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Abstract—Machine learning and data-driven algorithms have
gained a growth of interest during the past decades due to the
computation capability of the computers which has increased
and the quantity of data available in various domains. One
possible application of machine learning is to perform unsuper-
vised anomaly detection. Indeed, among all available data, the
anomalies are supposed to be very sparse and the expert might
not have the time to label all the data as nominal or not. Many
solutions exist to this unsupervised problem, but are known to
provide many false alarms, because some scarce nominal modes
might not be included in the training dataset and thus will
be detected as anomalies. To tackle this issue, we propose to
present an existing iterative algorithm, which presents potential
anomaly to the expert at each iteration, and compute a new
boundary according to this feedback using One Class Support
Vector Machine.

Index Terms—Machine learning, Semi-supervised Learning,
Active Learning, User Feedback, Anomaly Detection, One-Class
Support Vector Machines

I. INTRODUCTION

Machine learning (ML) has gained a lot of attention in the
past few years, due to the evolution of computer calculation
and stocking capability. ML algorithms can be divided into
two classes devoted to regression (estimation of parameters) or
classification (labeling data), which have received an increas-
ing interest in various applications [1]. Anomaly detection
(AD) is generally considered as a particular classification
problem consisting in classifying data that are not generated
by some nominal process [2], [3]. Most AD techniques are
unsupervised in the sense that the data are fed to the algorithms
without any label, which then selects a subset of the data that
are classified as anomalies. Most AD rules compute a score
for each data vector and declare that this vector is an anomaly
if the score is below a given threshold (otherwise the vector is
declared as nominal). In other words, anomalies are considered
as isolated data vectors compared to the whole dataset and
can thus be isolated. Among all the existing techniques, one
can mention the Local Outlier Factor (LOF) [4] and the
Local Outlier Probability (LoOP) [5], which compute a local
density score based on the nearest neighbors and their relative
distances to a given data vector. Another famous algorithm
is Isolation Forest (IF) [6], which computes random trees [7]
until the tested point is isolated. The mean number of nodes
required to isolate an anomaly should be much smaller than
for nominal points, which should be more dense. Finally,

other popular AD methods include the Support Vector Data
Description (SVDD) [8] and the One Class Support Vector
Machine (OCSVM) [9], finding an appropriate hypersphere
or hyperplane (using some possible kernel mapping) isolating
a given maximal proportion of data from the others.

A recurrent problem with AD algorithms is that they often
raise false alarms, i.e., a lot of nominal data are often estimated
as anomalies. This is due to the fact that real systems have
multi-modal densities, and some of the modes correspond to
nominal data that are rarely observed. This is for instance
the case when a certain request is made by the user. As
these events are rare, they might not be even included in the
training database or with very few instances. To overcome
this problem, an expert is generally obliged to check which
of the detected anomalies are actual and those that have
been misclassified. This operation will be referred to as “user
feedback” in this paper, and is also referred to as Active
Learning [10].

Anomaly Active Discovery (AAD) [11] is one way to
include user feedback into linear scoring problems. This paper
shows how this feedback can be included into the OCSVM us-
ing AAD. Note that active learning has already been applied to
SVM [12]. Section II briefly recalls the principle of OCSVM
and provides some implementation details. Section III shows
how expert feedback can be included in the standard OCSVM
algorithm. More precisely, Section III-A shows how labeled
anomalies and nominal data can be included in the boundary
estimation of OCSVM. Section III-B recalls the principle of
AAD and shows how it can be combined with OCSVM.
Some experiments are conducted In Section IV, assessing the
performance of the proposed algorithms on various datasets,
with comparison to some benchmark methods. Finally, Sec-
tion V summarizes the paper contributions and give some
perspectives about this work.

