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Abstract 
In this paper, we present an innovative MRI-based method for Alzheimer’s Disease 

(AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan 

trajectories of brain structures. After a full screening of the most discriminant 
structures between AD and normal aging based on MRI volumetric analysis of 3032 

subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Alzheimer score 

(HAVAs) based on normative lifespan models and AD lifespan models. During a 

validation on three external datasets on 1039 subjects, our approach showed very 

accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects 

and accurate discrimination (AUC=78%) between progressive MCI and stable MCI 

(during a 3 years follow-up). Compared to normative modelling, classical machine 
learning methods and recent state-of-the-art deep learning methods, our method 

demonstrated better classification performance. Moreover, HAVAs simplicity 

makes it fully understandable and thus well-suited for clinical practice or future 

pharmaceutical trials. 

1 Introduction 

Finding early and specific biomarkers of Alzheimer’s disease (AD) clinical syndrome is 

of major interest to accelerate the development of new therapies. Among the potential 

structural biomarkers proposed for AD, neurodegeneration estimated using magnetic 
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resonance imaging (MRI) is still a good candidate [1], [2]. From simple volume-based 

approaches to advanced deep learning strategies, the development of new biomarkers 

able to detect anatomical alterations caused by AD has been the subject of much 

attention over the past decades [3]–[5].  

 

Nowadays, two main strategies are used to detect neurodegeneration caused by AD 

using MRI: normative modelling for abnormality detection [6], [7] and classification-

based approaches [8], [9].  

On the one hand, normative modelling based only on cognitively normal (CN) subjects 

can be used to detect abnormality and therefore to distinguish AD patients from CN 

subjects. As explained in [7], normative lifespan modelling is similar to growth charts 

used in pediatric medicine to detect abnormal child development in terms of height or 

weight related to the age’s subject. Indeed, such charts can be used to detect outliers 

considered as pathological. For AD detection, volume or thickness of key structures 

as a function of age is usually used. The main advantages of normative modelling are 

to robustly capture the heterogeneity of normal anatomy and to provide an easily 

interpretable distance between an individual and the normative range. Normative 

modelling is the approach used in most of the available software for quantitative brain 

analysis (in open access such as volBrain [10] or for commercial use as in 

Neuroquant® [11], Qscore® [12] or Qreport® [13]). The added-value in terms of 

diagnosis accuracy has been shown for several pathologies including AD [11]–[14]. 

Due to its simplicity and easy understanding, normative modelling is the closest 

strategy to clinical practice with several CE marked and FDA approved software 

packages.  

On the other hand, a classifier can be trained using features extracted from the two 

groups – one composed of CN subjects and another one composed of AD patients. 

The used features can be handcrafted as usually done in Machine Learning (ML) [3] 

or automatically learned using Deep Learning (DL) [15]. At the end of the training, a 

decision boundary is available to discriminate features of CN subjects from features of 

AD patients. Such a strategy is supposed to be more accurate than normative 

modelling since patients are used in addition to CN subjects during training. 

Consequently, the developed method is pathology specific. Moreover, by using 

advanced methods such as DL, a specific signature of a given pathology can be 

automatically and efficiently learned. However, such approaches suffers from a lack of 

generalization usually related to overfitting on the training database [8], [16]. Moreover, 

with the advent of DL methods, interpretation of the results and explanation of the 

underlying decision-making process is far from being straightforward [15].   
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In this paper, we present an alternative framework combining advantages of both 

strategies: an easy interpretation and an accurate classification. To this end, we 

propose a novel method able to detect patients with AD using both normal and 

pathological lifespan models. First introduced in [17], lifespan modelling of AD provides 

an useful and easily interpretable tool to capture the heterogeneity of AD signature. 

Moreover, by using multiple models (i.e., an AD model in addition to a CN model), the 

decision boundary is pathology specific and thus produces a more accurate detection 

of AD patients compared to usual normative modelling. Finally, we also propose an 

innovative framework to extract the most discriminant structures between both groups 

based on a fully automatic multi-scale brain segmentation pipeline. Applied to AD, this 

framework led us to propose a novel Hippocampal-Amygdalo-Ventricular Alzheimer 

score (HAVAs) based on multiple lifespan models. 

