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❖ Milieu homogène : la LC (fonctionnelle 𝐹) est indépendante de la particule. Le comportement est le même en tout point du milieu.

Exemples

Béton : ce matériau est constitué de différentes phases (liant hydraulique, granulats de tailles diverses) possédant des caractéristiques mécaniques (par exemple élastiques) différentes.

→ Matériau hétérogène

Béton rugueux [Thomann M, thèse, 2005] 2. 1.1. Constitutive laws properties Matériau composite : prenons l'exemple d'un composite mixte à matrice organique de type polypropylène renforcée par des fibres de verre et des particules de CaCO3.

(a) : FV : 12,9 % et CaCO3 : 0 % en volume (b) : FV : 14,6 % et CaCO3 : 6,6 % en volume → Matériau hétérogène [Hartikainen J, 2005] Remarque : la notion d'homogénéité dépend de la structure du matériau à différentes échelles mais également de l'échelle d'observation → par exemple, dans le cas d'un béton celui-ci paraîtra hétérogène à l'échelle des granulats mais, en revanche, pourra être considéré comme homogène à l'échelle d'un pont.

❖ Milieu isotrope : la LC (fonctionnelle 𝐹) est isotrope c'est-à-dire que son écriture est indépendante de tout changement de repère → les caractéristiques mécaniques sont identiques dans toutes les directions.

Si on réalise un essai de traction uniaxiale sur une éprouvette prélevée dans une tôle d'acier isotrope selon plusieurs directions tous les essais donneront les mêmes résultats → la même courbe force-déplacement et la même raideur. 

Matériau bois :

Expérimentalement on montre que le bois présente localement 3 directions matérielles selon lesquelles les rigidités ne sont pas les mêmes : la rigidité la plus élevée se situe selon la direction longitudinale L → Matériau anisotrope [González C, 2007] Matériau composite unidirectionnel : on considère ici un composite à matrice époxyde renforcé par des fibres de carbone (54 % en volume) alignées → la rigidité dans le sens des fibres est bien supérieure à celle dans le sens transverse. Ceci s'explique par la grande différence de rigidité entre la matrice (E=4 GPa) et la fibre de carbone (E=230 GPa).

→ Matériau anisotrope

❖ Milieu linéaire : la LC (fonctionnelle 𝐹) est linéaire → l'état de contrainte dépend linéairement de l'état de déformation (exemple : loi de Hooke) → on peut utiliser un principe de superposition.

(1)

(2)

(3) = +

𝜎 (1) = 𝜎 (2) + 𝜎 (3)

𝜀 (1) = 𝜀 (2) + 𝜀 (3)

𝑢 (1) = 𝑢 (2) + 𝑢 Dans cette expression on a : • 𝑝 : pression hydrostatique (correspond à la pression hydrostatique dans un fluide au repos),

• 𝜀 : tenseur des vitesses de déformation (s'obtient à partir du vecteur vitesse par des relations analogues à celles exprimant le tenseur des déformations 𝜀 linéarisé en HPP à partir du vecteur déplacement -voir cours MMC FCD sur Campus),

• 𝜂 : viscosité dynamique (ou newtonienne) -paramètre caractéristique du milieu. Cette loi de comportement est linéaire et isotrope. De plus elle est incompressible (aucun changement de volume au cours de la déformation ou au cours de l'écoulement).

❖ Solide élastique de Hooke : 𝜎 = 𝜆. 𝑡𝑟 𝜀 . 1 + 2𝜇. 𝜀 qu'on peut inverser selon 𝜀 = -𝜈 𝐸 . 𝑡𝑟 𝜎 . 1 + 1+𝜈 𝐸 . 𝜎 → c'est une loi linéaire et isotrope à 2 paramètres indépendants caractéristiques du milieu : 𝜆, 𝜇 ou 𝐸, 𝜈.

Examples of constitutive laws

Définition : un modèle rhéologique est un système idéalisé représentatif d'un comportement rhéologique unidimensionnel. Ce système ne simule que la relation entre la déformation et la contrainte qui lui est associée. Dans ce cas le modèle n'est relié à l'extérieur que par ses deux extrémités, dont le déplacement relatif représente la déformation 𝜀 et qui sont le siège d'applications de forces colinéaires, égales et de sens contraires, analogues aux contraintes 𝜎 .

Les modèles purement mécaniques peuvent être remplacés par des analogies électriques répondant à des équations identiques.

2.2.

Rheological models , Ressort de caractéristique E.

La contrainte  est proportionnelle à la déformation 𝜀 et de même signe qu'elle → Il simule l'élasticité idéale linéaire.

Modèle de solide élastique de Hooke 𝜎 = 𝐸𝜀, avec 𝐸 ≥ 0 2.2. 1. The linear spring , Amortisseur de caractéristique .

La contrainte  est proportionnelle à la vitesse de déformation 𝜀 et de même signe qu'elle → Il ne peut qu'absorber de l'énergie et simule la viscosité normale dite de Newton.

Modèle de fluide newtonien 𝜎 = 𝜂𝜀 , avec 𝜂 ≥ 0 2.2.2.

The dashpot

,

Patin (ou élément frottant or élément de Saint-Venant) caractérisé par sa contrainte seuil 𝜎 𝑠 .

La déformation  est invariable tant que la contrainte 𝜎 reste inférieure, en valeur absolue, à un certain seuil 𝜎 𝑠 . Lorsque la contrainte atteint ce seuil (qu'elle ne peut pas dépasser), la déformation peut varier indéfiniment ; dans ce dernier cas le patin absorbe (ou dissipe) de l'énergie. Ce modèle simule la plasticité idéale.

𝜎 < 𝜎 𝑠 ⇒ 𝜀 = 𝜀 0 𝜎 = 𝜎 𝑠 ⇒ 𝜀 = 𝑖𝑛𝑑é𝑓𝑖𝑛𝑖𝑒 2.2.3.

The slider En associant plusieurs modèles élémentaires en parallèle ou en série on peut simuler des comportements plus complexes présentant, à la fois, de l'élasticité, de la viscosité et de la plasticité (notion de seuil). Pour la première transition le critère peut s'écrire : 𝜎 = 𝜎 𝑒 ou encore 𝜀 = 𝜀 𝑒 .

𝜎 𝑒 est la limite élastique en traction du matériau.

Remarque : ce critère est insuffisant dans le cas général car il ne permet pas, par exemple, de déterminer la limite élastique du même matériau en cisaillement simple ou dans une sollicitation plus complexe.

La grande majorité des critères rhéologiques peut s'écrire sous la forme :

𝐹 𝜎 = 𝐹 𝜎 11 , 𝜎 22 , 𝜎 33 , 𝜎 12 , 𝜎 21 , 𝜎 13 , 𝜎 31 , 𝜎 23 , 𝜎 32 = 0 Terminologie : à propos de critères rhéologiques on utilise également des expressions telles que « fonction seuil » ou « fonction de charge ».

Cette relation peut donc faire l'objet d'une représentation dans l'espace de dimension 9 des contraintes (dans le cas le plus général).

Un critère peut parfois également être représenté par une courbe intrinsèque (voir plus loin) dans le plan de Mohr : ceci est très utilisé pour les sols, les milieux granulaires, …

Expression of rheological criteria

Isotropie : dire qu'un critère 𝐹 𝜎 = 0 est isotrope est équivalent à vérifier l'une des conditions suivantes :

• F est une fonction isotrope des composantes ij,

• F est une fonction symétrique des seules contraintes principales • F est fonction des seuls invariants du tenseur 𝜎 .

Rappel : le tenseur des contraintes ou sa matrice associée dans un repère donné possède 3 invariants indépendants ; par exemple : 

𝐼 1 = 𝑡𝑟 𝜎 = 𝜎 𝑖𝑖 𝐼 2 = 1 2 𝑡𝑟 𝜎 2 = 1 2 𝜎 𝑖𝑗 𝜎 𝑗𝑖 𝐼 3 = 1 3 𝑡𝑟 𝜎 3 = 1 3 𝜎 𝑖𝑗 𝜎 𝑗𝑘 𝜎 𝑘𝑖 2.3.3. Properties of

Par ailleurs :

• -0 : limite élastique en compression uniaxiale,

• 𝜎 0 2 : limite élastique en cisaillement pur.

Examples of isotropic criteria

Ce critère est également dénommé critère de la cission (contrainte de cisaillement) maximale (évident en représentation dans le plan de Mohr) [Salençon J, 2005] Le milieu reste élastique tant que le diamètre du plus grand cercle de Mohr reste inférieur à 0. Ce cercle doit donc être compris dans la bande délimitée par les deux droites d'équations 𝜏 = Ce critère de plasticité isotrope a été imaginé indépendamment par Beltrami (1903), Huber (1904), Von Mises (1913) et Hencky (1924).

Il s'écrit : 𝐹 𝜎 = 𝐽 2 -𝑘 2 , avec :

• 𝐽 2 = 1 2 𝑡𝑟 𝑠 2 = 1 2
𝑠 𝑖𝑗 𝑠 𝑗𝑖 où s représente le tenseur déviateur des contraintes (voir cours de MMC)

• 𝑘 représente la limite élastique (caractéristique du milieu) en cisaillement simple (à montrer). On a, par ailleurs : 𝑘 3 : limite élastique en traction uniaxiale (-𝑘 3 en compression)

Ce critère est parfois dénommé critère de la cission octaédrale ; la cission octaédrale étant la contrainte de cisaillement obtenue sur la facette d'orientation Tant que le point représentatif de l'état de contrainte se situe strictement à l'intérieur du cylindre le milieu présente un comportement élastique (la limite élastique n'est pas atteinte). Remarque : le critère de Von Mises est pertinent avec la plupart des alliages métalliques. Il présente quantitativement assez peu de différence avec le critère de Tresca (voir TD) mais sa formulation mathématique est plus pratique (ce qui justifie souvent son utilisation préférentielle).

❖ Les critères de type courbe intrinsèque Présentation : nous allons introduire la notion de courbe intrinsèque (CI) à partir du critère de Tresca.

Le critère de Tresca présente les particularités suivantes :

• Il ne fait intervenir que les contraintes principales extrêmes,

• Seule la différence entre ces deux contraintes intervient.

Albert Caquot (1881Caquot ( -1976) ) Otto Mohr (1835Mohr ( -1918) ) En ordonnant les contraintes principales selon : 𝜎 𝐼 ≥ 𝜎 𝐼𝐼 ≥ 𝜎 𝐼𝐼𝐼 , la fonction de charge s'écrit : 𝐹 𝜎 = 𝜎 𝐼 -𝜎 𝐼𝐼𝐼 -𝜎 0 .

Une généralisation de ce critère a été proposée par Mohr et Caquot, dans laquelle la différence (I-III) est comparée, non plus à une constante mais à une fonction de la « contrainte moyenne » (I+III).

Il y a donc dépendance de la fonction de charge de la partie sphérique de . On peut alors écrire : 𝐹 𝜎 = 𝜎 𝐼 -𝜎 𝐼𝐼𝐼 -𝑔 𝜎 𝐼 + 𝜎 𝐼𝐼𝐼 Ce type de critère trouve alors une interprétation graphique évidente dans le plan de Mohr : c'est la CI, qui est l'enveloppe des cercles limites de Mohr lorsque la nature du chargement évolue. • 𝜙 ≠ 0, 𝐶 = 0 : milieu dit pulvérulent (sables, graviers, …) Remarques :

• Ce critère est anisotrope (en fait orthotrope) et généralise le critère de Von Mises aux milieux orthotropes,

• Les limites élastiques sont identiques (en valeur absolue) en traction et compression. 

Remarques :

• Ce critère est encore plus général que le critère de Hill ; il contient des termes de degré 1 en contraintes et correspond à des milieux orthotropes,

• Les limites élastiques en traction et compression sont différentes.

❖ Le critère de la contrainte maximale C'est un critère assez rustique qui s'applique essentiellement aux composites à fibres unidirectionnelles.

