Pierrick Coupé 
  
José V Manjón 
  
Boris Mansencal 
  
Thomas Tourdias 
  
Gwenaëlle Catheline 
  
Vincent Planche 
  
HAVAs: Alzheimer's Disease Detection using Normative and Pathological Lifespan Models

In this paper, we present an innovative MRI-based method for Alzheimer's Disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Alzheimer score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC=78%) between progressive MCI and stable MCI (during a 3 years follow-up). Compared to normative modelling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.

Introduction

Finding early and specific biomarkers of Alzheimer's disease (AD) clinical syndrome is of major interest to accelerate the development of new therapies. Among the potential structural biomarkers proposed for AD, neurodegeneration estimated using magnetic resonance imaging (MRI) is still a good candidate [START_REF] Frisoni | The clinical use of structural MRI in Alzheimer disease[END_REF], [START_REF] Jack | A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers[END_REF]. From simple volume-based approaches to advanced deep learning strategies, the development of new biomarkers able to detect anatomical alterations caused by AD has been the subject of much attention over the past decades [START_REF] Rathore | A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[END_REF]- [START_REF] Leandrou | Quantitative MRI Brain Studies in Mild Cognitive Impairment and Alzheimer's Disease: A Methodological Review[END_REF].

Nowadays, two main strategies are used to detect neurodegeneration caused by AD using MRI: normative modelling for abnormality detection [START_REF] Wolfers | Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models[END_REF], [START_REF] Marquand | Conceptualizing mental disorders as deviations from normative functioning[END_REF] and classificationbased approaches [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF], [START_REF] Coupé | Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis[END_REF].

On the one hand, normative modelling based only on cognitively normal (CN) subjects can be used to detect abnormality and therefore to distinguish AD patients from CN subjects. As explained in [START_REF] Marquand | Conceptualizing mental disorders as deviations from normative functioning[END_REF], normative lifespan modelling is similar to growth charts used in pediatric medicine to detect abnormal child development in terms of height or weight related to the age's subject. Indeed, such charts can be used to detect outliers considered as pathological. For AD detection, volume or thickness of key structures as a function of age is usually used. The main advantages of normative modelling are to robustly capture the heterogeneity of normal anatomy and to provide an easily interpretable distance between an individual and the normative range. Normative modelling is the approach used in most of the available software for quantitative brain analysis (in open access such as volBrain [START_REF] Manjón | volBrain: An Online MRI Brain Volumetry System[END_REF] or for commercial use as in Neuroquant ® [START_REF] Ross | Man Versus Machine: Comparison of Radiologists' Interpretations and NeuroQuant ® Volumetric Analyses of Brain MRIs in Patients With Traumatic Brain Injury[END_REF], Qscore ® [START_REF] Cavedo | Validation of an automatic tool for the measurement of brain atrophy and white matter hyperintensity in clinical routine: QyScore ® : Neuroimaging / Optimal neuroimaging measures for early detection[END_REF] or Qreport ® [START_REF] Pemberton | Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study[END_REF]). The added-value in terms of diagnosis accuracy has been shown for several pathologies including AD [START_REF] Ross | Man Versus Machine: Comparison of Radiologists' Interpretations and NeuroQuant ® Volumetric Analyses of Brain MRIs in Patients With Traumatic Brain Injury[END_REF]- [START_REF] Hedderich | Increasing Diagnostic Accuracy of Mild Cognitive Impairment due to Alzheimer's Disease by User-Independent, Web-Based Whole-Brain Volumetry[END_REF].

Due to its simplicity and easy understanding, normative modelling is the closest strategy to clinical practice with several CE marked and FDA approved software packages.

On the other hand, a classifier can be trained using features extracted from the two groups -one composed of CN subjects and another one composed of AD patients.

The used features can be handcrafted as usually done in Machine Learning (ML) [START_REF] Rathore | A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[END_REF] or automatically learned using Deep Learning (DL) [START_REF] Jo | Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data[END_REF]. At the end of the training, a decision boundary is available to discriminate features of CN subjects from features of AD patients. Such a strategy is supposed to be more accurate than normative modelling since patients are used in addition to CN subjects during training.

