
HAL Id: hal-03693910
https://hal.science/hal-03693910

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mind Maps Upstream SysML v2 Diagrams
Pierre De Saqui-Sannes, Rob A. Vingerhoeds, Nasrine Damouche, Eric

Razafimahazo, Ombeline Aïello, Maisa Cietto

To cite this version:
Pierre De Saqui-Sannes, Rob A. Vingerhoeds, Nasrine Damouche, Eric Razafimahazo, Ombeline
Aïello, et al.. Mind Maps Upstream SysML v2 Diagrams. 2022 IEEE International Systems Con-
ference (SysCon), Apr 2022, Montréal, Canada. pp.0. �hal-03693910�

https://hal.science/hal-03693910
https://hal.archives-ouvertes.fr


Mind Maps Upstream SysML v2 Diagrams
Pierre de Saqui-Sannes

ISAE-SUPAERO, Université de Toulouse
Toulouse, France

pdss@isae-supaero.fr

Rob A. Vingerhoeds
ISAE-SUPAERO, Université de Toulouse

Toulouse, France
rob.vingerhoeds@isae-supaero.fr

Nasrine Damouche
ISAE-SUPAERO, Université de Toulouse

Toulouse, France
nasrine.damouche@isae-supaero.fr

Eric Razafimahazo
ISAE-SUPAERO, Université de Toulouse

Toulouse, France
eric.razafimahazo@isae-supaero.fr

Ombeline Aı̈ello
ISAE-SUPAERO, Université de Toulouse

Toulouse, France
ombeline.aiello@isae-supaero.fr

Maisa Cietto
Universidade de São Paulo

São Carlos, SP, Brazil
maisa.cietto@usp.br

Abstract—Over the past two decades, the promoters of Model
Based Systems Engineering (MBSE) have encouraged systems
engineers to transition from document-centric approaches to
model-based ones. Literacy of systems engineers in reading,
sharing and elaborating models has therefore become an issue.
Whatever the modeling language, elaboration of models is a
highly complex intellectual process and SysML is no excep-
tion. Feedback from industry practitioners and MBSE lecturers
suggests that developers of SysML models often stumble on
the same problem: thinking about the system before modeling
it in SysML. The authors of this paper propose to ease that
elaboration process by using mind maps. With their graphic
form and rather flexible way of organizing ideas, mind maps turn
out to be a good candidate to help thinking about the system.
Unlike approaches that directly switch from mind maps to SysML
diagrams dedicated to one specific system, this paper introduces
an intermediate step: mind maps first enable elaboration of
diagrams patterns. The latter may in turn be instantiated on
one or several systems. Without loss of generality, the proposed
approach is step-wise illustrated on real-time systems monitored
by software controllers. Patterns are proposed to cover need
expression, requirement capture, use case driven analysis and
design.

Index Terms—Mind Maps, SysML v2, Real-Time Systems.

I. INTRODUCTION

Over the past two decades, the promoters of Model Based
Systems Engineering (MBSE) have encouraged systems en-
gineers to transition from document-centric approaches to
model-based ones. Literacy of systems engineers in reading,
sharing and elaborating models has therefore become an
issue. In this context, the standardization and tool support
of graphic modeling languages - particularly, the Unified
Modeling Language (UML [1]) and the Systems Modeling
Language (SysML [2]) - have been presented as enablers of
MBSE adoption in industry [3].

Nevertheless, recent position papers, internships offers and
posts on social networks have indicated that many industry
practitioners are still in the process of evaluating the pros and
cons of MBSE. Several reasons may been found. From their
experience as MBSE lecturers, the authors of this paper wish
to highlight one of them: the difficulty to address a system by
immediately “diving” into the activity of modeling the system
in SysML.

Despite of its graphic syntax and its categorization among
semi-formal languages, SysML indeed constrains the way of
thinking systems in terms of diagrams. This is fully appro-
priate when the concern is to step-wise implement a system
engineering process with its successive address of requirement
capture, analysis and design steps. By contrast, elaborating
SysML models first requires forms of brainstorming and shar-
ing of knowledge (with clients, regulators). This step would
benefit from a graphic support to express ideas, but in a way
that is less formal and coercive than diagramming in SysML.
The graphic support which is needed must be close to human
way of addressing problems and thinking about systems.

This paper therefore addresses the issue of ‘Thinking about
the system before modeling it in SysML’, and proposes to
use mind maps for the thinking part of the objective whilst
keeping SysML as systems modeling language.