[ Chevalier Y, 1991] Si on sollicite un composite unidirectionnel en traction simple dans la direction x, l'état de contrainte plane qui en résulte dans le repère matériel 1,2 s'écrit (voir MMC 1A) :

𝜎 11 = 𝜎 𝑐𝑜𝑠 2 𝛼 , 𝜎 22 = 𝜎 𝑠𝑖𝑛 2 𝛼 et 𝜎 12 = -𝜎 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
La résistance à la traction c d'un composite unidirectionnel dans le sens des fibres (1) peut être approchée par une loi des mélanges : 𝜎 𝑐 = 𝜎 𝑓 𝑣 𝑓 + 𝜎 𝑚 1 1 -𝑣 𝑓 avec :

• 𝑣 𝑓 : fraction volumique de fibre (0 → 1)

• 𝜎 𝑓 : résistance en traction de la fibre

• 𝜎 𝑚 1 : contrainte dans la matrice à la rupture des fibres 2.3.6.

Other criteria

On suppose en outre :

• La résistance en traction du composite dans la direction 1 (sens des fibres) vaut c

• La résistance en traction du composite dans la direction 2 (sens transverse) vaut m (résistance en traction de la matrice)

• La résistance en cisaillement dans le plan 1,2 vaut m (résistance en cisaillement de la matrice)

Le critère de rupture en contrainte maximale peut alors s'écrire :

𝜎 𝑥𝑥 = 𝑚𝑖𝑛 𝜎 𝑐 𝑐𝑜𝑠 2 𝛼 , 𝜎 𝑚 𝑠𝑖𝑛 2 𝛼 , 𝜏 𝑚 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼
Composite epoxyde/fibres de carbone [Chevalier Y, 1991] Ce critère prévoit donc :

• Une rupture en traction des fibres pour  faible (zone 1 du graphe ci-contre),

• Une rupture par cisaillement de la matrice pour les valeurs intermédiaires (zone 2),

• Une rupture en traction de la matrice pour des valeurs de  proches de 90° (zone 3).

Le graphe donne par ailleurs un comparatif entre 2 critères (Hill et contrainte max.) et des résultats expérimentaux → le critère de Hill rend mieux compte de la réalité.

Une autre limitation du critère de contrainte max. est qu'il ne fonctionne qu'en contrainte plane et ne permet donc aucune prévision dans une sollicitation triaxiale.

❖ Critères fondés sur une approche de type mécanique de la rupture La mécanique de la rupture permet de modéliser le comportement mécanique de structures présentant des défauts (fissures, porosités, angles vifs, …) pour des comportements fragiles ou non.

La présence de ces défauts occasionne des perturbations locales des champs de contrainte et de déformation.

Dans ce domaine on trouve des critères reposant, entre autres, sur la notion de facteur d'intensité de contrainte ou des critères énergétiques (voir cours de Mécanique de la rupture pour plus de détails).
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Exemple : concentration de contrainte sur barreau en acier cylindrique entaille. Calcul par éléments finis (logiciel ANSYS)

• Barreau en acier de rayon 2 cm portant une entaille en V de profondeur 1 cm.

• Sollicitation : 10 8 Pa (100 MPa) en traction uniaxiale selon l'axe du barreau.

• Noeuds inférieurs bloqués en y • Noeuds supérieurs soumis à une pression -10 8 Pa. Le problème est traité en 2D axisymétrique.

Le maillage initial est régulier puis raffiné au voisinage de la pointe du défaut. La valeur maximale de la contrainte  y à la pointe du défaut augmente lorsque la finesse du maillage augmente. ❖ Critères énergétiques : Griffith (1921) a proposé un critère selon lequel la fissure se propage à condition que l'énergie élastique emmagasinée par la structure atteigne un seuil critique dépendant de la configuration du défaut.

• Les non-linéarités matérielles sont dues au caractère particulier (non-linéaire) de la loi de comportement du milieu • Lors de l'écoulement plastique, la contrainte qui s'établit dans le ressort

•
vaut 𝑋 = 𝐻𝜀 𝑝
• Cet écoulement plastique ne se produit que si la valeur absolue de la contrainte (traction ou compression) dans le patin 𝜎 -𝐻𝜀 𝑝 est égale à 𝜎 𝑦

• Pour une déformation donnée 𝑋 représente une contrainte interne

• La fonction de charge 𝑓 dépend alors à la fois de la contrainte appliquée 𝜎 et de la contrainte interne 𝐹 𝜎 = 1 -𝛼 𝐽 + 𝛼𝐼 1 -𝜎 0 , avec :

• 𝐽 = 3 2 𝑡𝑟 𝑠 2 1 2
• 𝐼 1 = 𝑡𝑟 𝜎 Hypothèses (relatives au cadre restreint développé ci-après) :

• Les déformations sont petites (HPP)

• Les transformations sont lentes (quasi-statiques et sans effet de la température)

Partition des déformations : 𝜀 = 𝜀 𝑒𝑙 + 𝜀 𝑝 déformation totale (dérive d'un déplacement) avec

• 𝜀 𝑒𝑙 = 𝑆 : 𝜎 (loi de Hooke -𝑆 tenseur de souplesse) déformation élastique récupérable par décharge (réversible) (ne dérive pas en général d'un déplacement) • 𝜀 𝑝 déformation plastique non récupérable par décharge (ne dérive pas en général d'un déplacement) [Suquet P., 2009] Contrairement au cas des déformations élastiques il est impossible de prévoir directement 𝜀 𝑝 à partir de l'état de contrainte (voir figure ci-contre)

• au même niveau de contrainte peuvent correspondre plusieurs déformations plastiques

• tant que le seuil de plasticité (critère) n'est pas atteint 𝜀 𝑝 est figé

• il faut distinguer la charge de la décharge d'où une influence du signe de 𝜎 sur la loi de comportement

• la loi de comportement est donc incrémentale → nécessité d'un calcul itératif (avec influence du trajet de chargement)

Plastic flow rule

Cas des métaux

Dans le cas des métaux les déformations plastiques (irréversibles) résultent de la propagation de dislocations et se traduisent par des glissements selon des plans atomiques denses obéissant à la loi de Schmid (voir cours « Alliages métalliques » -S8). On peut alors montrer la cohérence avec le principe du travail plastique maximal (Hill, 1950). A noter que ce principe n'est pas vérifié pour les sols. • 𝐹 𝜎 < 0, 𝜆 = 0 ⇒ 𝜀 𝑝 = 0 (déformation plastique invariante) [Suquet P., 2009] • convexité de la surface de charge • toute information sur la loi d'écoulement se traduit par une propriété sur le critère et réciproquement

• la connaissance du critère suffit Exemple : incompressibilité plastique et invariance par translation du critère dans la direction des tenseurs sphériques

• le critère porte alors sur le déviateur des contraintes (cas des critères de Von Mises et de Tresca)

• 𝑡𝑟 𝜀 𝑃 = 0 ⇔ 𝜎 ∈ 𝑆 ⇒ 𝜎 -𝑝1 ∈ 𝑆, ∀𝑝 ∈ ℝ, S représentant la surface de charge (ou surface seuil) • Décharge

A partir d'un point de chargement 𝛼 𝐴 , 𝑀 𝐴 situé au-delà de la limite élastique initiale de l'arbre, on décharge l'arbre en annulant le couple M . On peut montrer qu'on observe une décharge élastique en tout point de l'arbre. Cette décharge élastique est associée à un état de contrainte purement élastique 𝜎 𝑒𝑙 correspondant au moment 𝑀. La contrainte de cisaillement générée vaut 𝜏 𝑟 = 𝐺𝛼𝑟.

Le champ de contrainte résultant 𝜎 𝑟𝑒𝑠 = 𝜎 𝐴 -𝜎 𝑒𝑙 est donc défini par : Cet essai fait l'objet de nombreuses normes internationales pour la plupart des matériaux (alliages métalliques, polymères, composites, bois, béton, …) ; ces normes définissent un cadre conventionnel rigoureux permettant de comparer les performances de différents matériaux.

𝜏 𝑟𝑒𝑠 𝑟 = 𝐺𝛼𝑟 - 2𝑀𝑟 𝜋𝑅 4 ,
Il permet, pour un matériau élastoplastique de déterminer les grandeurs suivantes : Les mesures de déformation se font à l'aide d'extensomètres ou de jauges de déformation.

3.9.

Experimental aspects 3.9.1.

Uniaxial tests 3.9. 1.1. Tensile test Cet essai se pratique également avec de nombreux matériaux (bois, matériaux composites, métaux, bétons, …).

Son apparente simplicité cache certaines difficultés.

• L'éprouvette ne doit pas être trop élancée dans la direction de compression pour éviter les risques de flambage, • Les deux faces de l'éprouvette en contact avec les plateaux de compression doivent être lubrifiées (huile, film de PTFE, …) afin d'assurer autant que possible des états de contrainte et de déformation uniaxiaux et homogènes dans la zone sollicitée (si frottement → déformation en tonneau).

Il donne accès au même type d'informations que l'essai de traction simple mais ne remplace pas pour autant ce dernier (certains matériaux comme la fonte se comportent différemment en traction et en compression par exemple vis-à-vis de la limite élastique). The force F necessary to shift the upper plate at velocity U results in a shear stress (due to viscous friction

) 𝜏 = 𝐹 𝑆 . x 1 F  U  Profil de vitesse X 2 h 4.
Viscous media 4.1.

Newtonian media 4. 1.1. Newton's phenomenological definition (1687) Experimentally, for most of fluids, at given temperature and pressure, the ratio between 𝜏 and 𝛾 is independent of 𝛾 (at least in a range of values for 𝛾 ).

Newton defined the dynamic viscosity 𝜂 with: 𝜂 =

𝜏 𝛾

We have to consider that thermoplastic molten polymers behave specifically due to their specific molecular structure:

• viscosity is very influenced by temperature • viscosity becomes non-Newtonian at high shear rate 𝛾 : this property matches with a pseudoplastic or shear-thinning behaviour (see later) 1D Newton's law isn't sufficient to express dynamic equilibrium of the medium and then to solve a Newtonian flow in any configuration. For this purpose a tensorial law is needed. This one was proposed by Navier (1823). For an incompressible fluid it writes: 𝑠 = 2𝜂𝜀 , where 𝑠 is the deviatoric stress tensor.

→ It's a 1 parameter law.

3D generalization

Comment: coefficient 2 is necessary to ensure consistency with 1D Newton's law. Indeed if we consider a shear flow in the plane 1,2 (Newton's experiment) with shear stresses along the 1-axis and if we assume moreover that the velocity profile is linear in the gap we have: Given a steady viscous fluid flow inside a transparent pipe. In order to analyze the type of flow a small jet of dyed water is injected in the main flow without any perturbation.

𝑢 𝑥 2 = 𝑈 ℎ 𝑥 2 = 𝛾 𝑥 2 𝑣 = 𝑤 = 0 , then: 𝜀 = 0 𝛾 2 0 𝛾 2 0 0 0 0 0 therefore: 𝑠 = 0 𝜂𝛾 0 𝜂𝛾 0 0 0 0 0 Comment: in this case we have 𝜎 = -𝑝 𝜂𝛾 0 𝜂𝛾 -𝑝 0 0 0 -𝑝 → a
What can be noticed:

• When the velocity was slow the dyed layer remained distinct through the entire length of the large tube. It means that the flow is composed of jets or coaxial layers without any exchange between and sliding against each other → the flow is laminar • When the velocity was increased, the layer broke up at a given point and diffused throughout the fluid's crosssection. The point at which this happened was the transition point from laminar to turbulent flow. For molten polymers most of the time volume and inertial forces can be neglected → Navier-Stokes equation can therefore be simplified in Stokes equation (see opposite).

- 𝜕𝑝 𝜕𝑥 1 + 𝜂 𝜕 2 𝑢 𝜕𝑥 1 2 + 𝜕 2 𝑢 𝜕𝑥 2 2 + 𝜕 2 𝑢 𝜕𝑥 3 2 = 0 - 𝜕𝑝 𝜕𝑥 2 + 𝜂 𝜕 2 𝑣 𝜕𝑥 1 2 + 𝜕 2 𝑣 𝜕𝑥 2 2 + 𝜕 2 𝑣 𝜕𝑥 3 2 = 0 - 𝜕𝑝 𝜕𝑥 3 + 𝜂 𝜕 2 𝑤 𝜕𝑥 1 2 + 𝜕 2 𝑤 𝜕𝑥 2 2 + 𝜕 2 𝑤 𝜕𝑥 3 2 = 0 George Gabriel Stokes
We get then the given system with 4 equations and 4 unknowns p, u, v and w.

Stokes equation can be solved sometimes analytically (simple geometry, viscometric flows) more often with a laminar flow assumption.