Consequently, the developed method is pathology specific. Moreover, by using advanced methods such as DL, a specific signature of a given pathology can be automatically and efficiently learned. However, such approaches suffers from a lack of generalization usually related to overfitting on the training database [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF], [START_REF] Bron | Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease[END_REF]. Moreover, with the advent of DL methods, interpretation of the results and explanation of the underlying decision-making process is far from being straightforward [START_REF] Jo | Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data[END_REF].

In this paper, we present an alternative framework combining advantages of both strategies: an easy interpretation and an accurate classification. To this end, we propose a novel method able to detect patients with AD using both normal and pathological lifespan models. First introduced in [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF], lifespan modelling of AD provides an useful and easily interpretable tool to capture the heterogeneity of AD signature. Moreover, by using multiple models (i.e., an AD model in addition to a CN model), the decision boundary is pathology specific and thus produces a more accurate detection of AD patients compared to usual normative modelling. Finally, we also propose an innovative framework to extract the most discriminant structures between both groups based on a fully automatic multi-scale brain segmentation pipeline. Applied to AD, this framework led us to propose a novel Hippocampal-Amygdalo-Ventricular Alzheimer score (HAVAs) based on multiple lifespan models.

Material and Method

Dataset description

Training dataset

Our training dataset was composed of 3032 T1-weighted (T1w) MRI from seven open access databases (see Table 1). This dataset was composed of 2655 CN subjects (CN) and 377 patients with AD. As explained in the following, CN subjects younger than 55y (N= 1874) were used to estimate both CN and AD lifespan trajectories.

Testing dataset

To validate our model, we built a testing dataset based on two open access databases (AIBL and MIRIAD) to perform AD vs. CN diagnosis task. Therefore, we validated the generalization capacity of our method and its robustness to domain shift. In addition, we used subjects with Mild Cognitive Impairment (MCI) from ADNI to estimate the capability of our models on prognosis task (see Table 2). Consequently, we validated the generalization of our models to unseen related tasks. As in [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF], the MCI group was split into stable MCI (sMCI) over three years and progressive MCI (pMCI) who will convert to AD within 36 months following the baseline visit. Finally, we used the ClinicaDL software1 [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF] to define the groups of AD and CN groups in AIBL, and the pMCI and sMCI groups in ADNI. Therefore, we used the same selection criteria.

Sensitivity analysis

Finally, in order to test the consistency of our findings, we changed training and testing datasets: AIBL, OASIS and MIRIAD databases were used for training and ADNI was used for testing. 

Image processing

All the considered images were processed using AssemblyNet software2 [START_REF] Coupé | AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation[END_REF]. Based on collective artificial intelligence, AssemblyNet is able to produce fine-grained segmentation of the whole brain in 15 minutes. The AssemblyNet preprocessing pipeline was based on several steps: image denoising [START_REF] Manjón | Adaptive nonlocal means denoising of MR images with spatially varying noise levels: Spatially Adaptive Nonlocal Denoising[END_REF], inhomogeneity correction [START_REF] Tustison | N4ITK: Improved N3 Bias Correction[END_REF], affine registration to the MNI space, automatic quality control (QC) [START_REF] Denis De Senneville | RegQCNET: Deep quality control for image-to-template brain MRI affine registration[END_REF], a second inhomogeneity correction in the MNI space [START_REF] Ashburner | Unified segmentation[END_REF] and a final intensity standardization step [START_REF] Manjón | volBrain: An Online MRI Brain Volumetry System[END_REF].

