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Hybridized guard particles for Adaptive Particle Refinement

The Adaptive Particle Refinement (APR) is a promising local refinement technique, which results in a coupling between two overlapping SPH domains. Each domain is a uniform particle distribution composed by either larger particles (mothers) or smaller particles (daughters). The coupling is mediated by guard particles that act as boundary conditions at the interface between the two domains. An oscillating 2D channel test case is simulated. It is found that the APR method has a lack of robustness in Lagrangian simulations of flows going back and forth. The coupling appears to be particularly sensitive to the guard particles layout. The present paper aims at improving the APR method robustness, performing a guard particles selfregulated resettlement to maintain a suitable tesselation. Therefore, the guard particles are hybridized with both interpolated and SPH computed fields. This method is called Hybridized Adaptive Particle Refinement (HAPR). At first, a 2D shock tube test case is performed for APR and HAPR methods validation, with satisfactory results in comparison with both analytic and fully-refined SPH solutions. Then, the oscillating channel test case is used for APR and HAPR methods comparison. The proposed remodeling improves the robustness.

I. INTRODUCTION

Smoothed-particle hydrodynamics (SPH) simulations often rely on uniform particle distributions and constant particle sizes [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. This leads to large simulations with many particles and long run times. Thus, local refinement techniques [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF][START_REF] Shibata | The overlapping particle technique for multi-resolution simulation of particle methods[END_REF] have been developped to concentrate fine spatial resolutions in identified areas of interest [START_REF] Feldman | Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems[END_REF][START_REF] López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF]. One of the most up to date works is the Adaptive Particle Refinement (APR) method exposed by L. Chiron et al. [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]. The authors have adapted a refinement approach used in mesh-based methods to the SPH formalism, notably by transposing the concept of guard cells into the APR [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]. The guard cells act as boundary conditions at the interfaces between two grids of different refinement levels. Their work results in a coupling between two SPH domains composed by either larger particles (mothers) or smaller particles (daughters). Nevertheless, it has been shown by authors in previous paper (J. Chanéac et al. [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]) that Lagrangian simulations of flows going back and forth can lead to daughter particle quantity divergence and hasty ending.

The present paper aims at improving the APR robustness. As illustrated for classical SPH simulations by A. Colagrossi et al. [START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF], a spurious particle motion is common occurence when the particle distribution is anisotropic and disordered. Therefore, particle resettlement strategies that allow a drastic reduction of the resulting numerical noise have been proposed [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF][START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF][START_REF] Marongiu | Méthode numérique lagrangienne pour la simulation d'écoulements à surface libre : application aux turbines Pelton[END_REF]. As an alternative, it is proposed to adapt the calculation of the guard fields to tame the divergence observed in [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]. From [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF], the guard daughters fields are interpolated from the SPH mothers. As depicted by [START_REF] Colagrossi | Particle packing algorithm for SPH schemes[END_REF], particle resettlement is an intrinsic feature of SPH schemes. Contrary to the SPH particles, the guards can not adjust their relative positions. As daughters can alternatively be guard or SPH, a gradual dispersion error increases until the simulation crashes. Therefore, it is tested to hybridize the guard daughters fields calculation with both interpolated and SPH computed fields. This yields robustness recovering for APR. The resulting method is called Hybridized Adaptive Particle Refinement (HAPR).

At first, the governing equations are summarized. The numerical method is then presented, including the basics of the APR technique. Then, a remodeling of its transition zone is proposed. For validation purpose, two benchmark 2D test cases are presented: (i) an Eulerian simulation of a shock tube that is well reproduced in comparison with analytic solution. (ii) A Lagrangian simulation of an oscillating 2D channel that emphasizes the APR limitation. Finally, proposed improvements are presented and applied to these test cases.