The paper is organized as follows. Section II presents the ra-
tionale behind the approach developed in the paper. Section III
surveys related work. Section IV explains how the remainder
of the paper sets mind maps upstream SysML v2 diagrams.
Section V focuses discussion on real-time systems modeling.
Sections VI, VII, VIII and IX respectively achieve needs
expression, requirements analysis, use-case driven analysis,
and design in a process associated with SysML. Section X
concludes the paper and outlines future work.

II. RATIONALE

Developing a system, be it a product, a service, or an
organisation, passes several life cycle phases. The first stage
in a system’s life cycle, the concept stage, focuses on un-
derstanding the implications of a system’s mission and core
functionality, a business case together with requirements,
their interconnections and dependencies specified in e.g., key
performance indicators (KPIs) and trade-off indicators such as
Figures of Merit (FoM) [4]. A threefold objective can be seen
for the concept stage:

1) To interpret/understand a mission statement, supported
by a positive (potential) business case,

2) To produce an initial definition of stakeholder require-
ments and KPIs with respect to the mission, and



Fig. 1. The approach developed in the paper.

3) To produce an initial logical/conceptual description of a
design.

The starting point for this phase concerns the needs and
desires expressed by the stakeholders, which needs and desires
are over the course of the concept phase transformed into
requirements, potentially separated in Functional and Non-
Functional Requirements, the latter potentially split in different
types of non-functional requirements. This first phase, in
which there may not be a very precise idea on what the
stakeholders really want, is crucial as this is where the main
decisions are taken. Once the requirements are considered
clear and a first logical/conceptual description of the design
is available, the main orientations are known. The developers
then have a logical architecture of the system’s design and its
subsystems (the upper-level architecture) that meets system
requirements: a preliminary design of the product, service or
organisation to be developed.

The outcome of this first stage is orientating the next stages.
It is important to provide developers with a good support to
structure the information coming from the stakeholders, and
to allow them to more clearly see the requirements space
and the solution space. Starting from expressed needs and
desires, from discussions, developers may find it complicated
to formulate the requirements. This paper advocates the use
of mind maps for this first phase and to have a transformation
from mind maps to the first definition of requirements in a
model-based systems engineering environment. Often used for
structuring ideas or taking notes amongst others, a mind map
is a diagram that allows for visually organise diverse types
of information, as well as the relations between the different
parts of the information [5] [6].

Mind maps can be seen as being built on top of semantic
networks. Semantic networks are one of two closely related
families of reasoning systems, the other family being descrip-
tion logics. Semantic networks date back to the early 20th
century and offer graphical possibilities for visualisation of a
knowledge base and efficient algorithms for inferring proper-
ties of an object on the basis of its category membership [7].
Closely related, description logics provide a formal language
for constructing and combining category definitions and effi-
cient algorithms for deciding subset and superset relationships
between categories.

The intuitive use of mind maps to take notes and to
structure knowledge, makes for a powerful tool. This paper
investigates the possibilities of using mind maps as “front-
end” to requirements engineering, so as to allow good, well-

structured and well-supported collection of information of
the concept stage. On the other hand, it also investigates a
structured way to transform this information into requirements
for further use.

III. RELATED WORK

Mind maps assist persons in generating, classifying, cate-
gorizing and visualizing ideas. Many papers and books have
addressed mind maps informally. In [8] Siochos and Pap-
atheodorou formalize mind-maps as bi-partite graphs.

In [9] Quispe Vilchez and Pow-Sang Portillo survey litera-
ture on using mind maps in requirement engineering processes.
Mind maps are identified as enablers of improved communi-
cation between the persons involved in the process of creating
requirements and validating the latter.

Mind maps indeed need to be formalized to be used in
conjunction with other modeling languages. For instance, to
implement model transformation techniques. Such techniques
are used in [10] where Wanderley, Belloir, Bruel, Hameurlain,
and Araújo state that people in charge of eliciting require-
ments are not necessarily comfortable with SysML require-
ment diagrams. These authors propose to specify requirements
using cognitive models such as mind maps. They use model
transformation techniques to transform mind maps into KAOS
(Knowledge Acquisition in Automated Specification) models
that are subsequently transformed into SysML requirement
diagrams. Thus, the paper by Wanderley et al. exclusively
associates mind maps with requirement diagrams elicitation.
Conversely, next sections of this paper consider that mind
maps may influence not only requirement diagrams, but also
use case, sequence and block diagrams. This paper also
addresses needs, an important issue in systems engineering
and an issue not addressed by any SysML diagram.