After preprocessing, the brain was segmented into several structures using 250 DL models (see [START_REF] Coupé | AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation[END_REF] for details). All the segmentations were based on the Neuromorphometrics protocol which comprises 132 structures [START_REF] Klein | 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol[END_REF]. In this protocol, the segmentation of the subcortical structures follows the "general segmentation protocol" as defined by the MGH Center for Morphometric Analysis3 . Moreover, the segmentation of the cortical structures follows the "BrainCOLOR protocol"4 . These structures are combined to create tissue segmentations (gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)), regional tissue segmentations (cortical GM, subcortical GM, ventricular CSF and external CSF) and lobar segmentations (temporal, limbic, insular, parietal and frontal) -see Figure 1. 
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Volume normalization

To compensate for the inter-subject variability, we normalized all the structure volumes using the intracranial cavity volume (ICV) [START_REF] Manjón | Nonlocal Intracranial Cavity Extraction[END_REF]. Moreover, in order to be able to combine several structures with different sizes, we performed z-score normalization of all the normalized volumes (in percentage of ICV). To do that, we first estimated the mean and the standard deviation for each structures using all the CN subjects over the entire lifespan. Then, for a given structures, we applied the same z-score normalization to all the subjects (i.e., CN, AD and MCI). Therefore, by using z-score of normalized volumes in % of ICV, we compensated for both inter-subject and inter-structure variabilities. In the following, all the volumes are expressed as z-scores of normalized volumes.

Lifespan model estimation

To create our lifespan models, we estimated normal and pathological trajectories of structure volumes across the entire lifespan. To this end, for each considered structure, models were estimated on two different groups to generate CN and AD trajectories. For CN trajectories, we used the N=2655 subjects from 9 months to 94y of the training dataset as done in [START_REF] Coupé | Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis: Towards a Unified Analysis of Brain[END_REF]. For the AD trajectories, we used N=2251 subjects. As done in [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF], we mixed AD patients with young CN. More precisely, we used 377 AD patients (from 55y to 96y) and all the CN younger than 55y available in the training dataset (i.e., 1874 subjects) assuming that neurodegeneration is a slow and progressive process.

To estimate the volume trajectories, we considered several low order polynomial models:

• Linear model

𝑣𝑜𝑙(𝐴𝑔𝑒) = 𝛽 ! + 𝛽 " 𝐴𝑔𝑒 + 𝜀 • Quadratic model 𝑣𝑜𝑙(𝐴𝑔𝑒) = 𝛽 ! + 𝛽 " 𝐴𝑔𝑒 + 𝛽 # 𝐴𝑔𝑒 # + 𝜀 • Cubic model 𝑣𝑜𝑙(𝐴𝑔𝑒) = 𝛽 ! + 𝛽 " 𝐴𝑔𝑒 + 𝛽 # 𝐴𝑔𝑒 # + 𝛽 $ 𝐴𝑔𝑒 $ + 𝜀
As in [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF], [START_REF] Coupé | Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis: Towards a Unified Analysis of Brain[END_REF], a polynomial model was considered as a potential candidate only when simultaneously F-statistic based on ANOVA (i.e., model vs. constant model) was found significant (p<0.05) and when all its coefficients were also significant using T-statistic (p<0.05). Afterwards, to select the most relevant model between these potential candidates, we used the Bayesian Information Criterion [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF]. In addition, we estimated the distance between both AD and CN models as the Euclidean distance between trajectories. Finally, we estimated the confidence interval for each model at 95% and the lifetime period for which the two models diverged significantly (i.e., when confidence intervals do not overlap).

Classification using volume trajectories

Once the AD and CN lifespan trajectories were estimated for each structure using the training dataset, we used them to perform subject classification. To classify each subject of the testing dataset, we simply estimated the closest lifespan trajectory in terms of Euclidean distance to assign the class of the subject under study.

Moreover, in order to provide easily interpretable non-binary scores to the user about the probability of the subject's status (and to be able to estimate Area Under Curve),

we proposed new scores of being an AD patient (respectively a CN subject) based on the distance to the models. This score was built to ensure that when AD score is higher than 50%, the closest model is the AD model. Moreover, we ensured that an AD score of 50% (i.e., CN score of 50%) is obtained for an equal distance between both models.

To define these scores, we used the following approach.