II. NUMERICAL METHOD

A. Governing Equations

The set of non-linear equations based on the physical principles of conservation of mass and momentum are used to describe the dynamic of water, considered as a weaklycompressible inviscid fluid. Here, following in the footsteps of [START_REF] Pineda | Comparison of numerical results using a barotropic and a non-isentropic EOS in SPH-ALE method[END_REF], they are presented in conservative differential form as

     ∂ρ ∂t + ∇ • (ρv) = 0 , ∂ρv ∂t + ∇ • (ρv ⊗ v) + ∇ • (pI n ) = S , (1) 
where ρ is the density, p the pressure, v the velocity vector, S the vector of external forces, and I n the unit tensor with n = 1, 2, 3 denoting the space dimension. The system is closed with the so-called Tait equation of state [START_REF] Tait | Report on some of the physical properties of fresh water and of sea water[END_REF]:

p(ρ) = ρ 0 c 2 0 γ ρ ρ 0 γ -1 + p 0 , (2) 
where c 0 is the sound speed, γ is taken equal to 7, ρ 0 and p 0 denote the reference density and pressure, respectively. The speed of sound is conveniently reduced to obtain a larger computational timestep.

B. SPH-ALE formalism

The Arbitrary Lagrange Euler (ALE) formalism is based on a conservative formulation, where the frame of reference follows an arbitrary transport velocity v 0 . Using the conservative formulation of ( 1)-( 2) written in ALE form and following Vila's work [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF] who adapted the Godunov's scheme to SPH-ALE formulation, we obtain the resulting system of equations [START_REF] Marongiu | Méthode numérique lagrangienne pour la simulation d'écoulements à surface libre : application aux turbines Pelton[END_REF] (without boundary terms),

                                             dx i dt = v 0 ,i , dω i dt = 2ω i j∈Di ω j (v 0 ,ij -v 0 ,i ) • ∇ i W ij , d dt (ω i ρ i ) = -2ω i j∈Di ω j ρ E,ij (v E,ij -v 0 ,ij ) • ∇ i W ij , d dt (ω i ρ i v i ) = ω i S i -2ω i j∈Di ω j [p E,ij I n + ρ E,ij v E,ij ⊗ (v E,ij -v 0 ,ij )] ∇ i W ij . (3) 
The first two equations are due to the ALE formalism. They evolve the position x i and the volume ω i of the particle i. In the last two equations, the index E implies a decentered numerical quantity computed at the middle point between a line that connects two particles i and j. The notation W ij denotes the smoothing kernel function, with h the so-called smoothing length. In this work, the kernel function used is a Wendland function C 4 applied with a radius 2 h. The particle size ∆x defines an average spacing between the particles and so the number of calculation points in the computational domain.

Like most authors a constant ratio h/∆x = 1.2 is kept, which works well in practice. The SPH scheme is advanced in time by means of the Runge-Kutta third order temporal scheme.

C. Adaptive Particle Refinement (APR) technique

L. Chiron et al. [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF] have adapted the AMR refinement approach used in mesh-based methods to the SPH formalism, by transposing the main concepts of prolongation, restriction and guard cells into the APR. The resulting method is illustrated Fig. 1 in 2D for two discretization levels.

The Level 0 is discretized with mothers, while the tesselation of Level 1 is done by daughters. For the sake of W ij operator robustness in (3), the smoothing length ratio between adjacent particles is limited by 3%. Otherwise, partial reflections of acoustic waves occur at the coarse/fine interfaces [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. Hence, guard particles are used not to deal with direct mother-daughter SPH interactions, while updating their temporal derivatives. In Level 0, the kernel function support of SPH mothers (denoted by blue dots) is completed with guard mothers (denoted by blue crosses). The restriction refers to extrapolating the SPH daugher properties to the guard mothers. The conservative variables of the guard mothers are calculated by Shepard interpolation [START_REF] Shepard | A two-dimensional interpolation function for irregularly-spaced data[END_REF] applied to SPH particles (denoted by dots). In particular, guard mothers in Level 1 are transported following the interpolated velocity field received. Conversely, guard daughters (depicted by red crosses) are created in Transition 0-1 to complete the kernel function support of SPH daughters (depicted by red dots) located in Level 1. The prolongation is the opposite process of restriction. The fields of the guard daughters are defined by applying Shepard interpolation to the SPH particles. This results in a coupling between two SPH domains composed by either SPH mothers or SPH daughters, where guard particles act as boundary conditions. The APR region is defined as the area where daughters are required, i.e. Transition 0-1 ∪ Level 1. It thus gathers two zones, namely the transition zone (Transition 0-1) and the refined zone (Level 1). The daughters going out of the APR region are deleted at the boundary between Level 0 and Transition 0-1. Therefore, the number of daughters is non-constant, unlike the amount of mothers.

