therefore, this system can also be used to avoid any static
object (tower, crane) or birds as

The selected advisory is the one that minimizes the proba-
bility of conflicts. The geometry of a conflict is given in figure
1, the parameters definition stands as:
• ρ (ft): Distance from ownship to the intruder
• θ (rad): Angle to intruder relative to ownship heading
• ψ (rad): Heading angle of intruder relative to ownship

heading direction
• vown (ft/s): Speed of ownship
• vint (ft/s): Speed of intruder

Fig. 1: ACAS-Xu geometry [20]

• τ (s): Time until loss of vertical separation
• Rn−1: Last recommendation provided by the ACAS-Xu
The 23 LUT provides the transitions costs between the

previous advisory and the next advisory. When the ownship
is not in the COC state, it has to initiate the turn given by
the advisory. Otherwise it can continue its mission. More
information on the ACAS-Xu system can be found in [25].

III. RELATED WORKS

The use of RL methods to search for attack and interception
scenarios is relatively classical. The originality comes from the
use of these methods to find security weaknesses of an avionic
systems. This will be illustrated in the following state of the art
targeting the security in avionics, the safety of the ACAS-Xu
system and the use of RL for unmanned aerial vehicle.

A. Security in avionics

The interest in the security of aeronautic systems is not
new. In [39], the authors exploit vulnerabilities of the ACARS
network to upload new flight plans in the Flight Management
System (FMS) of aircraft. Nevertheless, the pilots still keep
control of the aircraft, the attack mainly leads to increases in
their workloads.

It is also possible to attack ground infrastructure like In-
strument Landing System (ILS) [35]. The authors developed
two different attacks of the ILS using radio signals. They
demonstrate a systematic success rate with offset touchdowns
of 18 meters to over 50 meters in lateral and longitudinal.
Therefore, an attacked aircraft that performs a fully automatic
landing miss the runway.

The literature is not limited to hacking the global system.
[1] [34] focus on attacking aircraft networks. Nevertheless,
most of these results remain theoretical or academic due to
the complexity and cost of deploying such attacks. Moreover,
none of these attacks enable complete control of the aircraft.

Even if there is an active research on safety in avionics, the
results obtained are often mitigated by the presence of humans
in the loop. Moreover, the popularization of drones and their
accessibility has led to the emergence of new safety issues.
In the future, the introduction of low complex autonomous
systems may change this paradigm. Our contribution aims to
make the avionic community aware of this future challenge.

B. ACAS-Xu

Detect and avoid is a task that guarantees the safety of flying
vehicles, completed by the intervention of the pilot. For large
aircraft, it is still the responsibility of the pilot that may be
helped by systems that give advisory and recommendations
for avoidance. The most famous one is the TCAS [31] that
requires both planes to be equipped. The ACAS system [10]
was developed for autonomous vehicles and mainly based on
[22]. Several methods were explored to guarantee that this
system is safe among Petri model [30] or formal methods
[17]. The memory size (more than 4 GBytes) required by the
look-up table of the ACAS-Xu system may be incompatible
with the electronics of small drones. Thus, [19] developed
training of neural networks that replace look-up tables with
a small memory footprint. This raises the question of the
safety of the neural network, which is still an open problem.
[20] [7] propose formal methods to analyze neural networks
and prove avoidance properties. Another approach [8] also
based on formal methods, demonstrates that trained neural
network behaves like the look-up table defined by the ACAS-
Xu standard.

Our contribution aims to raise the security question of the
ACAS-Xu system that differs from previous work that mainly
focus on its safety. Up to our knowledge, this has never been
done.

C. Reinforcement learning for Unmanned Aerial Vehicle

Recent successes in reinforcement learning have demon-
strated the ability of reinforcement learning agents to outper-
form humans in many tasks [29], [36], [41], [42], [47]. Several
recent works have sought to capitalize on the progress made
in RL and Deep RL for the control and navigation of UAV.
There are mainly two classical use cases of reinforcement
learning for UAVs. The first one is flying control where the RL
agents aim at providing stability and control and navigation.
The second deals with mission planning where the agent is
responsible for the high-level policy while control systems
are implemented using classical methods such as Proportional-
Integral-Derivative (PID) control systems [9].

While PID control has demonstrated excellent results in
stable environments, it is less effective in unpredictable and
harsh environments. Recently, several research projects have
explored the possibility of using reinforcement learning to
address its limitations. [49] compared the efficiency of a model
based reinforcement learning controller with Integral Sliding
Mode (ISM) control [52].