II. ONE-CLASS SUPPORT VECTOR MACHINES

OCSVM has been introduced in [9] adapting the support
vector machine classifier to AD. Consider N training data
{x1, . . . ,xN} ∈ X , and Φ : X → F a feature map from
the observation space X into an inner product space F such
that its inner product can be computed using a kernel k [13]

Φ(xi)
TΦ(xj) = k(xi,xj). (1)



There are many ways of constructing kernels for classification
or AD [14, Chap. 2.3]. This paper will focus on the well known
Gaussian kernel defined as

k(xi,xj) = exp
(
−γ‖xi − xj‖2

)
, (2)

where ‖.‖ is a norm on X (this work considers the `2 norm
‖x‖22 = xTx) and γ> 0 is a unique hyperparameter (other
kernels could be considered with minor modifications. An
advantage of using the Gaussian kernel is that many heuristics
have been proposed to estimate the hyperparameter γ, such as
the median of the distances between the nominal data [15].
OCSVM consists in finding the hyperplane in the feature space
F separating the training data located as far as possible from
the origin, with a given tolerance ν, representing the maximal
proportion of training data located outside the separating
hyperplane. This problem can be formulated as follows

arg min
w,ρ

1

2
wTw − ρ+

1

νN

N∑
i=1

ξi

s.t. wTΦ(xi) ≥ ρ− ξi ∀i = 1, . . . , N

ξi ≥ 0 ∀i = 1, . . . , N. (3)

The dual problem of (3) can easily be solved using quadratic
programming [9]. More details on this dual problem will be
given in Section III-A.

III. INCORPORATING EXPERT FEEDBACK

This section explains how expert feedback can be included
in OCSVM. First, an extension of the original problem with
some labeled data is introduced. The principle of AAD,
introduced in [11] and applied to IF in [16], is then presented.
AAD allows us to incorporate some expert knowledge about
some data vectors, which can be nominal data or anomalies.

A. OCSVM with some labeled data

This section studies a OCSVM method with Expert Feed-
back (OCSVMEF). To take into account false positives and
false negatives in OCSVM, we assume that we have some
labels (corresponding to anomalies or nominal data) for a sub-
set of the data, leading to a semi-supervised framework. The
optimization problem (3) can be modified to take into account
these labels, inspired by SVDD with negative examples [8]

arg min
w,ρ,ξ,ζ,τ

1

2
wTw − ρ+ p(ξ, ζ, τ )

s.t. wTΦ(xi) ≥ ρ− ξi, i = 1, . . . , N1

wTΦ(yl) ≥ ρ− ζl, l = 1, . . . , N2

wTΦ(zp) ≤ ρ+ τp, p = 1, . . . , N3

ξi ≥ 0, i = 1, . . . , N1

ζi ≥ 0, l = 1, . . . , N2

τp ≥ 0, p = 1, . . . , N3 (4)

where p(ξ, ζ, τ ) is the following penalty

p(ξ, ζ, τ ) =
1

ν1N1

N1∑
i=1

ξi +
1

ν2N2

N2∑
l=1

ζl +
1

ν3N3

N3∑
p=1

τp (5)

and
• N2 is the number of false positives labeled by the expert
• N3 is the number of false negatives labeled by the expert
• N1 = N −N2 −N3 is the number of non-labeled data
• w, ρ are the parameters of the hyperplane separating

nominal data from anomalies in the feature space
• ν1 is the maximal proportion of non-labeled training data

outside the separating hyperplane
• ν2 is the maximal proportion of mislabeled false positives

(we should have ν2 � ν1 since the data labeled by the
expert are more likely to have the correct labels

• ν3 is the maximal proportion of mislabeled false negatives
(with ν3 � ν1)

• X = {xi}i=1,...,N1
contains the non-labeled training data

• Y = {yl}l=1,...,N2
is the set of labeled false positives

• Z = {zp}p=1,...,N3
is the set of labeled false negatives

• ξ = {ξi}i=1,...,N1
are the slack variables for non-labeled

training data
• ζ = {ζl}l=1,...,N2 are the slack variables for labeled false

positives
• τ = {τp}p=1,...,N3

are the slack variables for labeled
false negatives.

The dual problem of 4 can be classically expressed as [17]

arg min
κ

1

2
κTKκ

s.t.
N1∑
i=1

αi +

N2∑
l=1

βl −
N3∑
p=1

γp = 1

0 ≤ αi ≤
1

ν1N1
, i = 1, . . . , N1

0 ≤ βl ≤
1

ν2N2
, l = 1, . . . , N2

0 ≤ γp ≤
1

ν3N3
, p = 1, . . . , N3 (6)

which can be solved using quadratic programming. Moreover,
the decision rule for a vector x is defined by

f(x) = sign

(∑
i∈SV

κik(xi,x)− ρ

)
(7)

where +1 refers to a nominal data, −1 to an anomaly, SV
is the set of support vectors learnt by the algorithm, i.e., the
vectors for which the parameters κi are non zero. Finally,
to compute ρ, we can notice that constraints in (4) become
equalities if the Lagrange multipliers are nonzero, i.e., if 0 <
αi <

1
ν1N1

, 0 < βl <
1

ν2N2
and 0 < γp <

1
ν3N3

. Thus, ρ can
be determined using the vectors satisfying one of the previous
strict inequalities, i.e., such that

∑
i∈SV κik(xi,x) = ρ.