The refinement process involves initializing the variables (position, mass, etc) of the new daughters, while preserving mass and momentum [START_REF] Feldman | Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems[END_REF]. A mother is split into M daughters, in accordance with the cartesian pattern proposed by Reyes López et al. [START_REF] López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF]. A mother that is refining is then called splitting mother. For two-dimensionnal simulations, a splitting mother is refined into four daughters (M = 4) placed at the corner of the splitting-mother-centered square. At the end of the refinement process, the spacing between daughters is ∆x d = ε∆x m , where ∆x m is the initial spacing between mothers. The smoothing length of a new daughter is then defined regarding the smoothing length of its splitting mother, as h d = αh m . In what follows, the separation parameter ε = 0.5 and the smoothing ratio α = 0.5 are considered. Consequently, transition zone width should be longer than 2 h m to ensure the completeness of Wendland kernel function support and accurate gradients reconstruction for the SPH particles. In addition, the radius of the Shepard interpolation function support is set as 2 h d for all guard particles. This choice is motivated by limiting the amount of guard mothers neighbours, i.e. minimizing CPU costs. Furthermore, the mass of each daughter (m d ) d≤M is calculated as a fraction of the splitting mother mass m m , using:

m d = λ d m m , where M d=1 λ d = 1 . ( 4 
)
The determination of the mass repartition (λ d ) d≤M relies on a minimization problem solving, like in J. Feldman et al. [START_REF] Feldman | Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems[END_REF].

The APR technique has been implemented on ASPHODEL, the solver developed within the Research & Development Department of ANDRITZ Hydro. Its implementation is slightly at variance with the APR technique, as presented.

• The properties of the guard particles are calculated by either Moving Least Squares (MLS) method if the MLS matrix is well-conditioned, or Shepard interpolation otherwise [START_REF] Renaut | Toward a higher order SPH-ALE method based on Moving Least Squares method[END_REF]. That method is of order 1, which means exact for constant and linear functions approximation. • The radius of the interpolation function support is set as 2 h m for all guard particles. This choice is motivated by raising the number of neighbors of guard particles, i.e. strengthening stability. Besides, the transition zone width is set consistently as the multiplication of 4.7 by the maximal smoothing length of a mother, which is longer than the lower bound 2 h m . The 4.7 value will be justified from (8) as 2(µ Crea. + µ Guard Halo + µ Hybrid ). • Standard ASPHODEL settings lead to the primitive variables reconstruction by the Riemann solver [START_REF] Marongiu | Méthode numérique lagrangienne pour la simulation d'écoulements à surface libre : application aux turbines Pelton[END_REF]. Coherently, it has been decided to deal with the primitive variables interpolation to set the guard particles properties. • A mother-to-daughter volume repartition is here studied, contrary to (4) where the mass is distributed. The repartition (λ d ) d≤M is thus applied for the guard daughter volume initialization, whereas the density is interpolated over the SPH particles. Following Reyes López et al. [START_REF] López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF], an equirepartition of the volume is used.

∀d ≤ M, λ d = λ[M ] = 1/M . (5) 
Hence, for simplicity, the determination of (λ d ) d≤M does not rely on a minimization problem solving. • The evolution of SPH particle volumes is replicated onto the guard particle volumes. The divergence of the transport velocity is thus interpolated to make the guard particles volumes evolve dynamically. 

III. NUMERICAL VALIDATIONS FOR INVISCID FLOW

Following the stress testing of [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF], two benchmark test cases in 2D are presented: (i) an Eulerian simulation of a shock tube, and (ii) a Lagrangian simulation of an oscillating channel. The numerical results are compared with the available analytical and numerical solutions.