The authors of [15] trained neural-network policy for
quadrotor controllers using an original policy optimization
algorithm with Monte-Carlo estimates. The learned policy
manages to stabilize the quadrotor in the air even under
very harsh initialization, both in simulation and with a real
quadrotor.

[21] train autonomous controllers flight control systems
with state-of-the-art model free deep reinforcement learning
algorithms (Deep Deterministic Policy Gradient [23], Trust

Agent

Environment

atst+1 rt

Fig. 2: Standard RL framework

Region Policy Optimization [37], Proximal Policy Optimiza-
tion [38]) and compare their performance with PID controllers.

In [3], a sequential latent variable model is learned from
flying sequences of an actual drone controlled with PID. This
latent dynamic model is used as a generative model to learn
a deep model-based reinforcement learning agent directly on
real drones with a limited number of steps.

In [32], the authors combine a Q-learning [50] algorithm
focusing on navigation policy with PID controllers. In [45],
the navigation problem is decomposed into two simpler sub-
tasks (collision-avoidance and approaching the target), each
of them solved by a separate neural network in a distributed
deep RL framework. An active field of research focuses on
interception and defense against malicious drones. In a 1 vs
1 close combat situation, [48] demonstrates the effectiveness
of an A3C [27] RL agent versus an opponent with Greedy
Shooter policy [40]. In a multi-agent context, [51] uses a
Multi-Agent Deep Deterministic Policy Gradient algorithm
(MADDPG) [24] in an attack-defense confrontation markov
game. [26] proposes a ground defense system trained with Q-
learning to choose between high-level defense strategies (GPS
spoofing, jamming, hacking, and laser shooting). While [12]
and [5] use RL to train a drone attacker to intercept a target
drone, [6] place the agent in the defender’s position and train
it with a Soft Actor-Critic algorithm [14] to avoid capture.

Our contribution also aims at intercepting a target UAV
using an RL agent. However, it differs on two significant
points. First, it highlights the security flaws of a determin-
istic policy dictated by the ACAS-Xu system for collision
avoidance. Second, our attacker does not seek to capture the
target directly but to guide it to a specific area where it can
potentially be captured. This strategy does not require any
attack equipment directly implemented on the attacking UAV
and can easily be applied to any UAV.

IV. REINFORCEMENT LEARNING

Reinforcement Learning is a specific field of machine
learning considering sequential decision-making problems. In
RL, an agent interacts with its environment during a sequence
of discrete time steps, t = 0, 1, 2, 3, At each time step
t, the agent is provided a representation of the environment
state st ∈ S, where S defines a state space. According to
st, the agent takes an action at ∈ A, where A is the set of
all possible actions. Performing this action in the environment
causes the environment to transition from st to st+1, and as a

consequence of this transition, the agent receives a numerical
reward rt ∈ R. Figure 2 illustrates the agent-environment
interaction. The mapping of a state s to a probability of taking
each possible action in A is called the agent’s policy and
denoted π(a|s) = P[At|St = s]. Considering a discount factor
γ ∈ [0, 1], the return is defined as the discounted sum of
rewards Rt =

∑T
k=0 γ

(k)rt+k. Deep Reinforcement learning
algorithms aim at finding the policy πφ, represented by a neu-
ral network with parameters φ, that maximizes the expected
return J (πφ) = E

τ∼πφ
[R(τ)] with τ = (s0, a0, ..., sT+1) the

trajectory obtained by following the policy πφ starting from
state s0. For continuous control problems (such as motor
speed control), policy gradients methods aim at learning a
parametrized policy πφ through gradient ascent on J(πφ).
These methods rely on the policy gradient theorem [44]:

∇φJ(φ) = Es∼ρπ,a∼πφ [∇φ log πφ(a | s)Qπ(s, a)] ,

where Qπ(s, a) = Es∼ρπ,a∼πφ [Rt|s, a] is the action-value
function. Qπ(s, a) represents the expected return of perform-
ing action a in state s and following π afterwards.

Policy gradients methods typically require an estimate of
Qπ(s, a). An approach used in actor-critic methods consists
in using a parametrized estimator called critic to estimate
Qπ(s, a) (πφ thus represents the actor part of the agent). By
relying on this principle, [43] propose the deterministic policy
gradient algorithm to compute ∇φJ(φ):

∇φJ(φ) = Es∼pπ
[
∇aQπ(s, a)|a=π(s)∇φπφ(s)

]
.