2 Material and Method 

2.1 Dataset description 

2.1.1 Training dataset 

Our training dataset was composed of 3032 T1-weighted (T1w) MRI from seven open 

access databases (see Table 1). This dataset was composed of 2655 CN subjects 

(CN) and 377 patients with AD. As explained in the following, CN subjects younger 

than 55y (N= 1874) were used to estimate both CN and AD lifespan trajectories. 

2.1.2 Testing dataset 

To validate our model, we built a testing dataset based on two open access databases 

(AIBL and MIRIAD) to perform AD vs. CN diagnosis task. Therefore, we validated the 

generalization capacity of our method and its robustness to domain shift. In addition, 

we used subjects with Mild Cognitive Impairment (MCI) from ADNI to estimate the 

capability of our models on prognosis task (see Table 2). Consequently, we validated 

the generalization of our models to unseen related tasks. As in [8], the MCI group was 

split into stable MCI (sMCI) over three years and progressive MCI (pMCI) who will 

convert to AD within 36 months following the baseline visit. Finally, we used the 

ClinicaDL software1 [8] to define the groups of AD and CN groups in AIBL, and the 

pMCI and sMCI groups in ADNI. Therefore, we used the same selection criteria. 

 
1 https://github.com/aramis-lab/clinicadl  
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2.1.3 Sensitivity analysis 

Finally, in order to test the consistency of our findings, we changed training and testing 

datasets: AIBL, OASIS and MIRIAD databases were used for training and ADNI was 

used for testing.  

 

Table 1: Training dataset description used for model constructions after quality control 

(N=3032). This table provides the name of the databases, the group, the number of considered 

subjects, the gender proportion, and the average age with the interval in brackets. 

DATASET Group N=3032 Gender  Age in years  

C-MIND  CN 236 F = 129 / M =107 8.44 [0.74-18.86] 

NDAR  CN 382 F = 174/ M = 208  12.39 [1.08-49.92] 

ABIDE  CN 492 F = 84 / M = 408  17.53 [6.50-52.20] 

ICBM  CN 294 F = 142 / M = 152  33.75 [18-80] 

IXI  CN 549 F = 307 / M = 242 48.76 [20.0- 86.2] 

OASIS CN 298 F = 187 / M = 111  45.34 [18 - 94] 

ADNI CN 404 F = 203 / M = 201 74.81 [60 – 90] 

OASIS  AD 45 F = 29 / M = 16  77.04 [63 - 96] 

ADNI AD 332 F = 151 / M = 181 75.13 [55 – 91] 

 

Table 2: External dataset used for validation (N=1039). This table provides the name of the 

databases, the group, the number of considered subjects, the gender proportion, and the 

average age with the interval in brackets. 

DATASET Group N=1039 Gender  Age in years  

AIBL CN 467 F = 277 / M = 190  73.4 [60.5 – 92.4] 

MIRIAD CN 23 F = 11 / M =12 69.7 [58.0 – 85.7] 

ADNI sMCI 255 F = 100 / M = 155  72.3 [55 – 89.5] 

AIBL AD 82 F = 47 / M = 36 74.8 [55.5 – 93.4] 

MIRIAD AD 46 F= 27 / M= 19 69.3 [55.6 – 85.8] 

ADNI pMCI 235 F = 103 / M = 132  74.0 [55 – 88.0] 
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2.2 Image processing 

All the considered images were processed using AssemblyNet software2 [18]. Based 

on collective artificial intelligence, AssemblyNet is able to produce fine-grained 

segmentation of the whole brain in 15 minutes. The AssemblyNet preprocessing 

pipeline was based on several steps: image denoising [19], inhomogeneity correction 

[20], affine registration to the MNI space, automatic quality control (QC) [21], a second 

inhomogeneity correction in the MNI space [22] and a final intensity standardization 

step [10]. 

 

After preprocessing, the brain was segmented into several structures using 250 DL 

models (see [18] for details). All the segmentations were based on the 

Neuromorphometrics protocol which comprises 132 structures [23]. In this protocol, 

the segmentation of the subcortical structures follows the “general segmentation 

protocol” as defined by the MGH Center for Morphometric Analysis3. Moreover, the 

segmentation of the cortical structures follows the “BrainCOLOR protocol”4. These 

structures are combined to create tissue segmentations (gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF)), regional tissue segmentations (cortical 

GM, subcortical GM, ventricular CSF and external CSF) and lobar segmentations 

(temporal, limbic, insular, parietal and frontal) – see Figure 1. 
 