IV. GLOBAL APPROACH

For over a decade, the authors of this paper have been lectur-
ing on SysML and supervising students projects. Students of
various background have been trained, ranging from aerospace
engineers to mechanical engineers, computer engineers, and
building engineers. Despite of the broad variety of student
profiles, the following issues may be addressed:

• Experience in Systems Engineering is often
limited. Part of the students have been lectured on
systems engineering, including MBSE, but the art of
modeling systems is scarcely addressed in terms of what
to do before developing a model. The idea of thinking



about the system before modeling is not so commonly
addressed during SysML classes.

• Making abstractions is a stumbling block in the
art of modeling and this is verified in the context of
SysML. Newcomers to SysML need assistance. This
paper proposes to use mind maps as a stepping stone
to SysML diagrams creation.

• Examples imitation is a way of working that stu-
dents use to feel comfortable. Instead of multiplying ex-
amples of closely similar systems, the concept of pattern
enables modeling a reference for a class of systems. For
instance, following sections of this paper are focused on
the class of real-time systems.

• Models are not just documentation
artifacts and need to be associated with tools
and methods that enable addressing key issues, such as
requirement traceability and checking of models against
design errors. Therefore, next sections of this paper
use SysML v2 and develop models with free software
TTool [11].

Previous concerns lead the authors of this paper to develop
the 3-step approach depicted by Fig.1 in the form of a SysML
activity diagram. Three main activities are identified:

1) Brainstorming where the mind maps are created.
2) Categorizing where SysML diagram patterns are cre-

ated.
3) Instantiating where the patterns are instantiated on

one or several systems.

V. SOFTWARE CONTROLLERS OF REAL-TIME SYSTEMS

The term “Real-Time Systems” was coined to identify a
class of systems that interact with their environment, run
under the stimuli of the latter, and need to meet temporal
constraints. There exists a large variety of real-time systems,
from the simplest to the most sophisticated ones, ranging
from microwave ovens to alarm controllers embedded on-
board aircraft.

As far as modeling of real-time systems is concerned, the
perimeter of the system needs to be clarified first. The problem
may be phrased by a question: are we going to model the
complete real-time system or a subset of it? That subset may
be a (presumably software) controller that monitors the real-
time system. In this paper, a real-time system controller was
selected to be modeled, not the complete real-time system.

It is common practice to address a real-time system con-
troller that is connected to a set of sensors and a set of
actuators. Sensors provide the controller with input values
and signals. Actuators are triggered by the outputs of the
controller. Fig. 2 depicts a mind map that accordingly contains
three branches for the sensors, the control function itself, and
the actuators. A branch is added for maintenance, which is a
key issue in systems design. The sensors (resp. the actuators)
are categorized depending on whether they interact, or not,
with human beings, particularly customers and supervisors.
Control functions include the set up and shutdown procedures
to be used when switching the real-time system on and off,

respectively. Distinction is further made between nominal and
degraded behaviors.

VI. NEEDS EXPRESSION

Needs definition is a crucial step for successful system
conceptual design. The main objective of this step is to
converge to a common top-level description of the system,
compatible with the perspectives of all the stakeholders. The
term ‘stakeholders’ refer to people, organizations and other
systems having any interest into the system. The stakeholders
include users, providers, maintenance team, authorities, and
assurance companies [12]. The system description should
be understandable by all people who are involved in its
development, and will serve as a basis for planning the tasks
and actions to be carried out.

SysML [2] does not offer any need definition diagram. Nor
does SysML v2 [13]. In this paper, it is proposed to formulate
needs in the form of sentences. The latter are labeled by
identifiers.

Table I identifies needs associated with nominal behavior of
the drink machine controller. Degraded behaviors - for instance
“What to do when the drink machine fails connecting to the
payment device?” - should also be taken into account. For
space reasons, degraded behaviors are not addressed in this
paper.

Fig. 2. Mind Map for Real-Time Systems.



Fig. 3. Instantiating the Mind Map for Real-Time Systems : Drink machine.