The DDPG algorithm [23] adapts the ideas underlying the
success of Deep Q-Learning [28] [29] to estimate Qπ with a
neural network with parameters θ. In DDPG the learned Q-
function tends to overestimate Qπ(s, a), thus leading to the
policy exploiting the Q-function estimation errors. Inspired by
the Double Q-learning [46], the Twin Delayed DDPG (TD3)
[11] addresses this overestimation by taking the minimum
estimation between a pair of critics and adding a noise to
the actions used to form the Q-learning target. These tricks,
combined with a less frequent policy update (one update every
d critic updates) result in substantially improved performance
over DDPG in a number of challenging tasks in the continuous
control setting. Algorithm 1 describes TD3’s complete training
procedure.

V. DEVELOPMENT OF AN ATTACK ON ACAS-XU

A. Notations

The following notations are used in the next sections:
• D1: Delivery area. The target’s destination objective
• D2: Alternate delivery area. The attacker destination

objective: the interception zone
• It: Initial position of the target.
• Ia: Initial position of the attacker.
• vt: Speed of the target that is constant.
• va: Speed of the attacker. vmaxa is the maximum possible

speed of the attacker
• The target corresponds to the ownship of the ACAS-Xu

Algorithm 1: TD3
Initialize critic networks Qθ1 , Qθ2 , and actor network
πφ with random parameters θ1, θ2, φ

Initialize target networks θ′1 ← θ1, θ
′
2 ← θ2, φ

′ ← φ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise
a ∼ πφ(s) + ε, ε ∼ N (0, σ) and observe reward r
and new state s′

Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′)

from B
ã← πφ′ (s′) + ε, ε ∼ clip(N (0, σ̃),−c, c)
y ← r + γmint=1,2Qθ′i (s

′, ã)
Update critics
θi ← argmin θi

1
N

∑
(y −Qθi(s, a))

2

if t mod d then
Update φ by the deterministic policy gradient:
∇φJ(φ) = 1

N

∑
∇aQθ1(s, a)

∣∣
a=πφ(s)

∇φπφ(s)
Update target networks:
θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end
end

• The attacker corresponds to the intruder of the ACAS-Xu.
The attacker is not equipped with the ACAS-Xu.

B. Set up and objective

We consider an environment composed of two agents and
two areas. The first agent is the delivery drone that has the
mission to reach the delivery area D1. The target (T) is
equipped with the ACAS-Xu system to trigger autonomous
avoidance actions by updating its heading. The second agent is
the attacker (A) drone. The attacker aims at hijacking the target
towards an alternate delivery area D2, located in a different
position than D1 by exploiting the target’s utilization of the
avoidance ACAS-Xu system. The attacker’s policy is trained
for this purpose using Deep Reinforcement Learning. In our
setting, for the sake of simplicity, both agents can only move
in the same horizontal plan. Ascending and falling are not
allowed. The figure 3 provides a graphical representation of
the set-up.

The Xu version of the ACAS system is dedicated to drones,
and only provides horizontal avoidance recommendations.
Among the other version of the ACAS, it exists the Xa version
dedicated to large aircraft that provides vertical avoidance like
the TCAS. Thus, we restrict the interception to an horizontal
plan since ACAS-Xu does not provide vertical avoidance
recommendation. Even if, the target may have a vertical
flight plan, it is very easy to configure, without reinforcement
learning, the attacker to be always on the same horizontal plan
of the target. In a future work, we may extend the study by
considering a target equipped with the Xu and the Xa version
and train an agent for a 3D interception.

T

A

D1

D2

Ia

It

Without ACAS
advisory

With ACAS
advisory

Fig. 3: Set up

C. Training environment

We implemented our training environment with the follow-
ing settings:

a) State Space: The state of the environment is com-
pletely described by the state of the two agents (target and
attacker) and the Cartesian positions of delivery areas. Each
agent’s state is composed of P = (x, y) representing the agent
Cartesian positions and a velocity vector ~V = (vx, vy) in the
horizontal plan. The angle α of ~V is agent’s heading.

b) Action Space: The attacker’s actions at step n are
represented by two updates λVn ∈ [−200,+200] and λαn ∈
[−π2 ,

π
2] representing respectively an update for the velocity

and heading.
c) Transitions: The target agent’s velocity is constant

during the whole episode. Its heading is updated according
to the ACAS-Xu system advisory. If the advisory provided is
different from COC, the following heading update δαn will
be used:
• WL : + 0.15 rad
• WR : - 0.15 rad
• L : + 0.3 rad
• R : - 0.3 rad
If the advisory is COC, the λα update enables the target

to reach the heading to the delivery area with a maximum
variation of 0.3 rad. We limit this variation to be more repre-
sentative of a real drone maneuverability and avoid instability
due to big turns. For both agents, the update of the speed
vector is given by

‖Vn+1‖ = ‖Vn‖+ δV n

αn+1 = αn + δαn

and position update by Pn+1 = Pn + Vn+1.
d) Reward model: The choice of the reward function

is not trivial. The training capacity and future policy of the
RL agents are deeply impacted by the reward model used
during training. The reward model design, often called reward
shaping, may lead to strange and unexpected behaviors.