Sometimes approximations are used:

• hydrodynamic lubrication approximations (shear flows -for instance mold filling in injection molding) • threads and membranes approximations (spinning, blow moulding and film blowing)

In more complex cases numerical methods are needed such as Finite Element Method.

Stokes equation is used:

1 2 3 - 𝜕𝑝 𝜕𝑟 = 0 - 1 𝑟 𝜕𝑝 𝜕𝜃 = 0 - 𝜕𝑝 𝜕𝑧 + 𝜂 1 𝑟 𝜕 𝜕𝑟 𝑟 𝜕𝑤 𝜕𝑟 = 0 (1) et (2) induce p(z) (3) induces 𝑑𝑝 𝑑𝑧 = 𝜂 1 𝑟 𝑑 𝑑𝑟 𝑟 𝑑𝑤 𝑑𝑟 , D'où : ∀𝑟, 𝜃, 𝑧, f(z)=g(r)=A=c st
From boundary conditions on pressure is deduced:

𝑑𝑝 𝑑𝑧 = 𝐴 = - 𝛥𝑝 𝐿
, and then: 

𝑝 𝑧 = 𝑝 0 + 𝛥𝑝 1 -
𝑤 𝑟 = 𝛥𝑝 4𝜂𝐿 𝑅 2 1 - 𝑟 2 𝑅 2 → parabolic velocity profile. Flow rate calculation 𝑄 = 𝑤 𝑟 2𝜋𝑟. 𝑑𝑟 𝑅 0 = 𝛥𝑝 4𝜂𝐿 2𝜋𝑅 2 𝑟 - 𝑟 3 𝑅 2 . 𝑑𝑟 𝑅 0 → 𝑄 = 𝜋.𝛥𝑝.𝑅 4 8𝜂 .𝐿
→ Flow rate is proportional to pressure drop in the flow direction.

Average velocity

𝑉 = 𝑄 𝜋𝑅 2 = 𝛥𝑝.𝑅 2
8𝜂 .𝐿 → velocity can be written in a new way:

𝑤 𝑟 = 2𝑉 1 - 𝑟 2 𝑅 2
; average velocity means the velocity of the flow front in the pipe.

Shear rate

Given:

𝛾 = 𝑑𝑤 𝑑𝑟 = 𝑟.𝛥𝑝
2𝜂 .𝐿 → Shear rate is heterogeneous in the flow: zero along z-axis and maximum on the pipe wall.

Comment: relation Q(p) can be used experimentally → it is exactly the principle of a capillary rheometer 116 [Pujos C., thèse, 2006] This device gives a possibility to simulate the flow of a molten thermoplastic polymer in an extrusion die.

Experimentally it is well known that a lot of media cannot be considered as Newtonian if a large range of shear rate is considered. It is the case among others of molten thermoplastic polymers: their viscosity decreases as the shear rate increases → this is specific to a pseudoplastic or shear-thinning behavior.

Wilhelm Ostwald (1853Ostwald ( -1932) ) The most common 1D shear model is named « power-law » or « Ostwald law » (1925): 𝜏 = 𝐾 𝛾 𝑚 -1 𝛾 , which induces following law of viscosity: 𝜂 𝛾 = 𝐾 𝛾 𝑚 -1 with:

• K: consistancy,
• m: pseudoplasticity index (ranges from 0 to 1).

This behaviour is intermediate between two limits:

• m=1: Newtonian behaviour Comment: this law has a drawback of infinite viscosity at zero shear → different other equations have been suggested 

𝜂 = 𝜂 0 𝛾 𝛾 0 𝑚 -1 if 𝛾 ≤ 𝛾 0 if 𝛾 ≥ 𝛾 0 Carreau-Yasuda law 𝜂 𝛾 -𝜂 ∞ 𝜂 0 -𝜂 ∞ = 1 + 𝜆𝛾 𝑎 𝑛-1 𝑎 with:
• 𝜂 0 : Newtonian viscosity at low shear rate • 𝜂 ∞ : Newtonian viscosity at infinite shear rate (generally zero for molten polymers)

• 𝜆: characteristic time of transition between Newtonian and pseudoplastic regime • a: quantifies the curvature of the transition • n: ultimate flow index at high shear rate

The suggested law extends Ostwald law to 3D case. His expression is: 𝑠 = 2𝐾𝛾 𝑚 -1 𝜀 , with:

• K and m: same meaning than for 1D case

• 𝛾 = 2 𝜀 𝑖𝑗 2 𝑖,𝑗
: generalized shear rate; it is an invariant of strain rate tensor   For planar shear we get:

𝑢 𝑥 2 = 𝛾 𝑥 2 𝑣 = 0 𝑤 = 0 ⇒ 𝜀 = 0 𝛾 2 0 𝛾 2 0 0 0 0 0 ⇒ 𝛾 = 𝛾 ⇒ 𝜎 = -𝑝 𝐾 𝛾 𝑚 -1 𝛾 0 𝐾 𝛾 𝑚 -1 𝛾 -𝑝 0 0 0 -𝑝
which is consistent with Ostwald 1D law. Final solution is then:

𝑤 𝑟 = 𝛥𝑝 2𝐾𝐿 1 𝑚 𝑚 𝑚 +1 𝑅 1 𝑚 +1 1 - 𝑟 𝑅 1 𝑚

+1

Flow rate Q calculation

𝑄 = 𝜋 𝑚 3𝑚 + 1 𝛥𝑝 2𝐾𝐿 1 𝑚 𝑅 1 𝑚 +3
Some Newtonian or pseudoplastic flows with simple geometries can be modelized. In these flows the power of flow is:

• a mobile wall: plane shear, parallel plates, cone-plate, coaxial cylinders • a pressure drop: Poiseuille flow in a pipe, Poiseuille flow between parallel plates

Newtonian viscosity is deduced depending on the case by a relation p(Q) or C() (C: torque, : angular velocity).

In the same way pseudoplasticity index m and consistency K are given as following:

• 𝑙𝑜𝑔 𝛥𝑝 𝐿 = 𝑚. 𝑙𝑜𝑔 𝑄 + 𝐶 st K,m,geometry • 𝑙𝑜𝑔 𝐶 = 𝑚. 𝑙𝑜𝑔 𝛺 + 𝐶 st K,m,geometry 4.2.4.
Viscometric flows

𝑢(𝑦) = 𝑈 𝑦 ℎ 𝐹 = 𝑊𝐿𝜂 𝑈 ℎ 𝑢(𝑦) = 𝑈 𝑦 ℎ 𝐹 = 𝑊𝐿𝐾 𝑈 ℎ 𝑚 𝑢(𝑦) = 3 2 𝑉 1 - 2𝑦 ℎ 2 𝑄 = 1 12𝜂 𝛥𝑃 𝐿 ℎ 3 𝑊 𝑢(𝑦) = 2𝑚 + 1 𝑚 + 1 𝑉 1 -2 𝑦 ℎ 1 𝑚 +1 𝑄 = 𝑚 2(2𝑚 + 1) 1 2𝐾 𝛥𝑃 𝐿 1 𝑚 ℎ 1 𝑚 +2 𝑊 𝑤(𝑟) = 2𝑉 1 - 𝑟 2 𝑅 2 𝑄 = 𝛱 8𝜂 𝛥𝑃 𝐿 𝑅 4 𝑤(𝑟) = 3𝑚 + 1 𝑚 + 1 𝑉 1 -𝑟 𝑅 1 𝑚 +1 𝑄 = 𝜋 𝑚 3𝑚 + 1 1 2𝐾 𝛥𝑃 𝐿 1 𝑚 𝑅 1 𝑚 +3 𝑣(𝑟) = 𝑅 1 2 𝛺 𝑅 2 2 -𝑅 1 2 𝑅 2 2 -𝑟 2 𝑟 𝐶 = 4𝜋𝜂 𝑅 1 2 𝑅 2 2 𝛺 𝑅 2 2 -𝑅 1 2 𝐿 𝑣(𝑟) = 𝑅 1 2 𝑚 𝛺 𝑅 2 2 𝑚 -𝑅 1 2 𝑚 𝑅 2 2 𝑚 -𝑟 2 𝑚 𝑟 2 𝑚 -1 𝐶 = 2 𝑚 +1 𝜋𝐾𝑅 1 2 𝑅 2 2 𝛺 𝑚 𝑅 2 2 𝑚 -𝑅 1 2 𝑚 𝑚 𝐿 𝑣(𝑟, 𝑧) = 𝑟𝛺 𝑧 ℎ 𝐶 = 𝜋 2 𝜂 𝛺 ℎ 𝑅 4 𝑣(𝑟, 𝑧) = 𝑟𝛺 𝑧 ℎ 𝐶 = 2𝜋 𝑚 + 3 𝐾 𝛺 ℎ 𝑚 𝑅 𝑚 +3 𝑊(𝑟, 𝜃) = 𝑟 𝛺 𝛥𝜃 𝜃 𝐶 = 2𝜋 3 𝜂 𝛺 𝛥𝜃 𝑅 3 𝑤(𝑟, 𝜃) = 𝑟 𝛺 𝛥𝜃 𝜃 𝐶 = 2𝜋 3 𝐾 𝛺 𝛥𝜃 𝑚 𝑅 3
Il existe des milieux qui se comportent comme des corps rigides tant que la contrainte n'atteint pas un certain niveau appelé seuil d'écoulement (yield stress) : en dessous du seuil aucun écoulement n'est observable dans l'échelle de temps choisie.

Exemples : peintures (ne coulent pas une fois déposées sur le support), pâtes dentifrice, pâte à pain, boues résiduaires, boues de forage (voir le cas des solutions de bentonite).

Origines du seuil d'écoulement : existence d'une structure tridimensionnelle au repos → cette structure 3D génère de l'élasticité et nécessite un certain niveau de sollicitation pour se déformer ou se détruire et permettre ainsi un écoulement.

Cas des dispersions (émulsions, suspensions, …) : les causes physiques peuvent être : [documentation TA Instruments] Comportement rhéologique à seuil de 2 sauces ketchup : (A) sauce pour emballage en verre, (B) sauce pour emballage en plastique [documentation TA Instruments] 4. 3.4. Examples Application à des pâtes cimentaires des modèles de Bingham (s = 11,4 Pa, ηpl = 2,9 Pa.s) et de Herschel-Bulkley (s = 6,6 Pa, k = 5,3 SI, n = 0,83) sur les rhéogrammes apparents après correction du glissement obtenus avec un entrefer mince. [Jarny S., thèse, 2004] Différents mécanismes susceptibles de produire une rhéofluidification : Comportement rhéoépaississant de suspensions de fumées de silice dans du polypropylène glycol -effet de la fraction massique [Raghavan R., 1996] Fumées de silice : elles se présentent sous forme d'agrégats impossible à dissocier sous forme de particules élémentaires.

→ Le comportement rhéoépaississant serait du à une transition ordre désordre.

Pour certains milieux, l'histoire mécanique (cisaillement, élongation, …) influe sur la nature actuelle de l'écoulement → la viscosité apparente ne dépend plus seulement de la contrainte ou du taux de cisaillement mais également du temps → la viscosité évolue sous cisaillement constant.

Le mode expérimental d'obtention des rhéogrammes revêt alors une importance capitale.

En général on procède de la manière suivante :

• On augmente 𝛾 ,

• On impose un palier en 𝛾 ,

• On diminue 𝛾 .

Les rhéogrammes obtenus ne sont pas univoques → ils dépendent du temps mis à les parcourir.

Parmi les milieux qui présentent cette particularité se trouvent les milieux thixotropes ou doués de thixotropie ; on peut la définir de la manière suivante :

• La viscosité apparente est une fonction décroissante de la durée d'écoulement pour une sollicitation donnée, maintenue constante dans le temps. Certains milieux présentent à la fois de l'élasticité (→ capacité à stocker puis à restituer de l'énergie mécanique, comme un solide de Hooke) et de la viscosité (→ capacité à dissiper de façon permanente de l'énergie, comme un fluide newtonien → sensibilité à la vitesse de sollicitation) : ces milieux sont dits viscoélastiques (en l'absence de seuil).

De nombreux milieux présentent ce type de comportement :

• Gels physiques ou chimiques : yaourt, …

• Polymères à l'état solide ou à l'état fondu,

• Métaux, au-delà d'une certaine température,

• Béton et béton précontraint,

• Bois,

• Certains tissus biologiques comme les tissus cérébraux,

• …

Parmi les manifestations du comportement viscoélastique on peut citer les phénomènes de fluage (ou retard) et relaxation qui se traduisent par des réponses différées à des sollicitations constantes (contrainte ou déformation).