A. Shock Tube

Eulerian simulations only evolve steady particles (v 0 = 0). The daughters are created once, at the initialization. The tesselation of the transition zone is thus fixed.

Let us consider a 1 m long shock tube with a discontinuity at x = 0.00 m separating two liquid states. Tab. I shows the initial left and right data states. The constant values for (2) are c 0 = 1466 m/s, γ = 7, ρ 0 = 1000 kg/m 3 and p 0 = 0 Pa . At t = 0.0 s both fluids are instantaneously in contact. The exact solution consists in two shock waves: a shock travelling to the right at 1827 m/s (i.e. Mach number of 1.25), and a shock travelling to the left at 1788 m/s (i.e. Mach number of 0.91). As numerical references, two uniformly-distributed SPH simulations are performed, namely: (N) a uniform coarse ∆x m = 5.0 mm discretization resolution and (4N) a uniform fine ∆x d = 2.5 mm discretization resolution. Lastly, (APR) is the numerical result of the APR technique simulation with a refined zone starting at x = 5.0 cm and overlaping all the right part of the tube.

Fig. 2 shows the total pressure profile along the X axis once the shock travelling to the right has crossed the (APR) refined area boarder, at scaled time t = 1.5 . The time is scaled by the duration that needs the shock travelling to the right to reach the refined area border. The total pressure profile, position and stiffness of the shock wave predicted by classical SPH solutions (N and 4N) and APR-SPH simulation show satisfying agreement with the exact solution based on the particles sizes here used. Authors are thus confident in the APR implementation into ASPHODEL. Fig. 3 shows the evolution in time of the SPH particles total mass in the tube. As mathematically predicted by (3), the total mass is conserved for the classical SPH solutions (N and 4N). However, the total mass is eventually not conserved for the APR-SPH simulation. At the beginning ( t = 0.0), the discontinuity is initialized out of the APR region. As long as the shock is away from the guard particles, the spatial interpolation operator prediction used for the calculation of the guard particles fields is accurate. Thus, the SPH particles total mass is conserved. Once the shock has got into the APR region ( t = 0.4), the spatial interpolation operator used for the calculation of the guard particles fields induces an error that is proportional to the space discretization parameters. At first ( t < 0.8), guard particles whose fields are miscalculated are away from SPH daughters. As guard particles are non-material it is not catched on Fig. 3. Then ( t ≥ 0.8), the guard particles fields miscalculation is communicated to the SPH particles through neighbourhood interactions. The total mass finally appears to be non-conserved. Regarding a coarse ∆x m = 5.0 mm discretization resolution and a fine ∆x d = 2.5 mm discretization resolution, the authors are however satisfied with the error amplitude here monitored.

B. Oscillating Channel

As depicted Fig. 4, the domain of this test case consists of a rectangular channel full of water horizontally animated by two synchronous pistons (walls). The top/bottom boundary conditions are set periodic. Let us consider a rectangle with L = 0.60 m, H = 0.080 m and a uniform coarse ∆x m = Lagrangian simulations evolve particles moving at the fluid velocity (v 0 = v). Following the pistons motion, mothers periodically go back and forth in the APR region. Therefore, some daughters are regularly either created or deleted at the boundary between Level 0 and Transition 0-1. The transition zone is thus dynamically tesselated. The piston motion amplitude is longer than the refined zone width, i.e. A > L b . Consequently, some daughters shall entirely cross the refined zone. Besides, some daughters are trapped within the APR region and shall never go out, i.e. A < L b + 2 × 4.7 h m .