Rn =

0 if n = 0

Rn−1 if Dn−1 ≥ Dn

Rn−1 + (Dn −Dn−1) if Dn−1 < Dn

with Dn = ‖PTn −PE‖. The reward is increased for each step
that globally reduces the distance between the target agent and
the interception destination. We used the state-of-the-art Gym
[4] framework to implement our training environment.

VI. EXPERIMENTS AND RESULTS

This section presents the different scenarios of experiments
conducted. In all experiments, the target has a fixed speed of
400 ft/s and is following ACAS-Xu avoidance recommenda-
tions in case of presence of another flying object in its vicinity.
When there is no obstacle, the drone follows the direction
leading to its delivery area.

A. Training setups

We train three different agents depending on the maximum
speed we allow the attacker in order to study the influence
of the speed ratio between the attacker and the target. Three
configurations are tested:
• 300 ft/s
• 600 ft/s
• 1000 ft/s
We fix the size of the playground as a square of 100000

feet. We developed a gym environment for training purposes to
simulate the target behavior, following the ACAS-Xu function,
and train the attacker policy using our RL algorithm. For
each training scenario, we randomly draw the positions of the
delivery zone, the alternative delivery zone where the attacker
has to bring the target, the initial position of the target, and
the initial position of the attacker. At the end of this stage, we
get three trained agents designated by A300, A600 and A1000.

In every setups, we trained an RL agent using Stable-
baselines3 [33] implementations of TD3. In each experiment,
the agent is constituted by an actor and two critics. We use a
two-layer feedforward neural network of 400 and 300 hidden
nodes respectively, with rectified linear units (ReLU) between
each layer for both the actor and critic, and a final two neurons
output layer with tanh for the actor.

TD3 is an off-policy algorithm, during training transitions
(st, at, st+1, rt+1) are stored in a replay-buffer [28] and drawn
randomly in the form of mini-batches during the weight update
phase. We conducted all of our experiments using a replay-
buffer of size 50000 and a mini-batch size of 512. TD3
trains a deterministic policy in an off-policy way, which is
not favorable for exploration during training. We encouraged
exploration of the TD3 agent by adding an action noise
drawn from the Ornstein-Uhlenbeck process, as suggested in
[23]. For every scenario, we trained our agents on 6 million
steps. Table I provides a complete description of the training
parameters used during training.

Parameter Value
Training steps 6,000,000
Learning rate 0.001

γ 0.99
Policy delay 2

τ 0.005
target policy noise 0.2

Ornstein-Uhlenbeck Noise 0.01
Replay buffer size 50,000

Mini-batch size 512

TABLE I: Hyper-parameters used in TD3 agents training

B. Evaluation setups

Once the different models are learned, we evaluate their
performance by randomly sampling new testing scenarios
where we fix the positions of the delivery zone, the alternative
delivery zone where the attacker has to bring the target, and
the initial position of the target. For each of these scenarios,
we randomly draw a significant number of initial positions of
the attacker in the playground. For each of these random ini-
tializations, we run the scenario using the three trained policies
and to assert whether the attacker succeeds in hijacking the
target. For each test scenarios, we plot a map of the successful
initial attacker positions and unsuccessful initial positions and
estimate a percentage of successful attempts (success rate). We
run 1000 different scenarios with the three trained policies.

Depending on the ratio between the speed of the target
and the maximum speed of the attacker, we may theoretically
know if the interception is possible depending on the initial
geometry. We define the disc D centers on the delivery zone
with a radius of R that is computed taken into account the
distance dTD between the initial position of the target (It)
and the delivery zone (D1)and the ratio vmaxa

vt
between the

speeds of the attacker and the target.

R =
vmaxa

vt
dItD1

(1)

When the attacker is in D, the interception is theoretically
achievable since the attacker has the possibility to reach the
delivery zone before the target and can thus interact with it.
For a given scenario where the delivery area, the alternative
delivery area and the initial position of the target are fixed, D
is also fixed for all episodes.