La modélisation de la viscoélasticité est importante, en particulier, pour prévoir ses effets dommageables sur des éléments de structure.

Viscoelastic media

Dans le cas des polymères (fondus ou en solution) on peut répertorier un certain nombre de phénomènes mettant en jeu la viscoélasticité.

Gonflement en sortie de filière (extrusion des polymères) [Giesekus H., 1969] [Muller R., 2006]

𝐵 = 0,1 + 1 + 1 8 𝑁 1,𝑝 𝜏 𝑝 2 1 6
avec :

• N1 : première différence de contrainte normale (zz-rr>0) •  : contrainte de cisaillement dans le plan 𝑟 𝑧 Ces contraintes sont celles qui existent dans l'écoulement dans le tube.

Le terme 0,1 assure la continuité avec le cas newtonien (N1=0).

Le gonflement provient de 2 phénomènes viscoélastiques: • L'existence de différence de contraintes normales,

• La recouvrance de la déformation (contraction axiale et dilatation radiale).

Le gonflement peut atteindre, dans certains cas, 300 %.

Some experimental facts

Un milieu est linéaire si la correspondance fonctionnelle entre les histoires de contrainte et de déformation est linéaire (voir chapitre 2).

Conséquence : pour un milieu viscoélastique linéaire (VEL) on montre aisément que les fonctions de retard et de relaxation ne peuvent dépendre de l'amplitude de l'échelon de sollicitation.

• 𝜀 𝑡 = 𝜎 0 𝐽 𝑡 0 , 𝑡

• 𝜎 𝑡 = 𝜀 0 𝑅 𝑡 0 , 𝑡 Ces propriétés constituent un premier test de linéarité du milieu.

Linear viscoelastic media

Principe de superposition de Boltzmann

En utilisant la propriété de linéarité et en connaissant la fonction de retard du milieu il est possible de déterminer la réponse en déformation à une histoire de contrainte (uniaxiale) quelconque. Conséquence → la solution de tout problème viscoélastique linéaire unidimensionnel s'obtient à partir de la seule connaissance de la fonction de retard ou de la fonction de relaxation du milieu.

Dans le cas 1D le comportement de tout milieu VEL peut être représenté complètement et d'aussi près qu'on veut par un modèle rhéologique constitué exclusivement de ressorts et d'amortisseurs.

De plus ce modèle peut toujours se ramener à l'un des deux cas suivants :

• Modèle de Kelvin Voigt généralisé,

• Modèle de Maxwell généralisé.

Modèle de Kelvin-Voigt généralisé Modèle de Maxwell généralisé On choisit le type de modèle en fonction de la sollicitation.

E 0 E 1 E 2 E n  0   0  2  n 4.5.4.

Rheological models

La fonction de retard d'un modèle de KV généralisé s'écrit : est la réponse de l'amortisseur 0 (proportionnelle au temps),

𝐽 𝑡 0 = 0, 𝑡 = 1 𝐸 0 + 𝑡 𝜂 0 + 1 𝐸 𝑖
• 1 𝐸 𝑖 1 -𝑒 -𝑡
𝜃 𝑖 est la réponse de la i ème branche de KV (réponse exponentielle du solide viscoélastique).

Ce type de modèle donne lieu à une distribution discrète de temps de relaxation.

D'un point de vue expérimental on peut utiliser des méthodes d'ajustement (moindres carrés, …) afin de déterminer l'ensemble des coefficients du modèle.

Outre les essais de retard et de relaxation il existe un autre type d'expérience qui présente un intérêt fondamental, notamment dans le cas des polymères, qui consiste en une sollicitation dynamique périodique (le plus souvent harmonique).

Supposons, par exemple, qu'on impose une déformation de cisaillement harmonique ; le milieu étant linéaire, sa réponse en contrainte au-delà d'un délai transitoire très court sera également harmonique et de même fréquence.

On peut donc écrire :

𝜀 𝑡 = 𝜀 0 𝑐𝑜𝑠 𝜔𝑡 𝜏 𝑡 = 𝜏 0 𝑐𝑜𝑠 𝜔𝑡 + 𝛿 Pour caractériser certains milieux tels qu'un béton frais on utilise souvent des systèmes relativement simples servant à effectuer des contrôles plutôt qualitatifs que quantitatifs.

Les géométries d'écoulement sont souvent trop complexes pour donner lieu à une modélisation qui permettrait d'accéder à des caractéristiques intrinsèques.

4.6.

Experimental aspects 4.6.1.

Empirical methods
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Ces viscosimètres mettent en jeu des écoulements viscosimétriques à paroi mobile, le plus souvent en rotation : on trouve des géométries de type plans parallèles, cône-plan, cylindres coaxiaux, … La dimension de la géométrie doit être adaptée au milieu étudié, en particulier dans le cas de milieux hétérogènes.

Plateaux parallèles [Château X., 2007] • Concerne tous types de fluides, Les viscosimètres de type Poiseuille mettent en jeu des écoulements viscosimétriques sous l'effet de différences de pression (pertes de charges).

On trouve dans cette catégorie la rhéométrie capillaire et la viscosimétrie de type Ostwald, Ubbelohde ou Cannon → Dans le cas des polymères la première convient pour les polymères vierges ou chargés et la seconde pour les polymères en solution très diluée. 

•

  Continuum mechanics / Rigid solid mechanics / Materials engineering / Linear mechanics of materials ❖ Course material: • Handout « Rhéologie » (1) : Contents -Bibliography -Exercises • Handout « Rhéologie » (2) : Dictionnaire du Groupe Français de Rhéologie • Handout « Rhéologie » (3) : copy of the slides shown during the classes Online materials (Internet) : Campus -https://campus2.mines-ales.fr/course/view.php?id=920

F1❖

  Fluide visqueux newtonien : 𝜎 = -𝑝1 + 2𝜂𝜀

❖

  Modèle de Kelvin-Voigt (solide viscoélastique) Règle d'assemblage en parallèle : 𝜎 = 𝜎 1 + 𝜎 2 𝜀 = 𝜀 1 = 𝜀 2 On a : 𝜎 1 = 𝐸𝜀 1 𝜎 2 = 𝜂𝜀 2 d'où, en combinant l'ensemble des relations : 𝜂 𝑑𝜀 𝑑𝑡 + 𝐸𝜀 = 𝜂𝜀 + 𝐸𝜀 = 𝜎 qui constitue l'équation rhéologique d'un solide de Kelvin Voigt → elle permet de calculer la réponse à tout type de sollicitation (fluage, relaxation, oscillation, …) 2.2.4. Association of single models -rheological equation ❖ Modèle de Maxwell (fluide viscoélastique) Règle d'assemblage en série :𝜎 = 𝜎 1 = 𝜎 2 𝜀 = 𝜀 1 + 𝜀 2On a :𝜎 1 = 𝐸𝜀 1 𝜎 2 = 𝜂𝜀 2 d'où, en combinant l'ensemble des relations : constitue l'équation rhéologique d'un fluide de Maxwell → elle permet de calculer la réponse à tout type de sollicitation (fluage, relaxation, oscillation, …) Définition : un critère rhéologique correspond à un état de contrainte (ou de déformation) à partir duquel on observe un changement dans la loi de comportement du milieu. Considérons par exemple un essai de traction uniaxiale sur une éprouvette d'acier inoxydable ; L'essai démarre au point O : le matériau est au repos (état naturel) Tant que le point de chargement ne dépasse pas le point A le déchargement se fait par le même chemin (réversibilité) Si le point de chargement dépasse le point A (par exemple B) alors le déchargement se fait parallèlement à OA Si on atteint le point C il y a rupture de l'éprouvette O→A : domaine élastique, A→C : domaine plastique, C : rupture.2 transitions :• élasticité -plasticité,• plasticité -rupture. peut être associé un critère rhéologique.

  un critère de plasticité (relatif à la transition élasticitéplasticité) isotrope. Ce critère fut introduit par Henri Tresca (années 1864-1868) à la suite d'expériences sur le plomb. Ce critère s'écrit 𝐹 𝜎 = 𝑠𝑢𝑝 𝐼,𝐽 =𝐼,𝐼𝐼,𝐼𝐼𝐼 𝜎 𝐼 -𝜎 𝐽 -𝜎 0 , où 𝜎 𝐼 et 𝜎 𝐽 représentent les contraintes principales. On constate qu'on peut également écrire ce critère sous la forme : 𝐹 𝜎 = 𝜎 𝑀𝑎𝑥 -𝜎 𝑀𝑖𝑛 -𝜎 0 , où 𝜎 𝑀𝑎𝑥 et 𝜎 𝑀𝑖𝑛 représentent respectivement la plus grande et la plus petite contrainte principale et 𝜎 0 une caractéristique du milieu. On peut montrer que 0 correspond à la limite élastique en traction uniaxiale.

.2

  Le critère est indépendant de la contrainte principale intermédiaire. Physiquement cela signifie que la limite élastique du milieu est atteinte lorsque la contrainte de cisaillement sur une facette d'orientation quelconque atteint la valeur 𝜎 0 Ce critère étant isotrope, il peut être représenté graphiquement dans l'espace de dimension 3 des contraintes principales I, II et III par la surface de charge d'équation 𝐹 𝜎 = 𝐹 𝜎 𝐼 , 𝜎 𝐼𝐼 , 𝜎 𝐼𝐼𝐼 = 0 [d'après http://jgarrigues.perso.egimmrs.fr/elashtml/courselasnode17.html] Celle-ci a la forme d'un prisme à base hexagone régulier dSur le schéma ci-contre, 1, 2 et 3 représentent les 3 contraintes principales. ❖ Le critère de Von Mises Richard Von Mises

  𝑘 2. Ce cylindre est circonscrit au prisme de Tresca.

  [d'après http://lmafsrv1.epfl.ch/botsis/MDS/attributs/documents/TRANS-MdS-CH_15.pdf] Pour un milieu régi par le critère de Tresca la CI est constituée de deux droites parallèles à l'axe des abscisses. ❖ Critère de Coulomb [Schéma original de Mohr (1900) pour la détermination graphique d'une enveloppe linéaire de rupture (dite de Mohr-Coulomb) incluant la compression uniaxiale, le cisaillement pur et la traction uniaxiale] C'est un critère de type CI souvent utilisé pour les sols et les milieux granulaires, dans la gamme des sollicitations courantes. La CI est constituée de deux demi-droites symétriques inclinées d'un angle ±𝜙 par rapport à l'axe des abscisses et d'ordonnée à l'origine C C : cohésion, 𝜙 : angle de frottement interne du milieu Attention : la définition usuelle de 𝜙 est 𝜙 = 𝜋 2 -𝜙 𝑀𝑜ℎ𝑟 Ce critère peut aussi s'écrire : 𝐹 𝜎 = 𝜎 𝐼 -𝜎 𝐼𝐼𝐼 + 𝜎 𝐼 + 𝜎 𝐼𝐼𝐼 𝑠𝑖𝑛 𝜙 -2𝐶. 𝑐𝑜𝑠 𝜙 Deux cas particuliers :

  Celle-ci vaut 11,1.10 8 Pa pour une finesse de maillage égale à celle du maillage global. Celle-ci vaut 21,8.10 8 Pa pour la finesse de maillage local présentée ici. [d'après http://www.lfm.univ-metz.fr/meca_rupture_entaille/chapitre_4.pdf] Irwin (1948) a proposé de décrire la distribution des contraintes au voisinage d'un front de fissure par la relation : 𝜎 𝑖𝑗 = 𝐾 1 2𝜋𝑟 𝑓 𝑖𝑗 𝜃 K1 est le facteur d'intensité de contrainte qui fixe l'amplitude des contraintes pour une configuration de défaut donnée. Le critère de rupture (propagation du défaut) s'écrit alors : 𝐾 1 = 𝐾 1𝑐 où 𝐾 1𝑐 est une caractéristique du matériau nommé facteur d'intensité de contrainte critique.