The evolution of the amount of daughters in the refined zone is presented Fig. 5. Theoretically, the number of daughters should be roughly constant in the interest region. Concretely, the classical SPH solutions (N and 4N) ensure it. To the contrary, this quantity diverges quickly for the simulations performing APR without (red curve) and with (green curve) the nondestructive refinement pattern [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]. Too many daughters have been created in the APR-SPH simulation (red curve) because the refinement is performed regardless of the splitting mother neighbourhood. Besides, the robustness is still not guaranteed while refining with regard to the splitting mother neighbourhood (green curve). The daughter distribution eventually realizes a non-uniform tesselation of the APR region. That layout results in non-physical areas either under-populated (holes) or over-populated (clusters), weakening the simulation accuracy until its crash [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]. However, the nondestructive refinement pattern successfully addresses the daughter creation-deletion issue if Level 1 is reduced to nil and Transition 0-1 covers length L b [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]. To refine a mother located in a hole of the daughters distribution arguably leads to create unnecessary daughters. Hence, to perform the nondestructive refinement pattern with a badly shaped guard daughters distribution is no use to maintain the tesselation accuracy. To enhance the simulation robustness, a guard daughters resettlement has to be made before performing the nondestructive refinement pattern. Fig. 5. Illustration of the over-creation of daughters in the refined zone of an oscillating 2D channel. The amount of daughters in the refined zone is scaled by the initial value. Comparison of the solutions performing APR without (red, [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]) and with (green, [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]) the nondestructive refinement pattern. Each piston oscillation is discretized by 5 mean values (thick line). The surrounding blurred line is one standard deviation on either side of the mean.

IV. HYBRIDIZED ADAPTIVE PARTICLE REFINEMENT

(HAPR) TECHNIQUE Previous section shows that Lagrangian simulations of flows going back and forth can lead to a gradual over-creation of daughters. To tackle it, it is proposed to adapt the guard daughters positioning with regard to the global daughter layout.

The refinement is performed with the nondestructive refinement pattern. Once created, the guard daughters should resettle to make a suitable tesselation. For that purpose, some guard daughters fields are calculated with both interpolated and SPH computed fields. Hence, they receive the particle resettlement intrinsic feature of SPH schemes. The resulting method is then called Hybridized Adaptive Particle Refinement (HAPR). The remodeling of the transition zone is illustrated Fig. 6 in 2D for two discretization levels.

The Level 0 and Level 1 definitions are not affected. The Transition 0-1 is now subdivided into four subdomains. Each subdomain width is defined as a factor 2 µ of the maximal smoothing length of a mother. Guard daughters (depicted by red crosses) are created in Guard Halo and Hybrid subdomains to complete the kernel function support and to guarantee the accurate gradients reconstruction of SPH daughters (depicted by red dots). Pragmatically, satisfying (6) ensures it.

µ Guard Halo ≥ 1 . ( 6 
)
The primitive variables of the guard daughters located in Hybrid subdomain are calculated with both interpolated and SPH computed fields. This hybridization consists in a weighted average mediated by a space-dependent coupling function that is smooth enough. To give a clear mathematical definition, let the coupling function be Λ k ∈ C k (R n , [0, 1]), with k ∈ N and n = 1, 2, 3 denoting the space dimension. For k = 2, an illustration of the coupling function is given Fig. 7 in 1D for two discretization levels. Let u be a 

Λ k ∈ C k R 2 , [0, 1] for k = 2.
scalar or a vector variable. In Hybrid subdomain, the guard daughters receive an hybrid field u that is calculated with 0 < Λ k (•) < 1. A guard particle that uses hybrid fields is so-called hybrid particle. In addition, guard daughters located in Guard Halo subdomain complete the kernel function support of hybrid daughters. The field u is thus interpolated from the SPH particles, i.e. Λ k (•) = 1. Conversely in Level 1, SPH daughters field u is weighted with Λ k (•) = 0. Thus, the coupling here proposed smoothes the transition between interpolated and SPH computed fields.

A suitable tesselation of the Guard Halo subdomain is mandatory to complete the kernel function support of SPH daughters. Hence, a tesselation with holes is not admissible. However, the refinement process consists in splitting a mother in local daughter under-populated areas. As a consequence, it can not be performed within the Guard Halo subdomain. The Creating subdomain is thus defined as its extension, where the refinement process can be performed safely. Conversely, the de-refinement process consists in deleting daughters going out of the Suppressing subdomain. It is a safety particles buffer that prevents the deletion of a newly created daughter.

V. VALIDATION

The aim of this section is to show the capabilities of HAPR to simulate the shock tube and the oscillating channel.