First, for GM and WM structures, we defined a score 𝑠 %& to be CN (respectively 𝑠 '( to be AD) based on the distance to CN model (respectively to AD model) taking into account structure atrophy:

𝑠 %& = Φ0𝑣𝑜𝑙 )*+,-./ , 𝑣𝑜𝑙 %& (𝐴𝑔𝑒), δ3 𝑠 '( = 1 -Φ0𝑣𝑜𝑙 )*+,-./ , 𝑣𝑜𝑙 '( (𝐴𝑔𝑒), δ3
Where Φ(z, µ, σ) is the cumulative distribution function of the standard normal distribution of mean µ and standard deviation σ. In our case, we used δ = |𝑣𝑜𝑙 %& (𝐴𝑔𝑒) -𝑣𝑜𝑙 '( (𝐴𝑔𝑒)| to take into account the increasing distance between the both models during aging.

For CSF structures, we adapted the estimation taking into account structure enlargement caused by AD [START_REF] Nestor | Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database[END_REF] as follows:

𝑠 %& = 1 -Φ0𝑣𝑜𝑙 )*+,-./ , 𝑣𝑜𝑙 %& (𝐴𝑔𝑒), δ3
𝑠 '( = Φ0𝑣𝑜𝑙 )*+,-./ , 𝑣𝑜𝑙 '( (𝐴𝑔𝑒), δ3

Finally, these scores were normalized to obtain the final scores. This normalization enables to get the sum of both scores equal to 1.

𝑆 %& = 𝑠 %& 𝑠 %& + 𝑠 '( , 𝑆 '( = 𝑠 '( 𝑠 %& + 𝑠 '(
Consequently, the proposed HAVAs (i.e., the SAD score) reflects the probability for the subject under study to be a patient with AD (or a pMCI subject). The classification performance of the proposed method was validated using several metrics: balanced accuracy (BACC), specificity (SPE), sensibility (SEN) and Area Under the Curve (AUC) based on HAVAs. First, as usually done in normative modelling [START_REF] Marquand | Conceptualizing mental disorders as deviations from normative functioning[END_REF] or in automatic quantitative software [START_REF] Pemberton | Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study[END_REF], we used 2σ as threshold to detect abnormal values when using normative modelbased methods. To ensure that this threshold was suitable for our analysis, we tested multiple thresholds and we confirmed that 2σ was the best one. We decided to evaluate lifespan normative approach using hippocampus (considered as the state-ofthe-art biomarker [START_REF] Frisoni | The clinical use of structural MRI in Alzheimer disease[END_REF]), amygdala (also known to be a good candidate [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF]), inferior lateral ventricle (main part of lateral ventricle impacted by AD [START_REF] Bartos | Brain volumes and their ratios in Alzheimer´s disease on magnetic resonance imaging segmented using Freesurfer 6.0[END_REF]) and the combination of the three as done for the proposed HAVAs (called Normative HAV model in the following).

Comparison with state-of-the-art methods

Second, as shown in [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF], most of the proposed deep learning methods suffer from data leakage resulting in biased reported performances. In addition, most of the published studies used the same dataset for training and testing that produce over-optimistic performance of the methods [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF], [START_REF] Bron | Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease[END_REF]. Consequently, we decided to report the score of the well-evaluated methods proposed in [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF] as state-of-the-art deep learning methods since the training was well-designed and that the proposed methods were wellvalidated on external datasets. We selected a ROI-based Convolutional Neural Network (CNN) focused on hippocampal area, one subject-based CNN method using the entire image and one patch-based CNN processing the whole image patch by patch. These three strategies are a good representation of current deep learning frameworks for AD detection and prognosis. We used the same ClinicaDL software to create the testing databases. Consequently, the selection criteria were similar although the number of subjects per cases were not exactly the same. Finally, since [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF] demonstrated that classical machine learning methods (i.e., SVM) can perform similarly and sometimes better than deep learning methods, we decided to include two classical classifiers in our comparison. First, we used the nonlinear SVM with RBF kernel of Matlabâ with default parameters. Second, we used the logistic regression with LASSO regularization of Matlabâ with default parameters. The z-score of normalized volumes were used as input features.