•

  Quelques exemples en mécanique : o Plasticité : limite élastique -critères de plasticité -écrouissage -décharge élastique -certains alliages métalliques o Elastoplasticité o Elasticité non-linéaire : réversibilité -dissipation nulle -existence d'un potentiel -matériau bois o Hyperélasticité : certains élastomères -tissus biologiques (peau, muscles, poumons, …) o Viscoélasticité non-linéaire : polymères o Viscoplasticité : métaux à chaud o Milieu dépendant de : température, irradiation, changement de phase, vieillissement, hygrométrie -béton en cours de prise, polymères thermoplastiques (T>Tf), -2-M1 -EMA -2021/2022 -J.-C. Quantin / A.-S. Caro 57 Exemple : traction dans le domaine élastoplastique en HPP Cas d'une loi élastoplastique bilinéaire avec écrouissage [Thibaud S., 2006] • Dans le cadre de l'HPP on n'observe en revanche aucune non-linéarité géométrique Exemples de critères rhéologiques • Modèle élastique-parfaitement plastique (ou élastoplastique parfait ou modèle de Saint-Venant) [Cailletaud G., 2012] L'association d'un ressort et d'un patin en série (figure a ci-contre) produit un comportement élastique parfaitement plastique, modélisé en figure c (ci-contre). Le système ne peut pas supporter une contrainte dont la valeur absolue est plus grande que 𝜎 𝑦 . Pour caractériser ce modèle, il faut considérer une fonction de charge 𝑓 dépendant de la seule variable , et définie par : 𝑓 𝜎 = 𝜎 -𝜎 𝑦 Le domaine d'élasticité correspond aux valeurs négatives de f, et le comportement du système se résume alors aux équations suivantes : • si 𝑓 < 0, (𝜀 = 𝜀 𝑒 = 𝜎 𝐸 ) : on reste dans le domaine élastique • si 𝑓 = 0 et 𝑓 < 0, (𝜀 = 𝜀 𝑒 = 𝜎 𝐸 ) : on est en décharge élastique • si 𝑓 = 0 et 𝑓 = 0, (𝜀 = 𝜀 𝑝 ) : écoulement plastique Remarque : ce modèle est sans écrouissage (la contrainte reste constante au-delà du domaine élastique) Modèle rigide-plastique écrouissable de Prager [Cailletaud G., 2012] L'association d'un ressort et d'un patin en parallèle (figure b ci-contre) produit un comportement rigide-plastique écrouissable avec écrouissage dit cinématique linéaire, modélisé en figure d (ci-contre). Ce modèle devient élastoplastique si on ajoute un ressort en série.
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 1101 ; elle s'écrit : 𝑓 𝜎, 𝑋 = 𝜎 -𝑋 -𝜎 𝑦 o si 𝑓 𝜎, 𝑋 = 0 et 𝑓 = 0 : écoulement plastique, avec X  = et p H  =o si 𝑓 𝜎, 𝑋 < 0 : on reste dans le domaine élastique • Lors de la déformation plastique une partie de l'énergie est provisoirement stockée (dans le ressort) puis totalement restituée lors de la décharge • Le cas 𝐻 = 0 (module plastique) correspond au modèle de matériau rigide parfaitement plastique• Modèle élasto-plastique écrouissable (avec écrouissage cinématique -modèle de S t -Venant généralisé)[Suquet P., 2009] [Suquet P., 2009] Loi bilinéaire (voir TP ANSYS) : • 1 : énergie immédiatement récupérable par décharge • 2 : énergie dissipée dans le mouvement du patin • 3 : énergie stockée et non récupérable (le ressort H reste tendu après décharge) → origine des contraintes résiduelles ou internes Les conditions de charge/décharge s'expriment comme suit :• si 𝑓 𝜎, 𝑋 < 0, (𝜀 = 𝜀 𝑒 = 𝜎 𝐸 ) : on reste dans le domaine élastique • si 𝑓 𝜎, 𝑋 = 0 et 𝑓 𝜎, 𝑋 < 0, (𝜀 = 𝜀 𝑒 = 𝜎 𝐸 ) : on est en décharge élastique • si 𝑓 𝜎, 𝑋 = 0 et 𝑓 𝜎, 𝑋 = 0, (𝜀 = 𝜎 𝐸 + 𝜀 𝑝 ) : écoulement plastique • Modèle élastoviscoplastique (modèle de Bingham generalisé) [Cailletaud G., 2012] L'ajout d'un amortisseur au modèle précédent (figure a ci-contre) permet d'introduire une dépendance du temps. En l'absence du ressort en série (E) on aurait un modèle de comportement rigide viscoplastique. La présence de l'amortisseur induit un comportement dépendant du temps ou de la vitesse (voir Fig. b -réponse en traction uniaxiale). Dans l'assemblage en parallèle on a (𝜀 𝑣𝑝 : déformation viscoplastique) : • 𝑋 = 𝐻𝜀 𝑣𝑝 : contrainte dans le ressort de raideur H • 𝜎 𝑣 = 𝜂𝜀 𝑣𝑝 : contrainte dans l'amortisseur • 𝜎 𝑝 ≤ 𝜎 𝑦 : contrainte dans le patin Donc : 𝜎 = 𝑋 + 𝜎 𝑣 + 𝜎 𝑝 Il existe un domaine d'élasticité, dont la frontière est atteinte lorsque 𝜎 𝑝 = 𝜎 𝑦 On distingue 3 régimes de fonctionnement selon que 𝜀 𝑣𝑝 est nulle, >0 ou <0 • 𝜀 𝑣𝑝 = 0 𝜎 𝑝 = 𝜎 -𝐻𝜀 𝑣𝑝 ≤ 𝜎 𝑦 : charge ou décharge élastique • 𝜀 𝑣𝑝 > 0 𝜎 𝑝 = 𝜎 -𝐻𝜀 𝑣𝑝 -𝜂𝜀 𝑣𝑝 = 𝜎 𝑦 : écoulement viscoplastique • 𝜀 𝑣𝑝 < 0 𝜎 𝑝 = 𝜎 -𝐻𝜀 𝑣𝑝 -𝜂𝜀 𝑣𝑝 = -𝜎 𝑦 : écoulement viscoplastique Réponse en fluage (échelon de contrainte d'amplitude 𝜎 0 > 𝜎 𝑦 ) 𝜀 𝑣𝑝 = 𝜎 0 -𝜎 𝑦 𝐻 1 -𝑒𝑥𝑝 -𝑡 𝜏 𝑓 , avec 𝜏 𝑓 = 𝜂 𝐻 (temps caractéristique) -voir Fig. a ci-dessous [Cailletaud G., 2012] La figure b ci-dessus montre, dans le plan contrainte-déformation viscoplastique, les évolutions respectives de la contrainte interne 𝑋 et du seuil 𝑋 + 𝜎 𝑦 . Lorsque ce dernier rejoint la contrainte appliquée 𝜎 0 , la vitesse de déformation viscoplastique s'annule ➢ Questions : • Quand apparait la plasticité (déformations permanentes) ? → Critère de plasticité o limite d'élasticité o seuil de plasticité o dans l'espace des contraintes : ▪ domaine d'élasticité ▪ surface seuil de plasticité : la surface seuil initiale est définie par le critère de plasticité et donc la fonction seuil 𝐹 𝜎 (𝐹 𝜎 = 𝜎 é𝑞.𝑉𝑀 -𝜎 0 dans le cas du critère de Von Mises -voir 3.4.1) ▪ domaine de plasticité = domaine d'élasticité + surface seuil de plasticité • Comment se manifeste-t-elle ? → Loi d'écoulement plastique ➢ Cas de la plasticité 1D : • Quand apparait la plasticité (déformations permanentes) ? → Quand le seuil de contrainte y  du patin est atteint • Comment se manifeste-t-elle ? → elle est définie par l'équation rhéologique du modèle concerné ➢ Cas de la plasticité 3D : il faut imaginer un cadre théorique plus large et plus général 3.4. Management of plasticity Critères indépendants de la pression hydrostatique • Critère de Von Mises 𝐹 𝜎 = 𝐽 2 -𝑘 2 , ou 𝐹 𝜎 = 𝜎 é𝑞.𝑉𝑀 -𝜎 0 = 𝜎 𝐼 -𝜎 𝐼𝐼 2 + 𝜎 𝐼𝐼 -𝜎 𝐼𝐼𝐼 2 + 𝜎 𝐼𝐼𝐼 -𝜎 𝐼 2 Critère de Tresca 𝐹 𝜎 = 𝑠𝑢𝑝 𝐼,𝐽 =𝐼,𝐼𝐼,𝐼𝐼𝐼 𝜎 𝐼 -𝜎 𝐽 -𝜎 0 = 𝜎 𝑀𝑎𝑥 -𝜎 𝑀𝑖𝑛 -𝜎 0 Comparaison des 2 critères • Dans le plan traction-cisaillement : o Von Mises : 𝐹 𝜎, 𝜏 = 𝜎 2 + 3𝜏 2 1 2 -𝜎 0 o Tresca : 𝐹 𝜎, 𝜏 = 𝜎 2 + 4𝜏 2 1 2 -𝜎 0 o Ellipse dans les 2 cas (voir figure ci-contre) [Cailletaud G., 2012] • Dans le plan des contraintes principales 𝜎 𝐼 , 𝜎 𝐼𝐼 o Von Mises : ellipse o Tresca : hexagone irrégulier inscrit dans l'ellipse de VM (voir figure ci-contre) plasticity criteria independent of hydrostatic pressure Critères faisant intervenir la pression hydrostatique : nécessaires pour les matériaux pulvérulents, les sols, ou les matériaux présentant de l'endommagement (ouverture progressive de cavités) • Critère de Drucker-Prager (1952) o 0 ≤ 𝛼 ≤ dépend du matériau o 𝛼 = 0 : cas du critère de Von Mises o limite élastique en traction : 𝜎 0 o limite élastique en compression :

  Représentation du critère de Drucker-Prager, (a) dans l'espace des contraintes principales, (b) dans le plan I1-J [Cailletaud G., 2012] • Critère de Coulomb (ou Mohr-Coulomb) 𝐹 𝜎 = 𝜎 𝐼 -𝜎 𝐼𝐼𝐼 + 𝜎 𝐼 + 𝜎 𝐼𝐼𝐼 𝑠𝑖𝑛 𝜙 -2𝐶. 𝑐𝑜𝑠 𝜙 , avec 𝜎 𝐼𝐼𝐼 ≤ 𝜎 𝐼𝐼 ≤ 𝜎 𝐼