 

 

 

 

 

 

 

 
ICV Regional Tissues Cortical Lobes Structures 

Figure 1: Illustrations of the AssemblyNet multi-scale segmentations. 

Finally, we performed a QC procedure to carefully select subjects included in our 

training dataset. For all the training subjects detected as failure by the automatic QC 

RegQCNet [21], a visual assessment was performed by individually checking the input 

 
2 https://github.com/volBrain/AssemblyNet  
3 http://neuromorphometrics.com/Seg/  
4 http://neuromorphometrics.com/ParcellationProtocol_2010-04-05.PDF  
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images and the segmentations produced by AssemblyNet using a 3D viewer. If the 

failure was confirmed by our expert, the subject was removed from training dataset.  

2.3 Volume normalization 

To compensate for the inter-subject variability, we normalized all the structure volumes 

using the intracranial cavity volume (ICV) [24]. Moreover, in order to be able to combine 

several structures with different sizes, we performed z-score normalization of all the 

normalized volumes (in percentage of ICV). To do that, we first estimated the mean 

and the standard deviation for each structures using all the CN subjects over the entire 

lifespan. Then, for a given structures, we applied the same z-score normalization to all 

the subjects (i.e., CN, AD and MCI). Therefore, by using z-score of normalized volumes 

in % of ICV, we compensated for both inter-subject and inter-structure variabilities. In 

the following, all the volumes are expressed as z-scores of normalized volumes. 

2.4 Lifespan model estimation 

To create our lifespan models, we estimated normal and pathological trajectories of 

structure volumes across the entire lifespan. To this end, for each considered 

structure, models were estimated on two different groups to generate CN and AD 

trajectories. For CN trajectories, we used the N=2655 subjects from 9 months to 94y 

of the training dataset as done in [25]. For the AD trajectories, we used N=2251 

subjects. As done in [17], we mixed AD patients with young CN. More precisely, we 

used 377 AD patients (from 55y to 96y) and all the CN younger than 55y available in 

the training dataset (i.e., 1874 subjects) assuming that neurodegeneration is a slow 

and progressive process. 
 

To estimate the volume trajectories, we considered several low order polynomial 

models: 

• Linear model 

𝑣𝑜𝑙(𝐴𝑔𝑒) = 𝛽! +	𝛽"𝐴𝑔𝑒 + 	𝜀 

• Quadratic model 

𝑣𝑜𝑙(𝐴𝑔𝑒) = 𝛽! +	𝛽"𝐴𝑔𝑒 + 𝛽#𝐴𝑔𝑒# + 	𝜀 

• Cubic model 

𝑣𝑜𝑙(𝐴𝑔𝑒) = 𝛽! +	𝛽"𝐴𝑔𝑒 + 𝛽#𝐴𝑔𝑒# +	𝛽$𝐴𝑔𝑒$ + 	𝜀 

 

As in [17], [25], a polynomial model was considered as a potential candidate only when 

simultaneously F-statistic based on ANOVA (i.e., model vs. constant model) was found 

significant (p<0.05) and when all its coefficients were also significant using T-statistic 
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(p<0.05). Afterwards, to select the most relevant model between these potential 

candidates, we used the Bayesian Information Criterion [26]. In addition, we estimated 

the distance between both AD and CN models as the Euclidean distance between 

trajectories. Finally, we estimated the confidence interval for each model at 95% and 

the lifetime period for which the two models diverged significantly (i.e., when 

confidence intervals do not overlap). 

2.5 Classification using volume trajectories 

Once the AD and CN lifespan trajectories were estimated for each structure using the 

training dataset, we used them to perform subject classification. To classify each 

subject of the testing dataset, we simply estimated the closest lifespan trajectory in 

terms of Euclidean distance to assign the class of the subject under study.  

 

Moreover, in order to provide easily interpretable non-binary scores to the user about 

the probability of the subject’s status (and to be able to estimate Area Under Curve), 

we proposed new scores of being an AD patient (respectively a CN subject) based on 

the distance to the models. This score was built to ensure that when AD score is higher 

than 50%, the closest model is the AD model. Moreover, we ensured that an AD score 

of 50% (i.e., CN score of 50%) is obtained for an equal distance between both models. 

To define these scores, we used the following approach. 