Results

Detection of the most discriminant structures

First, we selected all the multi-scale brain areas (i.e., tissues, regional tissues, lobes and structures) for which CN and AD models significantly diverged (i.e., confidence intervals stop overlapping at some point across lifespan). Thanks to this analysis, we obtained 33 areas. Using these 33 selected areas, we performed a screening to detect the most discriminant ones in terms of classification accuracy on the training ADNI dataset in order not to use testing data during method development. This analysis showed that amygdala, hippocampus and inferior lateral ventricle were the most discriminant structures for AD vs. CN classification (see Table 3). These three structures obtained AUC>80% and thus were selected to build our AD-specific hybrid lifespan models. In Table 4, we present the statistical analysis of the estimated lifespan models for the selected structures. First, we can observe that most of the estimated models were quadratic. Only, the inferior lateral ventricle models were cubic. This is in line with previous lifespan studies [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF], [START_REF] Coupé | Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis: Towards a Unified Analysis of Brain[END_REF]. Second, all the model statistics were highly significant (p < 0.0001), excepted for the inferior lateral ventricle model for AD which was only significant (p < 0.05). improvement for prognosis. However, for a sake of simplicity, we decided not to use weights in our approach. Consequently, false positive are CN subjects (green dots) below orange curve and false negative are AD patients (red dots) above orange curve. Visually, we observed that AD patients exhibited higher variability than CN subjects. Moreover, as expected, most of the MCI were between both models. The CN trajectory is in green, the AD trajectory in red and the boundary decision in orange. For AIBL and MIRIAD datasets, CN subjects are in green and AD patients in red. For ADNI dataset, sMCI patients are in yellow and the pMCI patients in orange.

Comparison with state-of-the-art methods

In this section, we compared HAVAs with normative modelling strategy, classical ML and recent DL methods.

First, as shown in Table 6, HAVAs obtained the best results for both diagnostic and prognostic tasks. Compared to the second-best methods, HAVAs produced an improvement of 3% point for diagnosis and for prognosis. Second, the second-best methods were the ROI-based CNN involving mostly the same structures as HAVAs and LASSO using the combination of HAV structures. We also observed using HAV structure combination was the best solution for SVM and normative modelling.

Consequently, the proposed HAV combination based on z-score was beneficial for all the compared strategies (multi-model, normative modelling, SVM and LASSO). In addition, for all the considered structures, the proposed multi-model strategies outperformed single-model based approaches (i.e., normative modelling). This result shows the interest of using multiple models for classification compared of using a single normative model. Moreover, the normative modelling and machine learning based on HAV combination obtained results similar to CNN-based methods. These results are in line with the comparisons proposed in [START_REF] Wen | Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation[END_REF] and [START_REF] Bron | Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease[END_REF]. Finally, while hippocampus volume is considered a hallmark of AD, normative modelling using hippocampus obtained the worst results (16% point lower than the proposed multimodel HAVAs). For all the considered strategies (multi-model, normative modelling, SVM and LASSO), amygdala volume provided the best performance when using a single structure. These results are in line with previous studies dedicated to lifespan modelling of AD [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF]. 

Sensitivity analysis to training domain

Finally, as a sensitivity analysis, in order to evaluate the consistency and the robustness of HAVAs to training domain, we performed an additional experiment using AIBL, OASIS and MIRIAD databases in the training dataset while removing the AD and CN subjects of the ADNI database from training and used them as testing dataset.

First, Table 7 shows the results obtained by HAVAs, amygdala, hippocampus and inferior lateral ventricles. The obtained results are similar to the results previously obtained on AIBL. This result highlights the robustness of the proposed HAVAs strategy to training domain selection and the good generalization capability of our method. Moreover, Figure 4 presents the graphical results obtained using HAVAs score in the same condition. As previously, we observed that most of the CN subjects well follow the CN model while most of the AD patients are below the decision bounds and exhibit higher variability. Finally, it is interesting to observe that HAVAs models estimated on AIBL, OASIS and MIRIAD are very similar to HAVAs models estimated using ADNI (see Figure 3). This result highlights the consistent of the proposed HAVAs strategy to images used during training. 