•

  Principe du travail plastique maximal : à chaque instant où la vitesse de déformation plastique est définie, la puissance réellement dissipée est supérieure ou égale à la puissance qui serait dissipée par toute contrainte admissible avec la même vitesse de déformation plastique 𝜎 𝑡 -𝜎 * : 𝜀 𝑝 𝑡 ≥ 0 , ∀𝜎 * ∈ 𝑆 𝑡 Ce principe admet 2 conséquences géométriques sur le domaine de plasticité : • règle de normalité Dans le cas d'un critère régulier (c'est-à-dire sans points anguleux ce qui est le cas du critère de Von Mises) la loi d'écoulement plastique associée obéit à la règle de normalité. Elle peut s'écrire sous la forme : • 𝐹 𝜎 = 0, 𝜀 𝑝 = 𝜆 𝜕𝐹 𝜕𝜎 𝜎 ; loi d'écoulement incompressible si critère est indépendant de la pression hydrostatique (cas du critère de Von Mises)
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 643 𝜆 ≥ 0 d'où : 𝑡𝑟 𝜀 𝑃 = 0 Si on introduit la vitesse de déformation généralisée 𝜀 définie par : 𝜎 é𝑞 < 𝜎 0 𝜀 ≥ 0 si 𝜎 é𝑞 = 𝜎 0 Puissance dissipée par plasticité 𝑃 = 𝜎 : 𝜀 𝑃 = 𝜎 0 𝜀 3.6.3. Von Mises standard material Viscoplasticité : • présence à la fois de viscosité et de plasticité • existence d'un seuil en deçà duquel on n'observe aucune déformation permanente • effet du temps ou de la vitesse • présence de réponse différée Milieux concernés (exemples) : • métaux (mise en forme à chaud) • suspensions (pâtes cimentaires, polymères chargés, …) • sols (argiles, …) • glace (mouvements des glaciers) • certains solides cristallins à haute température Loi d'écoulement : le modèle le plus courant est celui de Norton-Hoff et s'écrit 𝑠 = 2𝐾 3𝜀 𝑚 -1 𝜀 , avec • K : consistance du matériau • m : indice de sensibilité à a vitesse Remarques : • cette loi est incompressible : 𝑡𝑟 𝜀 = 0 • le matériau de Norton-Hoff est fluidifiant (voir chapitre 4) • le comportement viscoplastique et intermédiaire entre : o m=0 : comportement de solide plastique o m=1 : comportement de fluide newtonien 3.7. Viscoplasticity Poutre en flexion -rotule plastique [Albouy C., 2008] Matériau de Von Mises  : facteur de charge • Phase 2 : 𝑀 𝑧,𝑒𝑙 = 𝑓 𝑦 𝑏ℎ 2 Phase 3 : 𝑀 𝑧 = 𝑀 𝑧,𝑝𝑙 1 -Phase 4 : 𝑀 𝑧,𝑝𝑙 = 𝑓 𝑦 𝑏ℎ 2 Phase 1 : <el ; 𝜎 𝑚𝑎𝑥 < 𝑓 𝑦 -la section est entièrement dans le domaine élastique • Phase 2 : =el ; 𝜎 𝑚𝑎𝑥 = 𝑓 𝑦 sur les fibres extrêmes • Phase 3 : =u ; 𝜀 𝑚𝑎𝑥 = 𝜀 𝑢 ; la zone plastifiée correspond aux fibres pour lesquelles 𝜎 = 𝑓 𝑦 • Phase 4 : =pl ; 𝜎 = 𝑓 𝑦 ; sur toutes les fibres → la section droite est entièrement plastifiée 3.8. Applications 3.8.1. Flexural test of a beam -plastic ball joint concept [Frey F., 2000] • Lorsqu'une section de la poutre est totalement plastifiée il y a formation d'une rotule plastique. Celleci n'équivaut pas à une articulation idéale car le moment n'est pas nul • Le calcul de la zone concernée par la plastification dans ces conditions prévoit un profil parabolique selon : un barreau cylindrique On considère un arbre cylindrique en torsion (voir figure cicontre). Cet arbre est constitué d'un matériau métallique élastoplastique parfait (sans écrouissage) régi par le critère de Von Mises, la loi standard associée et de contrainte d'écoulement 𝜎 0 . L'arbre est un cylindre de rayon R et de longueur L encastré à une extrémité et soumis à un moment de torsion 𝑀 d'axe 𝑧 produisant une rotation unitaire 𝛼. Les conditions aux limites sont les suivantes : • encastrement en 𝑧 = 0 • chargement : moment 𝑀 en 𝑧 = 𝐿 Le problème est axisymétrique. On utilisera donc un repère et des coordonnées cylindriques. Hypothèse cinématique : toute section droite du barreau orthogonale à z  est animée d'un mouvement rigide de rotation autour de z  . Dans le cas élastique la solution est donc la suivante : cylinder -elastoplastic calculation • Plastification initiale Le critère de Von Mises donne : 𝜎 é𝑞 = 3𝜏 𝑟 = 3𝐺𝛼𝑟 ; la première plastification intervient donc pour le maximum de 𝜏 𝑟 c'est-à-dire pour r=R. Les valeurs seuil 𝛼 𝑒 et 𝑀 𝑒 de 𝛼 et 𝑀 sont alors : 𝛼 𝑒 = On poursuit le chargement au-delà du point 𝛼 𝑒 , 𝑀 𝑒 de la courbe de charge. On imagine que la plastification va gagner progressivement l'intérieur du barreau en respectant la symétrie de révolution. La zone plastique doit donc occuper un tube de rayon intérieur a (à déterminer) et de rayon extérieur R. La zone élastique correspond exactement au cas d'un barreau de rayon a en torsion (voir ci-dessus) o Solution ▪ zone plastique : 𝜏 𝑟 = 𝜎 0 3 pour 𝑎 ≤ 𝑟 ≤ 𝑅 ▪ zone élastique : 𝜏 𝑟 = 𝐺𝛼𝑟 pour 0 ≤ 𝑟 ≤ 𝑎 ▪ détermination de 𝑎 : en 𝑟 = 𝑎 la contrainte de cisaillement 𝜏 𝑟 = 𝑎 est continue car la limite élastique est atteinte ; de plus 𝜏 𝑟 = 𝑎 est proportionnelle à r, donc : 𝜏 𝑟 = 𝜎 0 calcul du moment : 𝑀 = 2𝜋 𝜏 𝑟 𝑟 2 𝑑𝑟 = un arbre élastoplastique parfait -profil, dans l'épaisseur, de la contrainte de cisaillement [Suquet P., 2009] • la courbe de charge à l'allure d'une courbe d'écrouissage alors que le matériau ne présente pas d'écrouissage : il s'agit d'écrouissage structurel (non d'écrouissage matériel) • la valeur limite du couple (moment) M lorsque  tend vers l'infini est : 𝑀 𝑢 = il reste en permanence un noyau élastique au voisinage de l'axe Torsion d'un arbre élastoplastique parfait -courbe de charge/décharge [Suquet P., 2009] 

  pour 𝑎 ≤ 𝑟 ≤ 𝑅 • le champ de contrainte résiduel est bilinéaire et il est dans le domaine élastique en tout point r • les champs de déplacement, contrainte et déformation résiduels valent : o 𝑢 𝑟𝑒𝑠 = 𝑢 𝐴 -𝑢 𝑒𝑙 o 𝜎 𝑟𝑒𝑠 = 𝜎 𝐴 -𝜎 𝑒𝑙 o 𝜀 𝑃 𝑟𝑒𝑠 = 𝜀 𝑃 • présence de déf. plastiques résiduelles : prévisibles • présence de contraintes élastiques résiduelles : doivent être prises en compte comme nouvel état initial dans les futurs chargements Torsion d'un arbre élastoplastique parfait -état de contrainte après décharge [Suquet P., 2009] Les essais uniaxiaux ne permettent d'atteindre qu'un point unique de la surface seuil (ou surface de charge ou frontière du domaine élastique) ➢ Essai de traction simple (ou uniaxiale) [d'après http://www.enseignement.polytechnique.fr/ mecanique/pages/mec551/amphi1_web.pdf]

•

  E : module d'Young •  : coefficient de Poisson (si on mesure également la déformation latérale) • e : limite élastique en traction (ou contrainte d'écoulement) • H : module plastique (si écrouissage linéaire) • n : coefficient d'écrouissage (selon le modèle adéquat -par exemple loi puissance Hollomon : 𝜎 = 𝐾𝜀 𝑛 )

  En faisant varier la vitesse d'essai on peut accéder à des informations concernant l'éventuelle viscoplasticité du matériau (voir figure ci-contre) Dans ce cas : 𝜀 3 > 𝜀 2 > 𝜀 1 Instrumentation : extensomètre à couteaux [d'après http://www.epsilontech.com/] Instrumentation : jauge de déformation unidirectionnelle [d'après http://www.intertechnology.com/Vishay/pdfs/Catalog_500.zip] ➢ Essai de torsion Torsion d'un barreau cylindrique Cet essai est pratiqué sur divers matériaux afin de déterminer le comportement en cisaillement. On considère un barreau cylindrique de rayon R et de longueur L (longueur de la partie calibrée de l'éprouvette), encastré à une extrémité et soumis à l'autre extrémité à un moment de torsion 𝑀 . 𝑀 est supposé tel que l'hypothèse des petites perturbations (HPP) est vérifiée. Le problème est axisymétrique ; Le modèle élastique prévoit que les sections droites de l'éprouvette sont animées d'un mouvement rigide de rotation autour de 𝑧 . Dans ces conditions on démontre que le champ de déplacement s'écrit 𝑢 = 𝛼𝑟𝑧𝜃 , avec 𝛼 rotation unitaire. Les champs de déformation et de contrainte dans un repère cylindrique (𝑟 , 𝜃 ,𝑧 ) sont de la forme : Matrices de déformation et contrainte écrites en repère cylindrique G est le module de Coulomb du matériau élastique isotrope. On peut alors calculer la contrainte de cisaillement et le moment résultant (dans le domaine élastique) : 𝜏 𝑟 = 2𝑀 𝜋𝑅 4 𝑟 et 𝑀 = 𝐺𝛼𝜋 𝑅 4 2 Si, dans le domaine élastique de l'éprouvette, on enregistre M en fonction de  on peut en déduire la valeur de G (ou Gz, par exemple si le matériau est orthotrope) ainsi que la courbe rationnelle 𝜏 𝑅 = 2𝑀 𝜋𝑅 3 en fonction de 𝛾 𝑅 = 2𝜀 𝜃𝑧 𝑅 = 𝛼𝑅. Lorsque cette courbe perd sa linéarité la limite élastique est atteinte à la paroi externe du barreau. Remarque : on peut également pratiquer des essais de torsion sur des tubes ; si le tube est suffisamment mince la contrainte de cisaillement est quasiment homogène dans l'épaisseur. Dans ce cas la contrainte de cisaillement moyenne vaut : 𝜏 𝑟 = 𝑀 2𝜋𝑅 2 𝑒 Essai de torsion sur aluminium (vidéo) http://instruct1.cit.cornell.edu/Courses/virtual_lab/virtual_tests/aluminum.shtml

•

  que soit le type d'essai envisagé le principe consiste (voir figure ci-dessous) à effectuer des trajets de chargement radiaux dans l'espace des contraintes, c'est-à-dire en suivant une direction fixe mais avec un module variable. On calcule, le long de ce trajet, la contrainte 𝛴 𝑡 et la déformation 𝐸 𝑡 et on trace la courbe (𝛴 𝑡 ,𝐸 𝑡 ). Pour la plupart des métaux la courbe débute par une zone linéaire suivie d'une deuxième zone non-linéaire. Afin de repérer le seuil de non-linéarité il est nécessaire de définir un « offset » (0,2 % de déformation pour certains métaux). Principe de détermination de la surface seuil [Suquet P., 2009] 3.9.2.2. Yield surface determination • efforts o 𝐹 : force de traction axiale o 𝑀 : moment (couple) de torsion • déplacements généralisés o 𝑞 : déplacement axial o 𝛼 : angle de torsion • contraintes / déformationso 𝜎 = 𝜎 𝑧𝑧 = expression des tenseurs de contrainte et de déformation dans le repère principal pour les contraintes (𝑟 ,𝜃 ,𝑧 ) Rhéologie -ECOMAP -2-M1 -EMA -2021/2022 -J.-C. Quantin / A.-S. Caro 91 Mesure du seuil de plasticité [Marigo J.-J., 2016] Mesure du seuil de plasticité (limite élastique) • définition d'un offset (arbitraire) • détection de la perte de linéarité Mesure de la déformation plastique [Marigo J.-J., 2016] Mesure de la déformation plastique • légère surcharge au-delà de l'offset • décharge des contraintes à 0 • mesure des différentes composantes des déformations résiduelles 𝛾 𝑝 et 𝜀 𝑝 1. On effectue un premier essai de traction simple en augmentant 𝜎 tout en maintenant 𝜏 à 0 et on arrête lorsqu'on note une perte de linéarité de la réponse. On obtient ainsi la limite élastique en traction simple 𝜎 𝑡 2. On fait la même chose en compression et on obtient ainsi -𝜎 𝑐 3. On charge en traction (ou compression) simple jusqu'à un certain niveau 𝜎 * ∈ -𝜎 𝑐 , 𝜎 𝑡 à 𝜏 = 0, puis on bloque 𝜎 à 𝜎 * et on exerce une torsion croissante dans un sens ou dans l'autre. On mesure la valeur de 𝜏 à partir de laquelle il y a perte de linéarité En procédant ainsi on obtient une famille de points expérimentaux situés sur la surface seuil. La figure ci-dessus donne une illustration relative à des expérimentations menées par Bui sur du cuivre pur. • l'état naturel sans contrainte 𝜎 = 0, est inclus dans le domaine initial d'élasticité • le domaine d'élasticité est convexe : si deux états de contrainte 𝜎 1 et 𝜎 2 sont situés dans le domaine d'élasticité alors e segment joignant les deux points représentatifs est également inclus dans le domaine d'élasticité • la confrontation des résultats expérimentaux de Bui (offset de 2.10 -5 ) sur le cuivre pur est bien meilleure avec le critère de Von Mises qu'avec celui de Tresca Ces essais sont utilisés le plus souvent comme moyen de contrôle. Ils mesurent la résistance à la pénétration d'indenteurs de formes diverses et fournissent des évaluations de la dureté superficielle des matériaux (majoritairement des métaux). La charge est constante et on mesure la surface ou la profondeur de l'empreinte laissée dans le matériau. Ils font le plus souvent l'objet de normes. Les principaux essais sont les : • Brinell o normes ISO 6506, ASTM E10 o bille d'acier ou de carbure de tungstène. Convient pour les produits plats d'épaisseur > 10 mm. La charge F est maintenue 15 s o 𝐻𝐵 = 2𝐹 𝜋𝐷 𝐷-𝐷 2 -𝑑 2 Brinell • Vickers o microdureté à macrodureté o normes ISO 6507, ASTM E92 et E384 o pyramide droite à base carrée en diamant d'angle au sommet 136°. On applique une charge F sur l'indenteur et on mesure la diagonale d de l'empreinte laissée après suppression de la charge. La dureté Vickers se calcule selon la relation : o 𝐻𝑉 = 0,189. 𝐹 𝑑 2 . La surface doit être rectifiée ou polie. A noter : des corrélations empiriques établissent une relation entre la dureté Vickers et la résistance à la traction 𝑅 𝑚 (en MPa) sous la forme 𝑅 𝑚 ≈ 3𝐻𝑉 (voir norme ISO 18265 :2013-12 pour différentes classes d'aciers). Concernant la dureté Brinell HBW on constate également expérimentalement (aciers) : 𝑅 𝑚 ≈ 3𝐻𝐵𝑊 3.9.3. Hardness tests • Rockwell o macrodureté (F>49,03 N) o normes ISO 6508, DIN 50103 et ASTM E18 o cône de diamant (Rockwell HRC) d'angle 120° ou bille en carbure (Rockwell HRB) o mesure de profondeur HRC [https://www.rocdacier.com/de-durete-brinell-vickers-rockwell/] HRB [https://www.rocdacier.com/de-durete-brinell-vickers-rockwell/] • Knoop o normes ISO 4545, ASTM E384 et JIS Z 2251 o alternative à l'essai Vickers o pyramide diamant allongée o utilisée pour les matériaux durs et fragiles (céramiques) Géométries essai Knoop [https://www.struers.com/fr-FR/Knowledge/Hardness-testing/Knoop#knoop-how-to] fluid sheared between two parallel plates with area S, distance h; one plate slides linearly along x1-axis and with a velocity U The shear rate (or velocity gradient) is 𝛾 = 𝑈 ℎ (constant in thickness if velocity profile is linear).