TABLE I
PATTERN AND INSTANTIATION OF NEEDS DEFINITION FOR REAL-TIME SYSTEMS CONTROLLER

Pattern item Drink Machine
ID Need ID Need Priority

1 Functional needs: perform the functional
needs for the system.

1.1 Mix ingredients to provide hot drinks. H
1.2 Choose drink (coffee or tea?). H
1.3 Set the amount of sugar. M
1.4 Detect customer’s personal mug. M
1.5 Display the preparation progress. L
1.6 Switch to standby mode when not in service. M

2 Non-functional needs: satisfy the
non-functional needs for the system.

2.1 Manage the resources. H
2.2 Use electric power. H
2.3 Be able to clean the machine. H
2.4 Wait for payment before starting the preparation. H

Table I contains the needs pattern which is instantiated on
a drink machine controller. The pattern categorizes the needs
in two groups:

1) Functional needs: they correspond to the func-
tions that are the services offered by the system. For
instance, the need 1.1 corresponding to mixing the
ingredients to provide hot drinks is a function provided
by the drink machine. This function instantiates the item
Non Human Devices from the branch Actuators
presented in the mind map in Fig. 2.

2) Non-functional needs: they define system at-
tributes such as security, reliability, performance, main-
tainability, scalability, and usability, and serve as con-
straints or restrictions on a system design. For example,
the need identified with the identifier 2.4 (wait for
payment before starting the preparation) is derived from
the item Access Granting of the branch Control
as shown on Fig. 2.

Note that the same process associating needs (Tab. I) and
mind map (Fig. 2) has been applied in this paper for writing

the needs and the requirements.
Once needs have been written and specified in cooperation

with the involved stakeholders, they should be prioritized. This
paper reuses the three-level scale presented in [14]:

• High (H): what is critical to complete the mission.
• Medium (M): what is eventually required to complete

the mission.
• Low (L): what would be nice to have someday if re-

sources permit.
These needs are meant to be transformed into requirements.

Defining and classifying them is very helpful for the next steps
of the system development.

VII. REQUIREMENTS CAPTURE

Requirements have to be well-defined and specified to
ensure successful development of new systems. To do so, col-
laborative work between the different stakeholders is necessary
to translate their needs into requirements.

In this paper, the mind map depicted by Fig. 2 is used to
guide the systems engineer when defining the requirements,



TABLE II
PATTERN FOR REQUIREMENTS DEFINITION FOR REAL-TIME SYSTEMS CONTROLLER

Pattern item Requirement attributes
ID Name Text Type (Sec. VII)

Sensors
S Input The system shall receive inputs. F
S.1 NoInteractionWithHumans The system shall use sensors not interacting with Humans. S
S.2 InteractionWithHumans The system shall use sensors interacting with Humans. S

Control

C Controller The system shall process the inputs from the sensors. F
C.1 MainFunctions The system shall perform its main functions. F
C.2 Customization The system shall allow customization of the mission. F
C.3 AccessGranting The system shall grant access to the user. F

Actuators
A Actuator The system shall drive actuators. F
A.1 NonHumanDevices The system shall use non-human devices. S
A.2 InformHumans The system shall use devices to inform Humans. S

Maintenance
M Maintenance The system shall be maintainable. F
M.1 ScheduledMaintenance The system shall process scheduled maintenance operations. F
M.2 UnscheduledMaintenance The system shall process unscheduled maintenance operations. F

especially for real-time systems. The requirements are derived
from the needs defined in section VI:

• Sensors requirements provide the system with the
necessary inputs to perform its mission.

• Control requirements are related to the controller: they
process the inputs received from the Sensors part to
provide the controller’s outputs to the Actuators part.

• Actuators requirements are related to the actions to
be performed according to the controller’s outputs.

• Maintenance requirements are related to maintaining
the well functioning of the system.

Once requirements have been defined and understood, they
can be classified into Functional and Non-Functional require-
ments. This last category can be split into three sub-categories
such as Behavioral, Structural and Experiential as presented

Fig. 4. Instantiating the requirement table pattern on the drink machine using
SysML v2 textual notation.

by Brazier, Van Langen, Lukosch and Vingerhoeds in [4]:
• Functional (F) requirements state the functions provided

by the system.
• Behavioral (B) requirements specify the desired behavior

of the system together with key performance indicators.
• Structural (S) requirements specify the components of the

system and their relationships.
• Experiential (E) requirements define the desired impact

of the system in the real world with real people.
This classification of requirements into these four categories
helps systems engineers to know which requirements to con-
sider at any point of the development stage [15]. Functional
requirements are considered in particular during the use-case
driven analysis step (see section VIII); whereas behavioral
and structural requirements are used in the design step (see
section IX). Experiential requirements are specific since they
can be translated into functional, behavioral and structural
ones.

Table II depicts a requirement table pattern for real-time
systems monitored by software controllers. This table contains
an excerpt of high-level requirements, which can be further
specified into lower-level ones to better describe the system.
For instance, the requirement with the identifier A.2: ’The
system shall use devices to inform Humans’
can be refined into A.2.1: ’The system shall use
visual devices to inform Humans’ (S) and
A.2.2: ’The system shall use sound devices
to inform Humans’ (S).