Discussion

In this paper, we proposed a novel framework for AD detection based on lifespan modelling of the hippocampal-amygdalo-ventricular volume trajectory for both CN and AD. To this end, we first estimated volume trajectories for AD and CN models across the entire lifespan using a large number of subjects. In this study, we analyzed 132 structures, 5 lobes, 4 regional tissues and 3 tissues. This whole brain analysis, in a multi-scale fashion, enabled us to produce a full screening of the diverging brain areas across lifespan between CN and AD. Within the considered brain areas, only 33

showed significantly divergences between AD and CN models. For these 33 brain areas, we estimated the most discriminant lifespan model in terms of classification performance. We found that amygdala, hippocampus and inferior lateral ventricle were the most discriminant structures. These results obtained using AssemblyNet were in line with recent studies based on other segmentation protocols, software or frameworks [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF], [START_REF] Bartos | Brain volumes and their ratios in Alzheimer´s disease on magnetic resonance imaging segmented using Freesurfer 6.0[END_REF]- [START_REF] Pinaya | Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort study[END_REF]. During our experiments, we showed that models combining several structures (i.e., HAVAs and HAV) outperformed models based on a single structure. This demonstrates the advantage of combining volumes of key structures to improve AD detection. Moreover, our results suggests that methods based on amygdala provide higher accuracy than models based only on hippocampus. The important role of amygdala at the early state of AD has been already observed in the past [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF], [START_REF] Qiu | Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease[END_REF], [START_REF] Poulin | Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity[END_REF]. Finally, we showed that using several models had beneficial impact for improving classification accuracy compared to single-based model normative approach. We also found that DL methods were in general more accurate than normative modelling approach but not better than usual ML. Recently, it has been suggested that the combination of both could improve the performance by using normative modelling of learned features [START_REF] Pinaya | Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort study[END_REF]. We will investigate this strategy in future works.

To conclude, in addition to improving classification performance, the proposed HAVAs strategy has several advantages over recent DL approaches:

-First, HAVAs is conceptually very simple to understand since based on the distance to AD or CN trajectories. This aspect enables an easy interpretability of the results in terms of hippocampal-amygdalo atrophy and concomitant ventricular enlargement.

While current DL methods failed to produce relevant explanation on the used features for their decision making [START_REF] Bron | Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease[END_REF], HAVAs is fully interpretable and thus is well-suited for clinical practice or pharmaceutical trials. Moreover, the simplicity of HAVAs make it fast and easy to reimplement. A software package including AssemblyNet pipeline and HAVAs estimation will be made freely available as a downloadable Docker5 as well as an online pipeline on the volBrain platform6 after paper acceptance.

-Second, HAVAs is based on a very low number of parameters and hyperparameters.

The use of low order polynomial models for trajectory results in few learnable parameters per trajectory. Thus, using less than ten parameters, HAVAs is able to outperform CNN models involving more than ten million parameters. Moreover, thanks to our volume normalization procedure compensating for inter-subject and interstructure variabilities, no hyper-parameter is needed to combine hippocampus, amygdala and inferior lateral ventricle volumes. As shown during our experiments, this
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 1 Figure 1: Illustrations of the AssemblyNet multi-scale segmentations.

Finally

  , we compared the proposed multi-model HAVAs with normative model-based strategy (i.e., using only CN model), state-of-the-art deep learning methods and classical machine learning methods.
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 2 Figure 2: Trajectories based on z-scores of normalized volumes (in % total intracranial volume) for the selected brain structures and the proposed HAVAs for both models (AD in red and CN in black) across the entire lifespan. The prediction bounds of the models are estimated with a confidence level at 95%. The orange curve is the distance between both models in standard deviation. The orange area indicates the time period where confidence intervals of both models do not overlap.
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 3 Figure 3 presents the results of the classification produced by HAVAs on the external datasets. The boundary decision is simply the middle distance between both models.

Figure 3 :

 3 Figure 3: HAVAs classification results on three external testing datasets (ADNI was the training dataset).

Figure 4 :

 4 Figure 4: Sensitivity analyses. HAVAs classification results for AD and CN subjects of the ADNI database while using AIBL, OASIS and MIRIAD in the training dataset. The CN trajectory is in green, the AD trajectory in red and the boundary decision in orange.