To evaluate the performance of the hijacking policy, we
can empirically estimate the reconstructed probability density
function of the success rate on all test scenario. We also define
following metrics:
M1: Number of successes over the number of episodes for
initial target position in playground.
M2: Number of successes over the number of episodes for
initial target position in D.
M3: Number of successes over the number of episodes for
initial target position not in D.
nstep : Mean of the number of steps when the episode is a
success

rdist : Mean of the distance covered by the target over the
initial distance from the target to the alternate delivery area
when the episode is a success.

M1, M2 and M3 are success rates depending on the initial
position of the target. nstep, and rdist are complementary
metrics that evaluate the difficulty for the attacker to hijack
the target.

C. Results

1) Step 1 Exploration of scenarios: Firstly, we generate
1000 random scenarios by fixing It and D2 as described in the
previous section. In order to ease analysis, D1 is always in the
center of the playground. This choice does not change initial
geometry exploration, although it may mask some corner
cases. For each scenario, we run for the three trained agent
A300, A600 and, A1000 1000 episodes with random position
for It. As expected during training, the agent A300 was not
able to perform interceptions. Thus, we only focus on A600

and A1000 in the rest of this section.
We present on figure 4 the distribution of the success rate for

the 1000 scenarios for agent A600 and A1000 with histograms.
We see that the maximum speed of the attacker has a huge
impact on the capacity of the attacker to intercept the target.
This is confirmed by an average success rate of 39.2% for
A600 and 91.4% for A1000.

Fig. 4: Distribution of the scenario’s success rate for A600 and
A1000

Then, in figure 5, we present D2 and It for the scenarios
that have a good success rate (> 90%) and a bad success rate
(< 10%) for trained agents A600 and A1000.

These figures highlight the impact of the initial geometry
(relative position of the different elements) on the success rate.
We recall that the D1 area is in the center of the playground

for all scenarios. When the ratio
vmaxa

vt
is high (top 2 of Figure

5), the distance ItD1 has a huge impact on the success rate
of a scenario. The closer the target is to the first delivery area
D1, the more the interception is difficult. Interpretation is not
that straightforward when the ratio is low (bottom 2 of Figure
5). It seems that the learned policy is more efficient when the
alternate delivery area D2 is between or almost between the
initial position of the target It and the initial delivery area D1.

Fig. 5: Alternate delivery areas and initial positions of the
target

2) Step 2 Exploration of selected scenarios : this section
focuses on some selected scenarios to provide a deeper look
into how behave the different policies. In Figure 6, we plot
the success rate of A1000 vs the success rate of A600. From
this graph, we select 3 scenarios S1, S2 and S3.
• S1 is a scenario where both trained agent have a bad

success rate;
• S2 is a scenario with a good success rate for A1000 and

a relatively poor for A600;
• and finally S3 where both agents have a good success

rate.
Each scenario correspond to a specific value of D1, D2 and

It.

Fig. 6: Scenarios selected for exploration

For each couple (Sx,Ay)x∈(1,2,3),y∈(1,2), we launch 10000
episodes with random Ia positions. Then we compute in table

II metrics described in VI-B. The different graphs of Figure
7 present successes and failures for all initial positions of the
attacker. We also plot D1, D2 and R, the circle inside which
the attacker should be able to hijack the target.

Scenario Agent m1 m2 m3 nstep rdist

S1
A1000 .19 .56 .16 218 1.39
A600 .06 .27 .05 346 2.21

S2
A1000 .84 .96 .73 197 1.47
A600 .46 .79 .41 423 3.16

S3
A1000 .96 .96 NA 219 1.27
A600 .86 .87 .77 370 2.15

TABLE II: Metrics for (Sx,Ay)x∈(1,2,3),y∈(1,2)

For all scenarios, A1000 performs better than A600. This
confirms the global success rate metric and highlights the
necessity for the attacker to have a higher velocity than the
target. The average ratio also shows that the task hijacking is
more accessible when the maximum speed of the attacker is
higher.

The success rate inside R (m3) is consistently higher the
than global one (m1), (even if not always equals to 100% as
we could expect).

From Figure 7, one characteristic which seems discriminant
is the distance between the initial position of the target It and
the delivery zone D1: the smallest it is, the hardest it is to
perform the hijacking. Even inside the R, the success rate
is poor, especially in S1. This can be explained by the fact
that the circle has been defined considering the attacker goes
directly to D1. In practice, the initial heading the attacker is
random so it has to change direction to head towards D1.
When there is not a lot of time, the change of heading is too
long and the attacker cannot hijack. When time is longer, the
effect is less visible, especially for A1000.