4. 1 • 1 2→

 11 .4. Laminar flow -Reynolds number A more complete study points out this transition laminar / turbulent is correlated to dimensionless Reynolds number of the flow: for 𝑅 𝑒 ≈ 2000 Reynolds number can be physically explained as a balance between inertial forces and viscosity forces: 𝑅 𝑒 = an increase in density promotes a turbulent flow • an increase in viscosity promotes a laminar flow Comment: molten polymers have quite low densities and quite high viscosities → during processing most of the time the flow is laminar (considering the usual velocities). Rhéologie -ECOMAP -2-M1 -EMA -2021/2022 -J.-C. Quantin / A.-S. Caro 108 In Newtonian flow unknowns are pressure p and velocity 𝑢 fields. We try to combine all equations to set up an equation with no other variables than p and 𝑢 . Equations: • equilibrium equation: 𝑑𝑖𝑣𝜎 + 𝜌 𝑓 -𝛾 = 0 • constitutive law: 𝑠 = 2𝜂𝜀 • relation between velocity 𝑢 and strain rate tensor 𝜀 : 𝜀 = 𝑔𝑟𝑎𝑑𝑢 + 𝑔𝑟𝑎𝑑𝑢 𝑡 • continuity equation: 𝑑𝑖𝑣𝑢 = 0 • canonical decomposition of stress tensor 𝜎 : 𝜎 = -𝑝1 + 𝑠 Combining all these relations the result is: -𝑔𝑟𝑎𝑑𝑝 + 𝜂 𝛥𝑢 + 𝜌 𝑓 -𝛾 = 0 This is called Navier-Stokes equation (see mathematical formula list).
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  𝑧𝐿 : linear pressure profile along flow direction. Pressure is constant in any section→ On the axis the velocity cannot be infinite therefore B must be zero (B=0) , combined with BC 𝑤 𝑟 = 𝑅 = 0, then the final solution:

  Navier-Stokes equation can be given in this case → a more general method has to be used The following steps are: a) Kinematic assumption → 𝑢 b) Strain rates calculation → 𝑢 → 𝜀 c) Stress calculation (using constitutive law) → 𝜀 → 𝑠 → 𝜎 d) Equilibrium equation → 𝑑𝑖𝑣𝜎 + 𝜌 𝑓 -𝛾 = 0 e) Taking account of boundary conditions → solution of the flow: p, 𝑢 4.2.3. Poiseuille flow in a pipe Calculation Assumptions are the same as for Newtonian case → 1D flow 𝑢 𝑟, 𝜃, 𝑧 = 𝑢 𝑟, 𝜃, 𝑧 = 0 𝑣 𝑟, 𝜃, 𝑧 = 0 𝑤 𝑟, 𝜃, 𝑧 = 𝑤 𝑟

L𝑑𝜏

  'histoire de contrainte peut être discrétisée comme une succession d'échelons d'amplitude d() appliqués à l'instant . La réponse à un tel échelon vaut : 𝑑𝜀 𝜏, 𝑡 = 𝑑𝜎 𝜏 𝐽 𝜏, 𝑡 , d'où : 𝜀 𝑡 = 𝐽 𝜏parties on obtient : 𝜀 𝑡 = 𝜎 𝑡 𝐽 𝑡, 𝑡 -Ceci constitue la formule de Boltzmann.Si on permute  et  on obtient la réponse en contrainte à une histoire quelconque de déformation : 𝜎 𝑡 = 𝜀 𝑡 𝑅 𝑡, 𝑡 -

Finalement2

  0 : amplitudes de contrainte et déformation •  : pulsation •  : déphasage La réponse est de même fréquence que la sollicitation mais déphasée.Pour la commodité des calculs on a recours aux nombres complexes → on associe aux grandeurs réelles des grandeurs complexes :𝜀 * 𝑡 = 𝜀 0 𝑒 𝑖𝜔𝑡 𝜏 * 𝑡 = 𝜏 0 𝑒 𝑖 𝜔𝑡 +𝛿 4.5.5.LVE medium response to an harmonic solicitation Par analogie avec un comportement élastique on introduit alors le module de cisaillement complexe : 𝐺 * 𝜔 = de G* dépend des propriétés du milieu, c'est-à-dire des paramètres du modèle rhéologique choisi (dans le cas 1D). Par ailleurs, G* dépend généralement de la fréquence de sollicitation car l'amplitude de la réponse en dépend ainsi que le déphasage.𝐺 * 𝜔 = 𝐺 ′ 𝜔 + 𝑖𝐺 ″ 𝜔 , avec :• 𝐺 ′ 𝜔 : module de conservation,• 𝐺 ″ 𝜔 : module de perte. On a, par ailleurs : 𝑡𝑔 𝛿 = 𝐺 ″ 𝜔 𝐺 ′ 𝜔 qu'on nomme parfois tangente de perte. Rhéologie -ECOMAP -2-M1 -EMA -2021/2022 -J.-C. Quantin / A.-S. Caro 154 Cas particuliers ❖ Solide de Hooke 𝐺 * 𝜔 = 𝐺 : module de Coulomb → 𝐺 ′ = 𝐺 𝐺 ″ de relaxation On définit également la viscosité complexe par analogie avec un fluide newtonien : 𝜂 * 𝜔 = 𝜏 * 𝑡 𝜀 * 𝑡 = 𝜂 ′ -𝑖𝜂′′.Calcul énergétique dans un essai harmoniqueLa puissance des efforts intérieurs par unité de volume (voir cours de MMC 1A) vaut :𝑃 = 𝜏. 𝜀 = -𝜏 0 𝜀 0 𝜔 𝑐𝑜𝑠 𝜔𝑡 + 𝛿 𝑠𝑖𝑛 𝜔𝑡 , D'où : 𝑃 = -𝜏 0 𝜀 0 𝜔 𝑐𝑜𝑠 𝜔𝑡 𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝛿 + 𝜏 0 𝜀 0 𝜔 𝑠𝑖𝑛 2 𝜔𝑡 𝑠𝑖𝑛 𝛿 𝐺 ′ 𝜔 𝑠𝑖𝑛 2𝜔𝑡 + 𝜔𝜀 0 2 𝐺 ″ 𝜔 𝑠𝑖𝑛 2 𝜔𝑡Si on calcule la puissance moyenne dissipée sur le quart de période [t=0 ; t=T/4d'évaluer le comportement rhéologique des milieux présentant de la viscosité sont extrêmement nombreux et il est impossible de tous les citer ; certains sont destinés à des caractérisations plutôt empiriques (cône d'Abrams, viscosimètre Brookfield, …) alors que d'autres sont plus sophistiqués et permettent de quantifier des grandeurs rhéologiques intrinsèques du milieu (, G', G'', seuil d'écoulement, …).

❖••❖

  Viscosimètre capillaire (voir également 4.1.6) -Sollicitation en cisaillement simple ( → 10 6 Les grandeurs brutes sont calculées à la paroi du capillaire • 𝜏 𝑟 = 𝑅 = 𝑅𝛥𝑃 2𝐿 • 𝛾 𝑎 𝑟 = 𝑅 = 4𝑄 𝜋𝑅 3 : cisaillement apparent (cas newtonien) Ces grandeurs font l'objet de corrections : ❖ Weissenberg-Rabinowitsch (fluide non-newtonien) 𝛾 𝑐𝑜𝑟𝑟𝑖𝑔 é 𝑟 = 𝑅 = Glissement à la paroi (Mooney) • Cisaillement hétérogène → déconseillé pour des fluides dépendants du temps (thixotropes, mélanges, …) ❖ Essais oscillatoires -balayage en déformation [documentation Rheometrics Scientific] 1. Un balayage en déformation est habituellement la première étape dans la caractérisation d'un milieu viscoélastique dans le domaine linéaire, 2. Un balayage en déformation permet de mettre en évidence l'étendue du domaine viscoélastique linéaire : les caractéristiques rhéologiques sont indépendantes de la déformation jusqu'à un certain niveau critique, 3. L'incorporation de charges abaisse souvent le niveau critique, 4. Le balayage en déformation doit être réalisé à différentes fréquences et T° car le niveau critique de déformation dépend de la fréquence et de la T°. Rhéologie -ECOMAP -2-M1 -EMA -2021/2022 -J.-C. Quantin / A.-S. Caro 180 ❖ Polymères -règle de Cox Merz [documentation Rheometrics Scientific] La règle de Cox Merz est purement empirique et ne repose sur aucun fondement théorique. Elle fonctionne bien pour certains polymères. Elle consiste à dire que la viscosité dynamique pour une valeur de 𝛾 donnée est égale au module de la viscosité complexe pour 𝜔 = 𝛾 . → 𝜂 𝛾 = 𝜂 * 𝜔 𝜔 =𝛾 • [Senouillet L., 2005] Senouillet L. et al., Approche numérique des écoulements sanguins maternels dans le placenta humain, La Houille Blanche, N°4 (Juillet-Août 2005), no 4, 60-65 • [Suquet P., 2009] Suquet P., Rupture et plasticité, Cours Ecole polytechnique, MEC 551, Palaiseau • [Thibaud S., 2006] Thibaud S., Introduction à la simulation de phénomènes non-linéaires avec LS-DYNA, Formation LS-DYNA / Introduction à l'utilisation d'un code EF non-linéaire • [Thomann M., 2005] Thomann M., Connexons par adhérence pour les ponts mixtes acier-béton, Thèse Ecole Polytechnique Fédérale de Lausanne

  Beteille qui est une CI. L'équation est donnée par 𝐹 𝜎 = 𝜏 2 + 𝛼𝜎 2 + 𝛽𝜎 + 𝛾, où ,  et  sont trois paramètres déterminés à partir de trois essais de traction simple, compression simple et cisaillement simple (dans chaque cas le plus grand cercle de Mohr doit, dans l'état limite, être tangent à la CI). 𝜎 11 -𝜎 22 𝑓 𝑡 + 𝜎 11 + 𝜎 22 + 𝜎 11 𝜎 22 qui traduit le fait que le critère n'est pas violé (cette relation est exprimée dans un repère quelconque pour les contraintes).