 

First, for GM and WM structures, we defined a score 𝑠%& to be CN (respectively 𝑠'( to 

be AD) based on the distance to CN model (respectively to AD model) taking into 

account structure atrophy: 
 

𝑠%& = Φ0𝑣𝑜𝑙)*+,-./ , 𝑣𝑜𝑙%&(𝐴𝑔𝑒), δ3	

𝑠'( = 1 −Φ0𝑣𝑜𝑙)*+,-./ , 𝑣𝑜𝑙'((𝐴𝑔𝑒), δ3	
 

Where Φ(z, µ, σ)  is the cumulative distribution function of the standard normal 

distribution of mean µ  and standard deviation σ.  In our case, we used δ =

|𝑣𝑜𝑙%&(𝐴𝑔𝑒) − 𝑣𝑜𝑙'((𝐴𝑔𝑒)| to take into account the increasing distance between the 

both models during aging.  

For CSF structures, we adapted the estimation taking into account structure 

enlargement caused by AD [27] as follows: 

𝑠%& = 1 −Φ0𝑣𝑜𝑙)*+,-./ , 𝑣𝑜𝑙%&(𝐴𝑔𝑒), δ3	

𝑠'( = Φ0𝑣𝑜𝑙)*+,-./ , 𝑣𝑜𝑙'((𝐴𝑔𝑒), δ3	
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Finally, these scores were normalized to obtain the final scores. This normalization 

enables to get the sum of both scores equal to 1.   

 

𝑆%& =
𝑠%&

𝑠%& + 𝑠'(
				 , 𝑆'( =

𝑠'(
𝑠%& + 𝑠'(

	 

 

Consequently, the proposed HAVAs (i.e., the SAD score) reflects the probability for the 

subject under study to be a patient with AD (or a pMCI subject). The classification 

performance of the proposed method was validated using several metrics: balanced 

accuracy (BACC), specificity (SPE), sensibility (SEN) and Area Under the Curve (AUC) 

based on HAVAs. 

2.6 Comparison with state-of-the-art methods 

Finally, we compared the proposed multi-model HAVAs with normative model-based 

strategy (i.e., using only CN model), state-of-the-art deep learning methods and 

classical machine learning methods.  

First, as usually done in normative modelling [7] or in automatic quantitative software 

[13], we used	2σ as threshold to detect abnormal values when using normative model-

based methods. To ensure that this threshold was suitable for our analysis, we tested 

multiple thresholds and we confirmed that 	2σ  was the best one. We decided to 

evaluate lifespan normative approach using hippocampus (considered as the state-of-

the-art biomarker [1]), amygdala (also known to be a good candidate [17]), inferior 

lateral ventricle (main part of lateral ventricle impacted by AD [28]) and the combination 

of the three as done for the proposed HAVAs (called Normative HAV model in the 

following). 

Second, as shown in [8], most of the proposed deep learning methods suffer from data 

leakage resulting in biased reported performances. In addition, most of the published 

studies used the same dataset for training and testing that produce over-optimistic 

performance of the methods [8], [16]. Consequently, we decided to report the score of 

the well-evaluated methods proposed in [8] as state-of-the-art deep learning methods 

since the training was well-designed and that the proposed methods were well-

validated on external datasets. We selected a ROI-based Convolutional Neural 

Network (CNN) focused on hippocampal area, one subject-based CNN method using 

the entire image and one patch-based CNN processing the whole image patch by 

patch. These three strategies are a good representation of current deep learning 

frameworks for AD detection and prognosis. We used the same ClinicaDL software to 
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create the testing databases. Consequently, the selection criteria were similar although 

the number of subjects per cases were not exactly the same.  

Finally, since [8] demonstrated that classical machine learning methods (i.e., SVM) 

can perform similarly and sometimes better than deep learning methods, we decided 

to include two classical classifiers in our comparison. First, we used the nonlinear SVM 

with RBF kernel of Matlabâ with default parameters. Second, we used the logistic 

regression with LASSO regularization of Matlabâ with default parameters. The z-score 

of normalized volumes were used as input features. 