B. AAD Formulation

AAD has already been exploited to incorporate expert
feedback in anomaly detection when the anomaly score is
linear, i.e., when there is a vector w such that the score of
any vector x is wTx [11], [16]. AAD is an iterative algorithm
presenting data vectors to an expert who should declare if



this vector is nominal or an anomaly, until some budget B of
queries has been met. The principle of AAD is summarized
in Algorithm 1.

Algorithm 1 AAD
1: Initialization: w = w0, t = 0, N2 = N3 = 0
2: while t ≤ B do
3: t = t+ 1
4: xi = arg maxx s(x) (data with maximum anomaly

score)
5: if xi is an anomaly then
6: N3 ← N3 + 1 one more anomaly is labeled
7: zN3 = xi
8: else
9: N2 ← N2 + 1 one more anomaly is labeled

10: yN2
= xi

11: end if
12: N1 =← N1 − 1 remove xi from unlabeled data
13: xi ← {}
14: Update w(t) according to the user feedback
15: end while

The main differences between the approach investigated in
this paper and that of [16] are 1) the initialization of the vector
w0 (which result from OCSVM in this work and from IF in
[16]), and 2) Line 14 of Algorithm 1 devoted to the update
of vector w. The Accuracy to The Top (AATP) approach
was proposed in [18] to update w. AATP requires to define
a proportion τ of vectors corresponding to anomalies. The
anomaly score wTxi are calculated for each vector xi. The
scores are then sorted in descending order and the top τ -th
quantile of these scores is denoted as qτ . A data vector is
declared as an anomaly when its anomaly score is higher than
qτ . To include expert feedback, AAD selects the unlabeled
vector with the highest anomaly score, send it to the user and
re-estimates the vector w. The re-estimation of w in [16] was
conducted using a misclassification cost based on the so-called
hinge loss function

`(qτ ,w;xi, yi) =
0 if wTxi ≥ qτ and yi = “anomaly”
0 if wTxi < qτ and yi = “nominal”
(qτ −wTxi) if wTxi < qτ and yi = “anomaly”
(wTxi − qτ ) if wTxi ≥ qτ and yi = ‘nominal”.

(8)

Note that this loss function is 0 if a data vector is correctly
classified, and strictly positive when it is misclassified. The
main contribution of this paper is to propose another update
rule for w, which is more adapted to OCSVM.

C. Reweighting OCSVM Using AAD

Looking carefully at the OCSVM decision function defined
in (7), one can observe that s(x) = −

∑
i∈SV αik(xi,x) can

be considered as an anomaly score, since the data that are more
likely to be anomalies are those associated with high values of
s(x). Since the solution of (4) is a linear combination of all

support vectors, the score function can be written as a linear
function of w, i.e., s(x) = wTΦ(x), which can be optimized
using the results of [16]. Note that this formulation is given
to show the link with AAD [16]. However, w will never be
used explicitly due to the kernel trick.

Algorithm 1 iteratively updates the weight vector w, based
on the maximum number of requests to the expert (denoted
as B). It ranks unlabeled vectors according to their anomaly
score, and presents to the expert the vector with the highest
score. According to its feedback, a new decision bound is
calculated. To optimize w based on the user feedback, we
propose to use the approach presented in Section III-A and to
solve problem (4) instead of using the hinge loss function (8).

IV. EXPERIMENTS

Experiments1 were conducted on several datasets presented
in [16], which are summarized in Table I, and available
on the author webpage2. All datasets are from the UCI
repository [19], except Mammography from [20]. The datasets
were divided into two subsets defining the “nominal” and
“anomaly” classes (the subset containing the maximum num-
ber of vectors was defined as the nominal class whereas the
other subset contains the anomalies). As explained in [16],
for the Cardiotocography dataset, the anomaly instances were
downsampled to represent around 2% of the data.