Failures inside R for S3 seem to form a pattern that would
require additional investigations. It may show that our policy
is not perfect or that our training scenarios did not explore
enough certain configurations. This is the object of next step.

3) Step 3 Exploration of trajectories : In this section, we
present some representative observed trajectories to understand
the red area of (S3, vmax1000) and the red area that is inside R
in (S2, vmax1000).

Figure 8 presents the trajectories for two close initial posi-
tions of the attacker for scenario (S3, vmax1000). This corresponds
to the red area upper right of D1 on figure 7. With the first
position, the interception is not achieved. We can observe that
the attacker has a trajectory that intercepts the target after D1.
On the contrary, for the second episode, the attacker intercepts
the target before D1. Failures of the (S3, vmax1000) scenario have
similar behaviors. The attacker tries to intercept the target after
the D1 area. This is mainly due to the reward function used
during the training of the attacker agent. We used an heuristic
that rewards the attacker when the target reduces the distance
with D2 in order to ease the learning of the policy. In order
to push the attacker to hijack before the target reaches D1, we
would need to modify the reward to alleviate this undesired
behavior. The proportion of episodes leading to such cases is

low but definitely the reward function should be updated to
avoid such phenomena.

Figure 9 shows the trajectories for two close initial positions
of the attacker for the scenario (S2, vmax1000). This corresponds to
the red area insideR. In the first episode, the initial velocity of
the attacker is small and its acceleration is not strong enough
to be able to interact with the target before it reaches D1.
When the initial velocity of the attacker is higher, in the second
episode, the attacker is able to interact with the target almost
from the beginning, and it is able to hijack it. These situations
can occur when the attacker is opposite to the target compared
to D1. It could be solved by increasing the minimal initial
speed of the attacker, fixing the initial heading of the attacker
towards D1 or increasing the attacker maximum acceleration.

VII. CONCLUSION

This work highlights the possibility of using reinforcement
learning to train a malicious agent to hijack a delivery drone
equipped with the ACAS-Xu avoidance system. Up to our
knowledge, we are the first to demonstrate the possibility of
fuzzing the algorithm of an autonomous avoidance system.
With the current ambition in the aerospace industry for the
development of autonomous systems (specifically air taxis and
autonomous delivery drones), we are highlighting a security
breach. The acceptance of these autonomous vehicles requires
the resolution of these security issues.

As the ACAS-Xa system uses the same principle of tables,
we believe that our method also applies.

Although we have made simplifying assumptions within
the simulation environment, we believe that RL is efficient
for attacking the ACAS-Xu system. An extension could be
focused on adding complexity to the environment by adding
static and dynamic obstacles and considering the vertical
dimension. This should imply an extension of the action
state of the attacker (new dimension) and an increase of the
complexity of the reward function to handle obstacles.

In a future work, we consider training both agents with
reinforcement learning in a zero-sum two-player games (as
in [41], [42]) to produce collision avoidance system policies
robust to malicious attacks.

We believe that, in order to improve the security, a reference
use case should be provided with the ACAS-Xu. Access to
Look Up Tables is unfortunately not possible for organizations
that are not part of the RTCA/EUROCAE, the authority re-
sponsible for the normalization of the ACAS-Xu. Nevertheless,
thanks to [20], neural networks approximating ACAS-Xu look-
up tables are available. Therefore, we would like to replace
the ACAS-Xu look-up table with these neural networks inside
the gym environment and free it through our git repository
(will be available for the conference). This would enable
Reinforcement Learning and Security communities to work
on this topic with the final objective of improving security in
aeronautics.

ACKNOWLEDGEMENT

This project received funding from the French ”Investing for
the Future – PIA3” program within the Artificial and Natural

https://github.com/deel-ai/hijacking-acas

Fig. 7: Success/Failures for different initial position of the attacker among selected scenarios

Fig. 8: Analyse of trajectories in S3 scenario for vmax1000

Intelligence Toulouse Institute (ANITI). The authors gratefully
acknowledge the support of the DEEL project1.

REFERENCES

[1] R. N. Akram, K. Markantonakis, R. Holloway, S. Kariyawasam, S. Ayub,
A. Seeam, and R. Atkinson. Challenges of security and trust in avionics
wireless networks. In 2015 IEEE/AIAA 34th Digital Avionics Systems
Conference (DASC), pages 4B1–1–4B1–12, 2015.

1https://www.deel.ai/

Fig. 9: Analyse of trajectories in S2 scenario for vmax1000

[2] B.-C. A. S. E. Ariyurek S. Automated video game testing using synthetic
and human-like agents. arxiv, 1906.00317v1, 2019.