  Therefore, we proposed a new AD score based on hippocampal-amygdalo-ventricular volume called HAVAs. This score is based on the distances between the volume of the subject under study and the AD and CN lifespan trajectories. During the validation of HAVAs on three external datasets, we showed that our strategy enables accurate detection of subject having AD, or MCI who will convert to AD in the next 3 years (i.e., pMCI). Finally, we demonstrated the competitive proposed HAVAs compared to usual normative modelling, classical ML and recent DL methods.

Table 1 :

 1 Training dataset description used for model constructions after quality control (N=3032). This table provides the name of the databases, the group, the number of considered subjects, the gender proportion, and the average age with the interval in brackets.

	DATASET	Group N=3032	Gender	Age in years
	C-MIND	CN	236	F = 129 / M =107	8.44 [0.74-18.86]
	NDAR	CN	382	F = 174/ M = 208	12.39 [1.08-49.92]
	ABIDE	CN	492	F = 84 / M = 408	17.53 [6.50-52.20]
	ICBM	CN	294	F = 142 / M = 152	33.75 [18-80]
	IXI	CN	549	F = 307 / M = 242	48.76 [20.0-86.2]
	OASIS	CN	298	F = 187 / M = 111	45.34 [18 -94]
	ADNI	CN	404	F = 203 / M = 201	74.81 [60 -90]
	OASIS	AD	45	F = 29 / M = 16	77.04 [63 -96]
	ADNI	AD	332	F = 151 / M = 181	75.13 [55 -91]

Table 2 : External dataset used for validation (N=1039). This table provides the name of the databases, the group, the number of considered subjects, the gender proportion, and the average age with the interval in brackets.

 2 

	DATASET	Group N=1039	Gender	Age in years
	AIBL	CN	467	F = 277 / M = 190	73.4 [60.5 -92.4]
	MIRIAD	CN	23	F = 11 / M =12	69.7 [58.0 -85.7]
	ADNI	sMCI	255	F = 100 / M = 155	72.3 [55 -89.5]
	AIBL	AD	82	F = 47 / M = 36	74.8 [55.5 -93.4]
	MIRIAD	AD	46	F= 27 / M= 19	69.3 [55.6 -85.8]
	ADNI	pMCI	235	F = 103 / M = 132	74.0 [55 -88.0]

Table 3 :

 3 Performance of the classification using multiple lifespan models on the training ADNI dataset (404 CN vs. 332 AD) for the 33 selected structures. The best results are indicated in red and second best in green. Finally, "n.s." means that the divergence of frontal lobe was not significant.

	BACC	SPE	SEN	AUC

Table 4 :

 4 Results of model analysis for hippocampus, amygdala, inferior lateral ventricle and HAVAs.

		Selected	F-	R 2	p-value of the	p-value of the	BIC
		Model	Statistic		T-statistic	F-statistic
						based on
						ANOVA
	Hippocampus	Quadratic	202	0.13 b0: p < 0.0001	p < 0.0001	7172
	for CN				b1: p < 0.0001	
					b2: p < 0.0001	
	Hippocampus	Quadratic	704	0.38 b0: p < 0.0001	p < 0.0001	6346
	for AD				b1: p < 0.0001	
					b2: p < 0.0001	
	Amygdala for	Quadratic	230	0.15 b0: p < 0.0001	p < 0.0001	7120
	CN				b1: p < 0.0001	
					b2: p < 0.0001	

Table 5 :

 5 Comparison of classification performance of HAVAs compared to individual structures

	on 3 unseen external datasets (N=1039). The best results are indicated in red and second best
	in green.				
		BACC	SPE	SEN	AUC
	AIBL (467 CN / 82 AD)				
	• HAVAs	88	93	83	94
	• Amygdala	80	85	76	89
	• Hippocampus	80	78	82	88
	• Inferior Lateral Ventricle	79	91	67	89
	MIRIAD (23 CN / 46 AD)				
	• HAVAs	89	87	91	96
	• Amygdala	88	83	93	95
	• Hippocampus	74	61	87	87
	• Inferior Lateral Ventricle	86	87	85	91
	ADNI-MCI (255 sMCI / 235 pMCI)				
	• HAVAs	73	72	74	78
	• Amygdala	68	69	68	74
	• Hippocampus	66	56	77	70
	• Inferior Lateral Ventricle	65	76	54	71