A. Numerical Setup for HAPR-SPH Simulations

The numerical setup used for further HAPR-SPH simulations is here given. The sensitivity of HAPR to its numerical setup was not analyzed and will be the subject of further work. Let us consider the computational domain To consider a coupling function smoother than continuously differentiable seems smooth enough for the authors. Thus, a coupling function Λ 2 ∈ C 2 (Ω, [0, 1]) is used. One among admissible examples, the one here used is given by [START_REF] Pineda | Comparison of numerical results using a barotropic and a non-isentropic EOS in SPH-ALE method[END_REF].

Ω = Ω x ×Ω z ⊂ R 2
Λ 2 : Ω → [0, 1] (x, z) →                          0 , if |x -c x | ≤ l d , 1 , if |x -c x | ≥ l d + l, 1 2 1 - 9 8 cos π |x -c x | -l d l + 1 8 cos 3π |x -c x | -l d l , otherwise. (7) 
Equation [START_REF] Renaut | Toward a higher order SPH-ALE method based on Moving Least Squares method[END_REF] shows the setup of the transition zone. The factor of the Guard Halo subdomain µ Guard Halo is chosen as the lower bound of [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. Factor µ Hybrid is set equal to µ Guard Halo for simplicity. Creating subdomain width has been found by retry logic to prevent the creation of an additional daughter into Guard Halo subdomain. Conversely, Suppressing subdomain width prevents the deletion of a newly created daughter. Fig. 8 shows the total pressure profile along the x-axis once the shock travelling to the right has crossed the refined area border. The total pressure profile, position and stiffness of the shock wave predicted by APR-SPH and HAPR-SPH simulations are strongly similar. The evolution of the fluid total mass relative error to the theoretical mass in the global tube is presented Fig. 9. The relative errors observed for APR (red curve) and HAPR (magenta curve) are of the same order of magnitude. To use hybrid daughters slightly reduces the total mass loss observed in that case. Authors are therefore confident in the HAPR aptitudes to deal with Eulerian simulations.

C. Oscillating Channel Performed with HAPR and Nondestructive Refinement

On the other hand, let us check that hybrid daughters resettlement yields robustness recovering for the oscillating channel simulation. At first, the HAPR-SPH simulation is performed with the nondestructive refinement pattern. The evolution of the amount of daughters is given Fig. 10. In comparison with the previous APR approach without (red curve) and with (green curve) the nondestructive refinement pattern, that lead to daughter density divergence and hasty ending, the HAPR approach (magenta curve) improves significantly the stability. Thus, the amount of daughters in the refined zone is tamed efficiently and no hasty ending occurs. The simulation has been pushed to 60 oscillations to confirm it (not shown here). [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]) to the solutions performing APR with the nondestructive refinement pattern correction without (green, [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]) and with (magenta) hybridized guard daughters. Each piston oscillation is discretized by 5 mean values (thick line). The surrounding blurred line is one standard deviation on either side of the mean.

Nevertheless, the robustness is not fully recovered for the oscillating channel simulation. As depicted Fig. 11, the fluid total mass in the global channel eventually plummets. That non-conservation gradually weakens the simulation accuracy. Assumingly, the divergence observed Fig. 11 may be due to two contribution sources. Firstly, the spatial interpolation operator used for the guard particles fields calculation induces a discretization error. As depicted Fig. 9, a single shock wave refinement results in a 10 -4 magnitude mass error. Considering it twice an oscillation, the cumulated mass error is roughly 0, 4 % for the twenty-oscillation-long oscillating channel simulation. All in all, that guard particle densities miscalculation may be responsible of 20 % of the global error observed Fig. 11. Assumingly, it is not the major contribution source. Furthermore, the guard particle volumes evolution may also induce an error. Indeed, to replicate the evolution of SPH particles volumes onto the guard particles volumes is questionable. This will be the subject of further work.

VI. HAPR WITH DESTRUCTIVE REFINEMENT

In this last section, a new optional refinement pattern is proposed to save CPU time and simplify the HAPR method transposition to 3D simulations. Contrary to the nondestructive refinement pattern, a process that does not preserve the splitting mother neighbourhood topology is here presented. In what follows, it is named the destructive refinement pattern.