[3] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt. Learning
to fly via deep model-based reinforcement learning. arXiv preprint
arXiv:2003.08876, 2020.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[5] E. Çetin, C. Barrado, and E. Pastor. Counter a drone in a complex
neighborhood area by deep reinforcement learning. Sensors, 20(8):2320,
2020.

[6] Y. Cheng and Y. Song. Autonomous decision-making generation of

https://www.deel.ai/

uav based on soft actor-critic algorithm. In 2020 39th Chinese Control
Conference (CCC), pages 7350–7355. IEEE, 2020.

[7] A. Clavière, E. Asselin, C. Garion, and C. Pagetti. Safety Verification
of Neural Network Controlled Systems. In 7th International Workshop
on Safety and Security of Intelligent Vehicles (SSIV 2021), 2021.

[8] M. Damour, F. D. Grancey, C. Gabreau, A. Gauffriau, J.-B. Ginestet,
A. Hervieu, T. Huraux, C. Pagetti, L. Ponsolle, and A. Clavière. Towards
certification of a reduced footprint acas-xu system: A hybrid ml-based
solution. In International Conference on Computer Safety, Reliability,
and Security, pages 34–48. Springer, 2021.

[9] R. C. Dorf and R. H. Bishop. Modern control systems. Pearson Prentice
Hall, 2008.

[10] EUROCAE WG 75.1 /RTCA SC-147. Minimum Operational Perfor-
mance Standards For Airborne Collision Avoidance System Xu (ACAS
Xu), 2020.

[11] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation
error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018.

[12] M. Gnanasekera, A. V. Savkin, and J. Katupitiya. Range measure-
ments based uav navigation for intercepting ground targets. In 2020
6th International Conference on Control, Automation and Robotics
(ICCAR), pages 468–472. IEEE, 2020.

[13] Y. J. Guido Manfredi. An introduction to acas xu and the challenges
ahead. In 35th Digital Avionics Systems Conference, Sep 2016,
Sacramento, United States. IEEE/AIAA, 2016.

[14] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning, pages 1861–
1870. PMLR, 2018.

[15] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. Control of a quadrotor
with reinforcement learning. IEEE Robotics and Automation Letters,
2(4):2096–2103, 2017.

[16] W. B. III. Airbus concludes attol project that featured world-first
automated takeoffs and landings. Aviation Today, 2019.

[17] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt,
E. Zawadzki, and A. Platzer. Formal verification of acas x, an industrial
airborne collision avoidance system. In 2015 International Conference
on Embedded Software (EMSOFT), pages 127–136, 2015.

[18] K. T. L. G. Ì. Joakim Bergdahl, Camilo Gordillo. Augmenting automated
game testing with deep reinforcement learning. arxiv, 2103.15819v1,
2021.

[19] K. D. Julian, J. Lopezy, J. S. Brushy, M. P. Owenz, and M. J.
Kochenderfer. Deep neural network compression for aircraft collision
avoidance systems. 35th Digital Avionics Systems Conference (DASC),
2016.

[20] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
CoRR, abs/1702.01135, 2017.

[21] W. Koch, R. Mancuso, R. West, and A. Bestavros. Reinforcement
learning for uav attitude control. ACM Transactions on Cyber-Physical
Systems, 3(2):1–21, 2019.

[22] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos.
Next-generation airborne collision avoidance system. Technical report,
Massachusetts Institute of Technology-Lincoln Laboratory Lexington
United States, 2012.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. Continuous control with deep reinforcement
learning. In 4th International Conference for Learning Representations,
2016.

[24] R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments.
Advances in Neural Information Processing Systems, 30:6379–6390,
2017.

[25] G. Manfredi and Y. Jestin. An introduction to acas xu and the challenges
ahead. In 35th Digital Avionics Systems Conference (DASC’16), pages
1–9, 2016.

[26] M. Min, L. Xiao, D. Xu, L. Huang, and M. Peng. Learning-based
defense against malicious unmanned aerial vehicles. In 2018 IEEE
87th Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE,
2018.

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[30] F. Netjasov, A. Vidosavljevic, V. Tosic, M. H. Everdij, and H. A. Blom.
Development, validation and application of stochastically and dynami-
cally coloured petri net model of acas operations for safety assessment
purposes. Transportation Research part C: emerging technologies,
33:167–195, 2013.

[31] U. D. of transportation Federal Aviation Administration. Introduction to
tcas ii version 7. https://www.faa.gov/documentlibrary/media/advisory
circular/tcas%20ii%20v7.1%20intro%20booklet.pdf, 2000.