	• 𝜙 = 0, 𝐶 ≠ 0 : milieu dit purement cohérent (métaux) → on retrouve le critère de ❖ Courbe intrinsèque du béton Dans certaines réglementations le béton armé précontraint est régi par la représentation de Chalos et On peut établir les relations suivantes : 𝛼 = 1 -𝑓 𝑐 𝑓 𝑡 4𝜏 𝑟 2 ; 𝛽 = -𝑓 𝑐 -𝑓 𝑡 2 ; 𝛾 = -𝜏 𝑟 2 𝑓 𝑐 𝑓 𝑡 𝑓 𝑐 +𝑓 𝑡 2 4 où ft, fc et r représentent respectivement les résistances à la traction simple, à la compression simple et au cisaillement simple. Remarque : en béton armé, par convention 𝜎 ≥ 0 en compression. On peut établir également la relation suivante : 𝜏 12 2 ≤ 𝜏 𝑟 2 𝑓 𝑐 𝑓 𝑡 ❖ Le critère de Hill C'est un critère de plasticité anisotrope convenant bien, par exemple, aux pièces métalliques anisotropes (tôles d'acier laminées ou embouties). Dans un repère quelconque pour les contraintes son expression est la suivante : 𝐹 𝜎 = 𝐹 𝜎 11 -𝜎 22 2 + 𝐺 𝜎 22 -𝜎 33 2 + 𝐻 𝜎 33 -𝜎 11 2 + 2𝐿𝜎 12 2 + +2𝑀𝜎 23 2 + 2𝑁𝜎 13 2 -1 F, G, H, L, M et N sont 6 paramètres scalaires caractéristiques du milieu qui peuvent être 𝑓 𝑐 -On citera, principalement, deux critères de plasticité. déterminés par un nombre d'essais suffisants.
	Tresca

  𝑃𝜎 11 + 𝑄𝜎 22 + 𝑃 + 𝑄 𝜎 33 -1

	3.5.2. Principaux critères anisotropes Isotropic plasticity criteria dependent of hydrostatic pressure • Critère de Hill o généralise le critère de Von Mises o comportement identique en traction et compression 𝐹 𝜎 = 𝐹 𝜎 11 -𝜎 22 + +2𝑀𝜎 23 2 + 𝐺 𝜎 22 -𝜎 33 2 + 2𝑁𝜎 13 2 -1 • Critère de Tsai (ou Tsai-Wu) o généralise le critère de Hill o comportement différent en 𝐹 𝜎 = 𝐹′ 𝜎 11 -𝜎 22 2 + 𝐺′ 𝜎 22 -𝜎 33 + +2𝑀′𝜎 23 2 + 2𝑁′𝜎 13 2 + 3.5.3. Anisotropic plasticity criteria	2 + 𝐻 𝜎 33 -𝜎 11 2 + 𝐻′ 𝜎 33 -𝜎 11	2 + 2𝐿𝜎 12 2 2 + 2𝐿′𝜎 12 2
	traction et compression		

• Critère de Raghava (1973 -polymères) 𝐹 𝜎 = 𝜎 𝐼 -𝜎 𝐼𝐼 2 + 𝜎 𝐼𝐼 -𝜎 𝐼𝐼𝐼 2 + 𝜎 𝐼𝐼𝐼 -𝜎 𝐼 2 + 2 𝜎 𝐼 + 𝜎 𝐼𝐼 + 𝜎 𝐼𝐼𝐼 𝐶 -𝑇 -2𝐶𝑇 avec C et T respectivement valeurs absolues des limites élastiques en compression et traction

  Matériau standard : on dit qu'un matériau élastoplastique est standard(Radenkovic, 1962) si, sa fonction de charge étant convexe, sa règle d'écoulement plastique s'en déduit par la règle de normalité. Pour un tel matériau on dira également que la règle d'écoulement est associée au critère.

	3.6.1.	Convexity and normality rule

  shear stress appears but no Normal Stress Differences: this expresses the lack of elasticity in the medium.

	Osborne Reynolds
	(1842-1912)
	Expérience de Reynolds
	[Reynolds O., 1883]

•

  Le matériau retrouve son comportement initial après un temps de repos suffisamment long.La thixotropie est liée à des modifications sous cisaillement à l'échelle de la microstructure du milieu, ces modifications n'étant pas instantanées mais réversibles.La rhéopexie correspond elle à une augmentation de la viscosité sous cisaillement constant. Exemples : ciments, mucus bronchique, yaourt (partiellement thixotrope).Pour établir le rhéogramme d'un milieu thixotrope il faut un temps tc court (le milieu ne doit pas évoluer sous cisaillement), un temps d'attente ta jusqu'à stabilisation de la contrainte et un temps td de décharge suffisamment court.

	4.4.2.	Time-dependent behaviour -Thixotropy				
		référence		référence		référence		référence
								
		t c	t a	t c	t a	t c	t a	t c	t a
		t d	 	t d	 	t d		t d	
		tc long, ta court		tc long, ta long		tc long, ta=0		tc très long, ta quelconque

Prisme de bois pour essai mécanique [d'après http://www.giref.ulaval.ca/~deteix/stage_2009/Modelisation_du_comportement_mecanique_du_bois_en_sechage.pdf et Moutee M, thèse, 2006]

Iso Von Mises (global)Iso Von Mises au voisinage du défaut

Essais de traction simple sur un matériau viscoplastique à différentes vitesses de déformation[Maitournam H., 2012] 

Essai de compression sur roche [d'après http://lmrwww.epfl.ch/fr/exp/Comp_uniax_fr.pdf]

Cas de l'essai de traction-torsion Eprouvette de traction-torsion[Marigo J.-J., 2016] 

Méthodologie possible : Mesure de la déformation plastique (en rouge le trajet de charge)expérimentations de Bui H.D. [Evolution de la frontière du domaine élastique des métaux avec l'écrouissage plastique et le comportement élastoplastique d'un agrégat de cristaux cubiques. Mémorial de l'Artillerie Française, 1, 141-165 (1970)] [Marigo J.-J., 2016]
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Poiseuille flow in a pipe. Velocity field with fountain flow; (a) flow geometry, (b) Finite Element Method calculation[Perchat E., thèse, 2000] 

Différents artefacts possibles en géométrie plan-plan et effets sur la courbe d'écoulement[Château X., 2007] 

Essai de traction-torsion [Maitournam H., 2012] Essai de traction biaxiale [Maitournam H., 2012] Essai triaxial [Maitournam H., 2012] 3.9.2.

Multiaxial tests 3.9.2.1.

Main types of tests

Confrontation avec des critères de plasticité isotropes • cgs unit: Stokes (St) or cm 2 .s -1 (used for example for motor oils). Experimental fit -Cross law -hematocrit 50 % [Achab L., 2005] Evolution of blood viscosity depends on several parameters:

• temperature • the deformability of red blood cells • hematocrit (percentage of red blood cells in blood).

Average velocity V calculation

+1

Comment: for m=1 results are the same as for Newtonian flow. (d'après Agassant J.-F. et al., 1996) Velocity profile evolution depending on the value of pseudoplasticity index m; when m decreases velocity profile flattens itself and the ultimate case m=0 corresponds to a plug flow (velocity discontinuity at the wall of the pipe). Dans le cas d'un fluide newtonien la surface libre remonterait en périphérie (effets inertiels de centrifugation).

Cisaillement d'un fluide polymère viscoélastique entre deux disques coaxiaux et parallèles -génération d'un profil de pression en cloche du à l'étirement des chaînes (étirement du au cisaillement d'intensité variable selon la distance à l'axe). Si on effectue, sur un polymère, une expérience de cisaillement simple on constate qu'à sollicitation constante il y a évolution de la déformation du matériau au cours du temps et ceci quel que soit le niveau et l'histoire de sollicitation.

Pour identifier le comportement rhéologique de tels milieux on pratique des essais : les plus courants sont les essais de retard et de relaxation.

Essai de retard -fonction de retard Essai de retard suivi d'un essai de recouvrance Essai uniaxial (traction, compression ou cisaillement).

La sollicitation est un échelon de contrainte appliqué à l'instant t0 et on observe la réponse en déformation du milieu à l'instant t.

Généralement on observe une réponse instantanée (élasticité du milieu) suivie d'une réponse différée (viscosité).

On écrit alors : 𝜀 𝑡 = 𝜎 0 𝐽 𝑡 0 , 𝑡, 𝜎 0 , où J est la fonction de retard.

Time-dependent behaviour

Essai de relaxation -fonction de relaxation Essai de relaxation suivi d'un essai d'effacement

Essai uniaxial (traction, compression ou cisaillement).

La sollicitation est un échelon de déformation appliqué à l'instant t0 et on observe la réponse en contrainte du milieu à l'instant t.

Généralement on observe une réponse instantanée (élasticité du milieu) suivie d'une réponse différée (viscosité).

On écrit alors : 𝜎 𝑡 = 𝜀 0 𝑅 𝑡 0 , 𝑡, 𝜀 0 , où R est la fonction de relaxation.

Remarque : ces essais donnent des informations sur le comportement du milieu viscoélastique mais ne permettent pas de le décrire complètement.

Si on effectue le même calcul sur les 4 premiers quarts de période on obtient :

On voit que :

• Le terme 𝑃 𝑒 , proportionnel à G', change de signe à chaque de période : cela correspond à de l'énergie alternativement stockée puis restituée dans la part élastique du milieu → d'où la dénomination module de conservation pour G',

• Le terme 𝑃 𝑑 , proportionnel à G'', est toujours positif : cela correspond à de l'énergie continuellement dissipée dans la part visqueuse du milieu → D'où la dénomination module de perte pour G''. Pour un fluide newtonien : graisses, adhésifs, mayonnaise, …).

Basse viscosité → Géométrie cône plan 6 cm ou cylindres coaxiaux à double entrefer

Viscosité moyenne → Géométrie cône plan 4 cm ou cylindres coaxiaux de diamètres moyens Viscosité élevée → Géométrie cône plan 2 cm ou cylindres coaxiaux de petit diamètre Remarque : l'entrefer doit toujours être au moins 10 fois supérieur à la taille des structures du milieu (par exemple pour une suspension on prend comme référence les plus grosses particules).

Artefacts de mesure

❖ Effets de paroi Effet de paroi [Flaud P., 2007] A proximité des parois on peut avoir des phénomènes de glissement (pâtes cimentaires, suspensions, …) ou des phénomènes de sous concentration : dans les 2 cas les interactions fluide-parois diminuent et la viscosité est perçue plus faible qu'elle n'est en réalité.

Le glissement peut expliquer des résultats dépendants de la géométrie utilisée.

Une solution est de rendre la paroi rugueuse (stries, papier de verre, …).

Une autre est d'utiliser une géométrie de type « vane ».

Paroi rugueuse [Flaud P., 2007] Géométrie vane [START_REF] Jarny | au contact du cylindre intérieur : ceci est caractéristique d'un comportement à seuil[END_REF] Rhéologie Crémage [Flaud P., 2007] Les géométries exposées précédemment sont destinées aux fluides ; il existe également des géométries destinées aux solides, principalement viscoélastiques.

❖ Torsion rectangulaire  : déformation, e: épaisseur échantillon, L : longueur échantillon, b : largeur échantillon,  : angle de rotation,  : déphasage entre C et . [Kossentini K., thèse, 2003] → Caractérisation viscoélastiques de solides : G', G'' en essais oscillatoires (fonction de la fréquence, de la déformation et de la température) ; essais de retard ou relaxation.

Évolution de G' et de tg() en fonction de la température pour un mélange PE/PS 80/20 % (essai oscillatoire à 1 rad.s -1 ) [Kossentini K., thèse, 2003] 4.6.4. Other geometries ❖ Cisaillement stationnaire

Objectif

• Mesurer la viscosité dynamique des fluides,

• Simuler un procédé à vitesse de cisaillement connue,

• Caractériser l'évolution structurelle en écoulement,

• Quantifier la réversibilité des déformations.

Protocole

• Faire des tests préliminaires pour fixer la plage de contrainte (ou vitesse) à explorer,

• Rampes croissante-constante-décroissante de contrainte (ou vitesse) linéaires ou logarithmique, • Écoulement par paliers à l'équilibre pour les mesures de viscosité stationnaire en cas de comportement rhéofluidifiant ou rhéoépaississant.