A. Destructive Refinement Pattern

Following in the footsteps of [START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF], a daughter-to-mother connectivity is set likewise. The daughters located in the transition zone, within the radius of a SPH mother, are associated to the nearest mother. For any splitting mother, all the associated daughters are deleted. The mother is then split in accordance with the cartesian pattern [START_REF] López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF]. Accordingly, a consistent amount of daughters is introduced. As the destructive refinement process does not rely on an optimization problem solving, it is expected to be less CPU time consuming than the nondestructive approach. In addition, the successful adaptation of the destructive refinement in three space dimension is easier than generalizing the nondestructive process.

B. Oscillating Channel Performed with HAPR and Destructive Refinement

Now, the HAPR-SPH simulation is performed with the destructive refinement pattern. The evolutions of the amount of daughters predicted by HAPR-SPH simulations performed with either the nondestructive or the destructive refinement pattern are strongly similar (not shown here). After 20 oscillations, the relative difference observed between these two predictions is lower than 1%. Thus, the amount of daughters in the refined zone is still tamed efficiently. Furthermore, the evolution of the fluid total mass is compared Fig. 12. For what matters, the relative errors observed for both HAPR-SPH simulations are of the same order of magnitude. As a conclusion, performing HAPR with destructive refinement pattern is as accurate as running HAPR with nondestructive refinement pattern for the channel simulation. Therefore, authors recommend to perform HAPR using the destructive refinement pattern to save CPU time and simplify the method transposition to 3D simulations.

VII. CONCLUSION

In this paper, a new local refinement technique is proposed: the Hybridized Adaptive Particle Refinement (HAPR). This method is based on the APR approach using guard daughters filled with a weighted average of interpolated and SPH computed fields. HAPR is equivalent to APR for Eulerian simulations, as depicted with the shock tube test case. For Lagrangian simulations of flows going back and forth, HAPR is more stable than APR even if a total mass loss remains. Indeed, Hybrid daughters allow a drastic reduction of the numerical noise due to an anisotropic and disordered guard particles distribution. Furthermore, a novel refinement pattern is introduced to ease the HAPR successful adaptation in three space dimensions and save CPU time with equivalent robustness level.

Fig. 1 .

 1 Fig. 1. Schematic of the Adaptive Particle Refinement (APR) technique with two discretization levels: SPH/SPH coupling between coarse (Level 0 ∪ Transition 0-1) and fine (Level 1) resolutions, interacting indirectly through non-material guard particles.

Fig. 2 .

 2 Fig. 2. Shock tube test case. The total pressure profile is scaled by the initial left state total pressure. The exact solution (black solid line), the fully refined solution (blue plus), the solution without (black square) and with APR (red cross) are depicted at scaled time t = 1.5 . The time is scaled by the duration that needs the shock travelling to the right to reach the refined area border. The refined and transition zones are delimited by a red dashed line and a black dashed line, respectively.

Fig. 3 .

 3 Fig. 3. Evolution of the total mass relative error to the theoretical mass m theo in the global tube, i.e. (m theomapprox)/m theo . The time is scaled by the duration that needs the shock travelling to the right to reach the refined area border. Comparison of the solution performing APR (red) to the reference fully-refined solution (blue).

5. 0

 0 mm resolution. A refined zone with L b = 0.040 m and a uniform fine ∆x d = 2.5 mm resolution is located in the channel. It is placed at a distance of L a = 0.28 m from the initial left piston position. A piston moves back and forth at constant speed 0.0025 m/s (Mach number of 0.06). The piston motion has ten-particle-long amplitude A = 0.050 m and period T = 40 s. The constant values for (2) are c 0 = 0.04 m/s, γ = 7, ρ 0 = 1000 kg/m 3 and p 0 = 0.5 Pa.

Fig. 4 .

 4 Fig. 4. Oscillating channel test case. Schematic of the problem geometry.

Fig. 6 .