[32] H. X. Pham, H. M. La, D. Feil-Seifer, and L. V. Nguyen. Au-
tonomous uav navigation using reinforcement learning. arXiv preprint
arXiv:1801.05086, 2018.

[33] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dor-
mann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3,
2019.

[34] R. santamarta. Arm ida and cross check: Reversing the 787’s
core network. https://act-on.ioactive.com/acton/attachment/34793/
f-cd239504-44e6-42ab-85ce-91087de817d9/1/-/-/-/-/Arm-IDA%
20and%20Cross%20Check%3A%20Reversing%20the%20787%27s%
20Core%20Network.pdf, 2019.

[35] H. Sathaye, D. Schepers, A. Ranganathan, and G. Noubir. Wireless
attacks on aircraft instrument landing systems. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 357–372, 2019.

[36] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.
Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588(7839):604–609, 2020.

[37] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region
policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[39] P. A. Series. Aircraft hacking. 2013.
[40] R. L. Shaw. Fighter combat. Tactics and Maneuvering; Naval Institute

Press: Annapolis, MD, USA, 1985.
[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[42] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[43] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller.
Deterministic policy gradient algorithms. In International conference on
machine learning, pages 387–395. PMLR, 2014.

[44] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy
gradient methods for reinforcement learning with function approxima-
tion. In NIPs, volume 99, pages 1057–1063. Citeseer, 1999.

[45] G. Tong, N. Jiang, L. Biyue, Z. Xi, W. Ya, and D. Wenbo. Uav navigation
in high dynamic environments: A deep reinforcement learning approach.
Chinese Journal of Aeronautics, 34(2):479–489, 2021.

[46] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 30, 2016.

[47] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning.
Nature, 575(7782):350–354, 2019.

[48] B. Vlahov, E. Squires, L. Strickland, and C. Pippin. On developing a
uav pursuit-evasion policy using reinforcement learning. In 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 859–864. IEEE, 2018.

[49] S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. Tomlin.
Multi-agent quadrotor testbed control design: Integral sliding mode vs.
reinforcement learning. In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3712–3717. IEEE, 2005.

https://www.faa.gov/documentlibrary/media/advisory_circular/tcas%20ii%20v7.1%20intro%20booklet.pdf
https://www.faa.gov/documentlibrary/media/advisory_circular/tcas%20ii%20v7.1%20intro%20booklet.pdf
https://github.com/DLR-RM/stable-baselines3
https://act-on.ioactive.com/acton/attachment/34793/f-cd239504-44e6-42ab-85ce-91087de817d9/1/-/-/-/-/Arm-IDA%20and%20Cross%20Check%3A%20Reversing%20the%20787%27s%20Core%20Network.pdf
https://act-on.ioactive.com/acton/attachment/34793/f-cd239504-44e6-42ab-85ce-91087de817d9/1/-/-/-/-/Arm-IDA%20and%20Cross%20Check%3A%20Reversing%20the%20787%27s%20Core%20Network.pdf
https://act-on.ioactive.com/acton/attachment/34793/f-cd239504-44e6-42ab-85ce-91087de817d9/1/-/-/-/-/Arm-IDA%20and%20Cross%20Check%3A%20Reversing%20the%20787%27s%20Core%20Network.pdf
https://act-on.ioactive.com/acton/attachment/34793/f-cd239504-44e6-42ab-85ce-91087de817d9/1/-/-/-/-/Arm-IDA%20and%20Cross%20Check%3A%20Reversing%20the%20787%27s%20Core%20Network.pdf

[50] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[51] S. Xuan and L. Ke. Uav swarm attack-defense confrontation based
on multi-agent reinforcement learning. In Advances in Guidance,
Navigation and Control, pages 5599–5608. Springer, 2022.

[52] K. D. Young, V. I. Utkin, and U. Ozguner. A control engineer’s guide to
sliding mode control. IEEE transactions on control systems technology,
7(3):328–342, 1999.

	Introduction
	Overview of the ACAS system
	Related works
	Security in avionics
	ACAS-Xu
	Reinforcement learning for Unmanned Aerial Vehicle

	Reinforcement learning
	Development of an attack on ACAS-Xu
	Notations
	Set up and objective
	Training environment

	Experiments and results
	Training setups
	Evaluation setups
	Results
	Step 1 Exploration of scenarios
	Step 2 Exploration of selected scenarios
	Step 3 Exploration of trajectories

	Conclusion
	References