Table 6 :

 6 Comparison with state-of-the-art strategies based on normative modelling and recent

	deep learning methods. BACC is provided for each method for both datasets. For CNN-based
	methods, the results published in [8] are used. For normative modelling, a threshold of 2σ was
	used to detect abnormal volumes. Finally, for SVM and LASSO, the Matlab version with default
	parameters is used. The best results are indicated in red and second best in green
	BACC on external datasets	AIBL	ADNI
		(AD vs. CN)	(sMCI vs. pMCI)
	Multi-model HAVAs	88	73
	ROI-based CNN [8]	84	70
	LASSO HAV	85	67
	Subject-based CNN [8]	83	69
	SVM HAV	82	70
	LASSO Amygdala	83	68
	Normative HAV model	81	70
	Patch-based CNN [8]	81	70
	LASSO Hippocampus	81	67
	Multi-model Amygdala	80	68
	SVM Amygdala	80	66
	Multi-model Hippocampus	79	66
	LASSO inf. lat. Vent.	79	66
	Multi-model inf. lat. Vent.	79	65
	SVM Hippocampus	79	64
	Normative Amygdala model	75	63
	SVM inf. lat. Vent.	75	63
	Normative inf. lat. Vent. model	71	61
	Normative Hippocampus model	70	58

Table 7 :

 7 Sensitivity analysis. Comparison of classification performance of HAVAs compared to individual structures using AIBL, OASIS and MIRIAD in the training and the AD and CN subjects ADNI as testing. The best results are indicated in red and second best in green.

	BACC	SPE	SEN	AUC
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Classification based on multiple lifespan models

To evaluate the classification performance of HAVAs on testing datasets, we performed a comparison with the three most discriminant structures. As shown in Table 5, in all the cases, HAVAs outperformed strategies based on a single structure, in terms of BACC and AUC, demonstrating its higher classification performance. In most of the cases, the second best one was the lifespan model of amygdala that confirmed the results previously obtained in [START_REF] Coupé | Lifespan Changes of the Human Brain In Alzheimer's Disease[END_REF]. For diagnostic task (i.e., AD vs. CN),

HAVAs obtained 88% of BACC and 94% of AUC on the AIBL database and 89% of BACC and 96% of AUC on the MIRIAD database. Moreover, while developed using only AD and CN subjects, HAVAs obtained 73% of BACC and 78% of AUC for prognosis task (i.e., discriminating between sMCI and pMCI). These results demonstrate the good generalization capabilities of HAVAs on unseen databases and on unseen task.

During our experiments, we also tested several strategies to combine the selected structure volumes. First, we evaluated the hippocampal-ventricle ratio (HVR) -defined as hippocampus / (inferior lateral ventricle + hippocampus). HVR has recently been proposed as a better alternative than hippocampus volume [START_REF] Bartos | Brain volumes and their ratios in Alzheimer´s disease on magnetic resonance imaging segmented using Freesurfer 6.0[END_REF], [START_REF] Schoemaker | The hippocampal-to-ventricle ratio (HVR): Presentation of a manual segmentation protocol and preliminary evidence[END_REF]. During our experiments, we observed a drop of 7% point of BACC for diagnosis on AIBL and for prognosis on ADNI compared to the proposed HAVAs. Consequently, we found similar performance between using HVR or hippocampus z-score normalized volume.

Second, we tried to add the temporal lobe volume (the 4 th best structure during our screening) in HAVAs. This reduced by 1% point of BACC the diagnosis performance and kept prognosis similar. Finally, we also evaluated the use of weights to combine HAV volumes (e.g., to give more importance to amygdala than hippocampus). Such strategy provided marginal improvement for diagnosis <1% point and 1% point of enables HAVAs to generalize well by being robust to domain shift and efficient on prognosis task.
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