In all our experiments, the parameters for the OCSVM
algorithms were set to ν = ν1 = 0.03 (same value in presence
or absence of expert feedback) and ν2 = 0, ν3 = 0 (100%
confidence in the expert feedback, which is equivalent to get
rid of any upper bound for βl and γp when solving (6)). The
parameter γ in the RBF kernel was set at each iteration as
the median of the `2 norms between all pairs of points in
the dataset (as in [15]), except the anomalies that have been
confirmed by the user feedback.

To illustrate the effects of user feedback, we use the
2D synthetic dataset toy2 from [16]. The influence of user
feedback on the decision boundary is illustrated in Fig.1. As
one can see, during the first iteration, the point located in
the bottom left of the figure, which is the furthest from the
OCSVM boundary, is presented to the expert. The expert gives
its feedback about this point and mentions that it is a nominal
data. Thus after the first iteration, this point is now included
within the new boundary, and so on and so forth, until the
maximal number of expert queries has been reached.

Another evaluation suggested in [16] was to count the
number of actual anomalies that are proposed to the user for
its feedback. Indeed, the algorithm should be able to identify
as many anomalies as possible (and the only confirmations
come from the data sent to the expert). To evaluate this
criterion, the authors of [16] plotted the number of anomalies
returned by the expert versus the number of queries. In the
ideal case, this plot should be a straight line with slope 1,
meaning that each query made to the expert corresponds to

1the Matlab code is available at http://perso.tesa.prd.fr/jlesouple/codes.html
2https://github.com/shubhomoydas/ad examples/tree/master/ad examples/

datasets/anomaly

http://perso.tesa.prd.fr/jlesouple/codes.html
https://github.com/shubhomoydas/ad_examples/tree/master/ad_examples/datasets/anomaly
https://github.com/shubhomoydas/ad_examples/tree/master/ad_examples/datasets/anomaly


TABLE I
DATASETS USED IN OUR EXPERIMENTS WITH THEIR CHARACTERISTICS.

Name Nominal classes Anomaly classes Number of data Number of features Number of anomalies
Abalone 8,9,10 3,21 1920 9 29 (1.5%)
ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)
Cardiotocography 1 3 1700 2 45 (2.65%)
Mammography -1 1 11183 6 260 (2.32%)
Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)
Yeast CYT, NUC, MIT ERL, POX, VAC 1191 8 55 (4.6%)
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Fig. 1. Illustration of the expert feedback influence on the boundary decision after a given number of queries. At each iteration, the furthest data from the
boundary is presented to the expert who gives feedback about its nature (anomaly or nominal). The algorithm then computes a new boundary according to
this new feedback and the previous ones.

an anomaly. The proposed method (referred to as OCSVM-
AAD) is compared to OCSVM, IF and IF-AAD in Fig. 2. For
algorithms without AAD, this is equivalent to the cumulative
sum of true negatives when ranking examples in decreasing
order of anomaly score. A global remark is that AAD always
improves the results of its counterpart, which does not use user
feedback, as the OCSVM-AAD and IF-AAD curves are above
those of OCSVM and IF. Moreover, OCSVM-AAD and IF-
AAD seem to give equivalent results, except for ANN-Thyroid-
1V3 and Shuttle, where IF-AAD outperforms the proposed
method.

Finally, it is interesting to analyze the effect of the proposed
method on the number of support vectors when compared
to OCSVM. This effect can be observed in Fig.3, showing
t-SNE plots [16], [21] for the datasets Abalone and ANN-
Thyroid-1v3, and indicating the numbers of support vectors
in each figure. The number of support vectors obtained using
OCSVM-AAD is smaller than that of OCSVM, which is an
interesting property of the proposed algorithm.

V. CONCLUSION

This paper presented a new iterative anomaly detection
algorithm using one-class support vector machines (OCSVM)
with expert feedback. At each step of the algorithm, the data

that is the most likely to be an anomaly is presented to
the expert, who gives his feedback, in order to recompute
the OCSVM decision function. This operation is conducted
until some budget (maximal number of queries to the expert)
has been reached. This iterative scheme resulting from active
anomaly detection is the main contribution of this paper
mixing one-class SVM and active anomaly detection ideas.
Future work will include the study of other sequential anomaly
detection rules with user feedback.
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