3 Results 

3.1 Detection of the most discriminant structures 

First, we selected all the multi-scale brain areas (i.e., tissues, regional tissues, lobes 

and structures) for which CN and AD models significantly diverged (i.e., confidence 

intervals stop overlapping at some point across lifespan). Thanks to this analysis, we 

obtained 33 areas. Using these 33 selected areas, we performed a screening to detect 

the most discriminant ones in terms of classification accuracy on the training ADNI 

dataset in order not to use testing data during method development. This analysis 

showed that amygdala, hippocampus and inferior lateral ventricle were the most 

discriminant structures for AD vs. CN classification (see Table 3). These three 

structures obtained AUC>80% and thus were selected to build our AD-specific hybrid 

lifespan models.  

Table 3: Performance of the classification using multiple lifespan models on the training ADNI 

dataset (404 CN vs. 332 AD) for the 33 selected structures. The best results are indicated in 

red and second best in green. Finally, “n.s.” means that the divergence of frontal lobe was not 

significant. 

 BACC SPE SEN AUC 

WM 61 53 69 69 

CSF 66 60 71 73 

- External CSF 59 53 64 64 

- Ventricular CSF 68 72 64 71 

§ Inf. Lat. Vent 75 85 64 82 

§ Lat. Vent 68 70 65 71 

GM 66 64 68 70 

- Subcortical GM 70 66 73 75 

§ Amygdala 82 85 79 88 
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§ Hippocampus 80 78 81 87 

§ Accumbens Area 59 52 66 64 

§ Putamen 57 53 60 61 

§ Thalamus 56 55 58 62 

§ Pallidum 55 55 55 58 

§ Caudate 57 52 62 61 

- Cortical GM 61 59 63 69 

o Temporal lobe 71 71 71 78 

§ Middle temporal gyrus 66 66 66 63 

§ Fusiform gyrus 63 61 66 72 

§ Inferior temporal gyrus 62 60 64 68 

§ Superior temporal gyrus 60 59 62 65 

§ Temporal pole 61 60 63 67 

o Limbic cortex 64 61 67 68 

§ Entorhinal area 64 64 63 71 

§ Parahippocampal gyrus 64 65 63 70 

§ Anterior cingulate gyrus 59 54 64 63 

o Insular cortex 60 57 63 63 

§ Anterior insula 58 55 61 63 

§ Posterior insula 58 56 59 63 

o Parietal lobe 57 53 60 59 

§ Angular gyrus 59 55 64 63 

o Frontal lobe n.s n.s n.s n.s 

§ Middle frontal gyrus  55 52 57 58 

3.2 Combination of the main AD MRI-based biomarkers 

Based on our screening, we decided to combine the volume of hippocampus, 

amygdala and inferior lateral ventricle to propose a novel Hippocampal-Amygdalo-

Ventricular Alzheimer score (HAVAs). To do that, we simply added hippocampus and 

amygdala volumes and subtracted the inferior lateral ventricle volume. Indeed, 

contrary to hippocampus and amygdala showing lower volumes in AD model due to 

atrophy, inferior lateral ventricle exhibited larger volumes in AD model due to 

enlargement. As done before, HAVAs is also expressed as a z-score of normalized 

volume. As shown in Figure 2, HAVAs exhibited an earlier divergence between CN 

and AD models (i.e., it can be used on younger subjects) and a larger distance 

between models (i.e., it is more discriminant) compared to single structure models. 
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Figure 2: Trajectories based on z-scores of normalized volumes (in % total intracranial volume) for the 

selected brain structures and the proposed HAVAs for both models (AD in red and CN in black) across 

the entire lifespan. The prediction bounds of the models are estimated with a confidence level at 95%. 

The orange curve is the distance between both models in standard deviation. The orange area indicates 

the time period where confidence intervals of both models do not overlap. 

In Table 4, we present the statistical analysis of the estimated lifespan models for the 

selected structures. First, we can observe that most of the estimated models were 

quadratic. Only, the inferior lateral ventricle models were cubic. This is in line with 

previous lifespan studies [17], [25]. Second, all the model statistics were highly 

significant (p < 0.0001), excepted for the inferior lateral ventricle model for AD which 

was only significant (p < 0.05). 
 
Table 4: Results of model analysis for hippocampus, amygdala, inferior lateral ventricle and HAVAs. 