The requirement pattern in Table II is instantiated on the
controller of the drink machine which is depicted by Fig. 4,
following SysML v2 [13] syntax. Compared to the previous
version of SysML, Version 2 offers textual notation to model
concepts including requirements which is intended to improve
the precision, expressiveness, and usability [13].

VIII. USE CASE DIAGRAM

A use case diagram identifies the main functions or
services to be offered by the system. Fig. 5 depicts a
use case diagram pattern for software controllers of real-
time systems. The use case diagram names the system



Fig. 5. Use Case Diagram: Pattern for Real-Time Systems Software Controller.

Fig. 6. Use Case Diagram for a Drink Machine.

as Real T ime System Controller. A rectangle sets the
boundary of the real-time system controller. The functions to
be offered by the systems are identified by use cases drawn as
ovals. The functions and the actors have been named relying
on the branch labels of the mind map in Fig. 2.

Fig. 5 depicts the use case diagram associated with the
Sensors, Control and Actuator branches of the mind map
depicted by Fig. 2. For space reasons, the use case diagram
associated with the Maintenance branch of the same mind
map is not shown in this paper.

The pattern depicted by Fig. 5 can now be instantiated. In
this paper, the pattern is instantiated on a drink machine. It
may be applied to other real time systems, such as microwave
oven controllers and smartphones. The result of the instantia-
tion is shown in Fig. 6.

Referring to Fig. 5, for instance, the use case
processBeverageSelection is realized by the
BeverageSelector actor that corresponds to the actor
labelled by number 2 on Fig. 5 and Fig. 6. The same process

is applied to the rest of the instantiation.

IX. DESIGN STEP

The design step defines the architecture of the system
in terms of interconnected blocks that SysML v2 names
“parts” [13]. The latter distinguishes between part definition
and part instantiation. Further, parts may be pairwise con-
nected by ports.

Conforming to the approach depicted by Fig. 1, this section
first proposes a diagram pattern and subsequently instantiates
it on one concrete system, a drink machine controller.

Fig. 7 depicts a pattern for an architecture of real-time
systems using SysML v2 textual notation, and referring to the
mind map in Fig. 2. The maintenance part is not developed in
this paper.

]
As shown in Fig. 7, each part is first defined in

the section ’Definition of parts’ using the key-
word part def. The part definition distinguishes be-



Fig. 7. Architecture: Pattern for Real-Time Systems using SysML V2 textual notation.

Fig. 8. Architecture of a drink machine using SysML v2 textual notation.



tween NonHumanInteraction_Sensors (NHS) and
HumanInteraction_Sensors (HS) as far as Sensors
are concerned. Similarly NonHuman_Devices (NHD) and
Human_Devices (HD) are distinguished for the part
Actuators. The four previously mentionned parts exchange
signals with RTS_Controller. These signals are expressed
by in item and out item for the input and output signals,
respectively.

The section called ’Usage of parts’ instantiates
the part definition RealTimeSystem which shows that
Sensors, Controller, and Actuators belong to the
part RealTimeSystem.

One of the advantages of the textual notation of SysML v2
is that the links between two parts are visible in the last section
called “Binding between signals”. Indeed, the keyword bind
describes the link between an input signal from the transmitter
part and an output signal to the receiver part. For instance,
in Fig. 9 the input signal Ctrl_NHS_signal is received
by the part NonHumanInteraction_Sensors and it is
associated with the output signal Ctrl_NHS_signal sent
by the part RTS_Controller.

Fig. 9. Excerpt of Figure 7.

The RTS pattern is instantiated on a drink machine
(Fig. 8). The drink machine’s sensors part includes a
Drink_Selector to select drinks, a Mug_Detector for
sustainability concerns, and a Coin_Slot to proceed pay-
ments. These parts allow one to satisfy the needs 1.2 (Choose
drink), 1.4 (Detect customer’s personal mug) and 2.4 (Wait
for payment before starting the preparation), respectively. The
drink machine’s actuators part includes a Dispenser which
mix the ingredients to prepare hot drink, satisfying the need
1.1 (Mix ingredients to provide hot drinks).

The RTS pattern presented in this paper could be easily
instantiated on different real time systems, such as electrically
assisted bicycles, drones exploring buildings [16], and drones
exploring high-voltage lines [17].