 6 Fig. 6. Schematic of the Hybridized Adaptive Particle Refinement (HAPR) technique with two discretization levels: SPH/SPH coupling between coarse (Level 0 ∪ Transition 0-1) and fine (Level 1) resolutions, interacting indirectly through MLS-SPH hybridized guard particles.

Fig. 7 .

 7 Fig. 7. Schematic of the Hybridized Adaptive Particle Refinement (HAPR) technique in 1D with two discretization levels: illustration of the spacedependent coupling function Λ k ∈ C k R 2 , [0, 1] for k = 2.

  for two-dimensional simulations. The HAPR region gathers the transition zone (Transition 0-1) and the refined zone (Level 1). Let us define a single rectangular HAPR region subset of Ω. Its refined zone is centered on c = (c x , c z ) ∈ Ω, with length L d = 2l d < |Ω x | along x-axis and height H d = |Ω z | along z-axis. The Hybrid subdomains are located on either sides of the refined zone. Each Hybrid subdomain is defined with length l along x-axis and height H d along z-axis.

µ

  Supp. = µ Crea. = 0.35 and µ Guard Halo = µ Hybrid = 1.00 . (8) B. Shock Tube Performed with HAPR On the one hand, let us check that hybrid daughters are boundary conditions as accurate as guard daughters.

Fig. 8 .

 8 Fig. 8. Shock tube test case. The total pressure profile is scaled by the initial left state total pressure. The exact solution (black solid line), the solution APR without (red cross) and with hybridized guard particles (magenta stars) are depicted at scaled time t = 1.5 . The time is scaled by the duration that needs the shock travelling to the right to reach the refined area border. The refined and transition zones are delimited by a red dashed line and a black dashed line, respectively.

Fig. 9 .

 9 Fig. 9. Evolution of the total mass relative error to the theoretical mass m theo in the global tube, i.e. (m theomapprox)/m theo . The physical time is scaled by the duration that needs the shock travelling to the right to reach the refined area border. Comparison of the solution performing APR without (red) and with (magenta) hybridized guard daughters, to the reference fully-refined solution (blue).

Fig. 10 .

 10 Fig.10. Illustration of the number of daughters evolution in the refined zone of an oscillating 2D channel. The amount of daughters in the refined zone is scaled by the initial value. Comparison of the reference APR solution (red,[START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]) to the solutions performing APR with the nondestructive refinement pattern correction without (green,[START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]) and with (magenta) hybridized guard daughters. Each piston oscillation is discretized by 5 mean values (thick line). The surrounding blurred line is one standard deviation on either side of the mean.

Fig. 11 .

 11 Fig. 11. Oscillating channel test case. Evolution of the total mass scaled by the theorical mass in the global channel. Comparison of the solutions performing HAPR with the nondestructive refinement pattern, to the reference fully-refined solution (blue). Each piston oscillation is discretized by 5 mean values (thick line). The surrounding blurred line is one standard deviation on either side of the mean.

Fig. 12 .

 12 Fig. 12. Oscillating channel test case. Evolution of the total mass scaled by the theorical mass in the global channel. Comparison of the solutions performing HAPR with either the nondestructive (magenta) or the destructive (cyan) refinement pattern, to the reference fully-crefined solution (blue).

  Reyes López et al.[START_REF] López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF], a mother is split into M daughters regardless of its neighbourhood. On the other hand, following authors in previous work (J. Chanéac et al.[START_REF] Chanéac | Improvements of the refinement pattern of Adaptive Particle Refinement[END_REF]), an optimization problem is formulated to determine the accurate amount, positions and variables of the daughters to create. Thus, a M-daughter creation is not mandatory. For example, the suitable refinement of a splitting mother surrounded by M -D pre-existing daughters results in the creation of D additional daughters. For what matters here, this refinement process preserves the splitting mother neighbourhood topology. In what follows, this optional correction is named the nondestructive refinement pattern. In this paper, authors also proposed a new optional correction named destructive refinement pattern presented in section VI.

• Lastly, the refinement pattern can optionally be performed with regard to the splitting mother neighbourhood. Two options are here considered. On the one hand, following Y.
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