 Selected 
Model 

F-
Statistic 

R2 p-value of the 
T-statistic  

p-value of the 
F-statistic 
based on 
ANOVA 

BIC 

Hippocampus 
for CN 

 

Quadratic  202 
 

0.13 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 

p < 0.0001 
 

7172 

Hippocampus 
for AD 
 

Quadratic 704 
 

0.38 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 

p < 0.0001 
 

6346 

Amygdala for 
CN 

Quadratic 230 0.15 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 

p < 0.0001 
 

7120 
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Amygdala for 
AD 

Quadratic 902 
 

0.44 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 

p < 0.0001 
 

6598 

Inf. Lat. 
Ventricle for 
CN 

Cubic 685 0.44 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 
b3: p < 0.0001 

p < 0.0001 
 

6031 

Inf. Lat. 
Ventricle for 
AD 

Cubic 725 
 

0.65 
 

b0: p < 0.0001 
b1: p < 0.05 
b2: p < 0.05 
b3: p < 0.0001 

p < 0.001 
 

6968 

HAVAs for CN Quadratic 483 
 

0.27 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 

p < 0.0001 
 

6720 

HAVAs for AD Quadratic 483 
 

0.66 
 

b0: p < 0.0001 
b1: p < 0.0001 
b2: p < 0.0001 

p < 0.0001 
 

6827 

 

3.3 Classification based on multiple lifespan models  

To evaluate the classification performance of HAVAs on testing datasets, we 

performed a comparison with the three most discriminant structures. As shown in 

Table 5, in all the cases, HAVAs outperformed strategies based on a single structure, 

in terms of BACC and AUC, demonstrating its higher classification performance. In 

most of the cases, the second best one was the lifespan model of amygdala that 

confirmed the results previously obtained in [17]. For diagnostic task (i.e., AD vs. CN), 

HAVAs obtained 88% of BACC and 94% of AUC on the AIBL database and 89% of 

BACC and 96% of AUC on the MIRIAD database. Moreover, while developed using 

only AD and CN subjects, HAVAs obtained 73% of BACC and 78% of AUC for 

prognosis task (i.e., discriminating between sMCI and pMCI). These results 

demonstrate the good generalization capabilities of HAVAs on unseen databases and 

on unseen task.  

During our experiments, we also tested several strategies to combine the selected 

structure volumes. First, we evaluated the hippocampal-ventricle ratio (HVR) – defined 

as hippocampus / (inferior lateral ventricle + hippocampus). HVR has recently been 

proposed as a better alternative than hippocampus volume [28], [33].  During our 

experiments, we observed a drop of 7% point of BACC for diagnosis on AIBL and for 

prognosis on ADNI compared to the proposed HAVAs. Consequently, we found similar 

performance between using HVR or hippocampus z-score normalized volume. 

Second, we tried to add the temporal lobe volume (the 4th best structure during our 

screening) in HAVAs. This reduced by 1% point of BACC the diagnosis performance 

and kept prognosis similar.  Finally, we also evaluated the use of weights to combine 

HAV volumes (e.g., to give more importance to amygdala than hippocampus). Such 

strategy provided marginal improvement for diagnosis <1% point and 1% point of 
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improvement for prognosis. However, for a sake of simplicity, we decided not to use 

weights in our approach.  

 
Table 5: Comparison of classification performance of HAVAs compared to individual structures 

on 3 unseen external datasets (N=1039). The best results are indicated in red and second best 

in green.   

 BACC SPE SEN AUC 

AIBL (467 CN / 82 AD) 

• HAVAs 88 93 83 94 

• Amygdala 80 85 76 89 

• Hippocampus 80 78 82 88 

• Inferior Lateral Ventricle 79 91 67 89 

MIRIAD (23 CN / 46 AD) 

• HAVAs 89 87 91 96 

• Amygdala 88 83 93 95 

• Hippocampus 74 61 87 87 

• Inferior Lateral Ventricle 86 87 85 91 

ADNI-MCI (255 sMCI / 235 pMCI)  

• HAVAs 73 72 74 78 

• Amygdala 68 69 68 74 

• Hippocampus 66 56 77 70 

• Inferior Lateral Ventricle 65 76 54 71 

 
Figure 3 presents the results of the classification produced by HAVAs on the external 

datasets. The boundary decision is simply the middle distance between both models. 

Consequently, false positive are CN subjects (green dots) below orange curve and 

false negative are AD patients (red dots) above orange curve. Visually, we observed 

that AD patients exhibited higher variability than CN subjects. Moreover, as expected, 

most of the MCI were between both models.  
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Figure 3: HAVAs classification results on three external testing datasets (ADNI was the training dataset). 