X. CONCLUSIONS

Whatever the modeling language, elaboration of models
is a highly complex intellectual process and SysML is no
exception. The authors of this paper propose to ease that
elaboration process by using mind maps.

From their experience in teaching SysML modeling of
systems, the authors of this paper may witness the interest of
mind maps to help students thinking about the system to be
modeled before developing SysML diagrams. Having one or
several mind maps as a common reference to the requirement
capture, analysis and design steps enables some kind of
harmonization in the way requirement, modeling assumptions,
use case, sequence and block diagrams are designed.

Unlike approaches that directly switch from mind maps
to SysML diagrams dedicated to one specific system, this
paper introduces an intermediate step: mind maps first enable
elaboration of diagrams patterns. The latter may in turn be
instantiated on one or several systems. The proposed approach
is step-wise illustrated on real-time systems monitored by
software controllers.

Further investigations are needed to partly automate the
proposed approach inside a methodological assistant. The
latter will advantageously combine Cased Based Reasoning
Techniques with Mind Maps.

ACKNOWLEDGEMENTS

SysML diagrams and mind maps have been edited with
free sofware TTool and Xmind, respectively. Thanks are due
to Prof. Ludovic Apvrille for supporting SysMLv2 textual
notation in TTool.

REFERENCES

[1] OMG Unified Modeling Language, Object Management Group,
https://www.omg.org/spec/UML/2.5/PDF, 2018.

[2] OMG Systems Modeling Language, Object Management Group,
https://www.omg.org/spec/SysML/1.6, December 2019.

[3] S. Wolny, A. Mazak, C. Carpella, V. Geist, and M. Wimmer, “Thirteen
years of SysML: A systematic mapping study,” Software and Systems
Modeling, vol. 19, p. 111–169, 2020.

[4] F. Brazier, P. v. Langen, S. Lukosch, and R. Vingerhoeds, Complex
Systems: Design, engineering, governance, ser. Projects and People:
Mastering Success. NAP Foundation Press, 2018.

[5] T. Buzan, Mind Maps at Work: How to be the best at work and still
have time to play. Plume, 2005.

[6] V. Kokotovich, “Problem analysis and thinking tools: an
empirical study of non-hierarchical mind mapping,” Design
Studies, vol. 29, no. 1, pp. 49–69, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0142694X07000889

[7] S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach,
3rd ed. Pearson, 2016.

[8] V. Siochos and C. Papatheodorou, “Developing a formal model for mind
maps,” in First Workshop on Digital Information Management, 03 2011.

[9] E. Quispe Vilchez and J. A. Pow-Sang Portillo, “Mind maps in require-
ments engineering: A systematic mapping,” in Design, User Experience,
and Usability. Design Philosophy and Theory, A. Marcus and W. Wang,
Eds. Cham: Springer International Publishing, 2019, pp. 335–350.

[10] F. Wanderley, N. Belloir, J.-M. Bruel, N. Hameurlain, and J. Araújo,
“From goals to systems modeling: a user-centered modeling approach
(in french),” Inforsid, pp. 113–128, 2014.

[11] TTool, “https://ttool.telecom-paris.fr/,” Retrieved September 10, 2021,
2021.

[12] S. R. Hirshorn, L. D. Voss, and L. K. Bromley, NASA Systems Engi-
neering Handbook, 2016.

[13] OMG, SysML v2, https://www.omgsysml.org/SysML-2.htm, 2021.
[14] K. Wiegers, “First things first: prioritizing requirements,” Software

Development, vol. 7, no. 9, pp. 48–53, 1999.
[15] J. J. M. Jiménez and R. Vingerhoeds, “A system engineering approach

to predictive maintenance systems: from needs and desires to logical
architecture,” in 2019 International Symposium on Systems Engineering
(ISSE). IEEE, 2019, pp. 1–8.

[16] E. Razafimahazo, P. de Saqui-Sannes, R. A. Vingerhoeds, C. Baron,
J. Soulax, and R. Mège, “Mastering complexity for indoor inspection
drone development,” in IEEE International Symposium on Systems
Engineering, ISSE 2021, Vienna, Austria, September 13 - October 13,
2021. IEEE, 2021, pp. 1–8.

[17] O. Aı̈ello, D. S. D. R. Kandel, J. Chaudemar, O. Poitou, and P. de Saqui-
Sannes, “Populating MBSE models from MDAO analysis,” in IEEE
International Symposium on Systems Engineering, ISSE 2021, Vienna,
Austria, September 13 - October 13, 2021. IEEE, 2021, pp. 1–8.