The CN trajectory is in green, the AD trajectory in red and the boundary decision in orange. For AIBL and 

MIRIAD datasets, CN subjects are in green and AD patients in red. For ADNI dataset, sMCI patients are 

in yellow and the pMCI patients in orange. 

3.4 Comparison with state-of-the-art methods 

In this section, we compared HAVAs with normative modelling strategy, classical ML 

and recent DL methods.  

First, as shown in Table 6, HAVAs obtained the best results for both diagnostic and 

prognostic tasks. Compared to the second-best methods, HAVAs produced an 

improvement of 3% point for diagnosis and for prognosis. Second, the second-best 

methods were the ROI-based CNN involving mostly the same structures as HAVAs 

and LASSO using the combination of HAV structures. We also observed using HAV 

structure combination was the best solution for SVM and normative modelling. 

Consequently, the proposed HAV combination based on z-score was beneficial for all 

the compared strategies (multi-model, normative modelling, SVM and LASSO). In 

addition, for all the considered structures, the proposed multi-model strategies 

outperformed single-model based approaches (i.e., normative modelling). This result 

shows the interest of using multiple models for classification compared of using a 

single normative model. Moreover, the normative modelling and machine learning 

based on HAV combination obtained results similar to CNN-based methods. These 
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results are in line with the comparisons proposed in [8] and [16]. Finally, while 

hippocampus volume is considered a hallmark of AD, normative modelling using 

hippocampus obtained the worst results (16% point lower than the proposed multi-

model HAVAs). For all the considered strategies (multi-model, normative modelling, 

SVM and LASSO), amygdala volume provided the best performance when using a 

single structure. These results are in line with previous studies dedicated to lifespan 

modelling of AD [17]. 

Table 6: Comparison with state-of-the-art strategies based on normative modelling and recent 

deep learning methods.  BACC is provided for each method for both datasets. For CNN-based 

methods, the results published in [8] are used.  For normative modelling, a threshold of 2σ was 

used to detect abnormal volumes. Finally, for SVM and LASSO, the Matlab version with default 

parameters is used. The best results are indicated in red and second best in green 

BACC on external datasets AIBL 

 (AD vs. CN) 

ADNI  

(sMCI vs. pMCI) 

Multi-model HAVAs 88 73 

ROI-based CNN [8] 84 70 

LASSO HAV 85 67 

Subject-based CNN [8] 83 69 

SVM HAV 82 70 

LASSO Amygdala 83 68 

Normative HAV model  81 70 

Patch-based CNN [8] 81 70 

LASSO Hippocampus 81 67 

Multi-model Amygdala 80 68 

SVM Amygdala 80 66 

Multi-model Hippocampus 79 66 

LASSO inf. lat. Vent. 79 66 

Multi-model inf. lat. Vent. 79 65 

SVM Hippocampus 79 64 

Normative Amygdala model  75 63 

SVM inf. lat. Vent. 75 63 

Normative inf. lat. Vent. model  71 61 

Normative Hippocampus model  70 58 
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3.5 Sensitivity analysis to training domain 

Finally, as a sensitivity analysis, in order to evaluate the consistency and the 

robustness of HAVAs to training domain, we performed an additional experiment using 

AIBL, OASIS and MIRIAD databases in the training dataset while removing the AD 

and CN subjects of the ADNI database from training and used them as testing dataset. 

First, Table 7 shows the results obtained by HAVAs, amygdala, hippocampus and 

inferior lateral ventricles. The obtained results are similar to the results previously 

obtained on AIBL. This result highlights the robustness of the proposed HAVAs 

strategy to training domain selection and the good generalization capability of our 

method. 

Table 7: Sensitivity analysis. Comparison of classification performance of HAVAs compared to 

individual structures using AIBL, OASIS and MIRIAD in the training and the AD and CN subjects 

ADNI as testing. The best results are indicated in red and second best in green.   

 BACC SPE SEN AUC 

ADNI (404 CN / 332 AD) 

• HAVAs 87 87 86 93 

• Amygdala 82 81 83 89 

• Hippocampus 78 71 86 88 

• Inferior Lateral Ventricle 75 83 66 84 

 
Moreover, Figure 4 presents the graphical results obtained using HAVAs score in the 

same condition. As previously, we observed that most of the CN subjects well follow 

the CN model while most of the AD patients are below the decision bounds and exhibit 

higher variability. Finally, it is interesting to observe that HAVAs models estimated on 

AIBL, OASIS and MIRIAD are very similar to HAVAs models estimated using ADNI 

(see Figure 3). This result highlights the consistent of the proposed HAVAs strategy to 

images used during training. 
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Figure 4: Sensitivity analyses. HAVAs classification results for AD and CN subjects of the ADNI database 

while using AIBL, OASIS and MIRIAD in the training dataset. The CN trajectory is in green, the AD 

trajectory in red and the boundary decision in orange.  

 

4 Discussion 

In this paper, we proposed a novel framework for AD detection based on lifespan 

modelling of the hippocampal-amygdalo-ventricular volume trajectory for both CN and 

AD. To this end, we first estimated volume trajectories for AD and CN models across 

the entire lifespan using a large number of subjects.  In this study, we analyzed 132 

structures, 5 lobes, 4 regional tissues and 3 tissues. This whole brain analysis, in a 

multi-scale fashion, enabled us to produce a full screening of the diverging brain areas 

across lifespan between CN and AD. Within the considered brain areas, only 33 

showed significantly divergences between AD and CN models. For these 33 brain 

areas, we estimated the most discriminant lifespan model in terms of classification 

performance. We found that amygdala, hippocampus and inferior lateral ventricle were 

the most discriminant structures. These results obtained using AssemblyNet were in 

line with recent studies based on other segmentation protocols, software or 

frameworks [17], [28]–[31]. Therefore, we proposed a new AD score based on 

hippocampal-amygdalo-ventricular volume called HAVAs. This score is based on the 

distances between the volume of the subject under study and the AD and CN lifespan 

trajectories. During the validation of HAVAs on three external datasets, we showed 

that our strategy enables accurate detection of subject having AD, or MCI who will 

convert to AD in the next 3 years (i.e., pMCI). Finally, we demonstrated the competitive 
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performance of the proposed HAVAs compared to usual normative modelling, classical 

ML and recent DL methods. 

 

During our experiments, we showed that models combining several structures (i.e., 

HAVAs and HAV) outperformed models based on a single structure. This 

demonstrates the advantage of combining volumes of key structures to improve AD 

detection. Moreover, our results suggests that methods based on amygdala provide 

higher accuracy than models based only on hippocampus. The important role of 

amygdala at the early state of AD has been already observed in the past [17], [30], 

[32]. Finally, we showed that using several models had beneficial impact for improving 

classification accuracy compared to single-based model normative approach. We also 

found that DL methods were in general more accurate than normative modelling 

approach but not better than usual ML. Recently, it has been suggested that the 

combination of both could improve the performance by using normative modelling of 

learned features [31]. We will investigate this strategy in future works.  

 

To conclude, in addition to improving classification performance, the proposed HAVAs 

strategy has several advantages over recent DL approaches:   

- First, HAVAs is conceptually very simple to understand since based on the distance 

to AD or CN trajectories. This aspect enables an easy interpretability of the results in 

terms of hippocampal-amygdalo atrophy and concomitant ventricular enlargement. 

While current DL methods failed to produce relevant explanation on the used features 

for their decision making [16], HAVAs is fully interpretable and thus is well-suited for 

clinical practice or pharmaceutical trials. Moreover, the simplicity of HAVAs make it 

fast and easy to reimplement. A software package including AssemblyNet pipeline and 

HAVAs estimation will be made freely available as a downloadable Docker5 as well as 

an online pipeline on the volBrain platform6 after paper acceptance. 

- Second, HAVAs is based on a very low number of parameters and hyperparameters. 

The use of low order polynomial models for trajectory results in few learnable 

parameters per trajectory. Thus, using less than ten parameters, HAVAs is able to 

outperform CNN models involving more than ten million parameters.  Moreover, thanks 

to our volume normalization procedure compensating for inter-subject and inter-

structure variabilities, no hyper-parameter is needed to combine hippocampus, 

amygdala and inferior lateral ventricle volumes. As shown during our experiments, this 

 
5 https://github.com/volBrain/AssemblyNetAD  
6 http://www.volbrain.net/ 
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enables HAVAs to generalize well by being robust to domain shift and efficient on 

prognosis task. 
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