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Characterizing complex material consists in establishing the relationship between
flow rheology during forming processes and the induced micro-structural state that affects
directly the final mechanical properties of the formed parts. It is necessary that research
activities reach to address the coupling between forming process and mechanical perfor-
mances (e.g., fatigue or reliability). Even if in this issue we put the main attention on
the fluid dynamic part, the research activity today must cover the life cycle from individ-
ual kinematics of particles to the mechanical properties of formed parts. Some points of
illustration are quoted here on a non-exhaustive basis:

- Individual kinematics of one fiber or particle in non-Newtonian flow and consideration
of hydrodynamic interactions remains today an open subject experimentally as well as
numerically (using direct approaches). No accurate analytical characterizations have
been done in non-Newtonian fluids in infinite domains. A specific attention must be
considered for viscoelastic materials. Such a material is usually encountered during
forming processes of injection molding or thermoplastics extrusion.

- After this first step, one must be able to make statistical transitions in order to predict
the orientation distribution of a suspension of particles. This step suppose that the
individual kinematics has been well established and must take into account particles
interactions in order to predict different phenomena such as aggregation.

- Composites involve in their liquid or solid state a significant fluctuation of physical
properties due to their heterogeneity. In order to get a fine description, numerical
models use generally an excessive computing time and requires a high capacity of
storage. This is a consequence of the high number of degrees of freedom requested
to correctly describe the physical properties. It will then be necessary to use some
approaches that reduce the numerical cost, such as the POD (Proper Orthogonal
Decomposition) or the PGD (Proper Generalized Decomposition). These methods will
make simulations of complex flows easier. The main difficulty consists in predicting
correctly the microscopic state that affects directly the final properties. Two modeling
scale are to take into account: the first one is related to the global dimension of the
flow providing velocity field, thermal distribution, pressure and other macroscopic
fields. The second one is related to the orientation of fibers, the conformation of
molecules, etc.

- Establishing distribution models is an essential information for reliability models.
Reliability of composites have to be studied through the part life cycle. This requires
reproducing (numerically and experimentally) the succession of loadings inducing
material damage. Modeling aspects have to be oriented to establish the tools allow-
ing to predict failure probability. These tools could be built by using the statistical
information previously calculated.
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- Next, fatigue and damage models using internal variables have to be related to the
induced microstructure. Indeed, modeling of fatigue is constraint by the CPU time
and requires to simulate a very high number of cycles. Two strategies are possible in
order to circumvent the difficulty related to the computational cost of the temporal
scale: (i) the first one consists in making a decomposition of the time dimension into
two dimensions, where the first one is related to a finite small number of cycles and
the other one is related to a global evolution of the internal variables. (ii) And the
second strategy consists to come back to POD-like techniques which are suitable for
extracting modes in cyclic behavior.

- These approaches must be associated to homogenization procedures for complex
materials. A specific knowledge of space scales transitions and the relationship with
the Representative Elementary Volume (REV) during the forming process or the
mechanical loadings, is an essential information for using composites material during
their life cycle. Fatigue models in direct simulations could be compared to fatigue
model with homogenized variables.

- Machinability of complex materials is also an interesting subject. Modeling the cut-
ting process and the confrontation with experimental measures could give an idea
to bring a multi-physic comprehension of chip formation and the tool/workpiece
interaction by adopting finite element approaches and methodologies. Microscopic
state is determinant in these conditions.

In all this sequence just described the challenge in the flow phase consists to establish
the relationship between the flow rheology during the flowing process and the state of
the induced micro-structure that directly affects the quality of the obtained mechanical
parts. This characterization should take into account the multi-scale description of the
continuum matter. Many developments are required. One of them consists in identifying
experimentally, numerically, and analytically the laws that govern each scale rigorously.
Another challenge consists in developing numerical techniques that allow addressing a
detailed description of the physical laws involving a large number of degrees of freedom.
Development and control of advanced numerical techniques and experimental observa-
tion is essential to predict accurately and with a lowest cost the state of matter and the
resulting properties.

Achieving the goal of modeling micrometric and nanometric suspensions remains a
major issue. This help to master in a controlled way the mechanical, thermal, and electrical
properties, among others, of the suspensions and then of the resulting product when
considered in material forming, flow of heat transfer fluids or other applications. In some
cases, they can contribute to improve the performance of energy transport. An optimal use
of these products is based on an accurate prediction of the flow-induced properties of the
suspensions and consequently of the resulting products and parts.

The scientific issues to solve are mainly related to the prediction of the behavior
evolution. Particles suspended in a viscous medium tend to modify the behavior. The
final properties of the resulting microstructured fluid or solid become radically different
from the simple mixing rule. There are numerous works addressing homogenization
strategies for systems consisting of perfectly of dispersed particles in a matrix. However,
in most cases, particles aggregate or sediment, or exhibit strong induced anisotropy. The
microscopic description, despite being the finest one, is too heavy from both computational
and experimental points of view. For this reason, coarser descriptions are sometimes
preferred. Even if they are less accurate, they lead to faster simulations.

Considering the general behavior of suspensions, viscoelastic fluids or complex flows,
two levels of description are relevant: a level related to the overall kinematics and a level
associated with the material point in the microscopic scale [1].

Taking into account the state of microscopic structure can be done at different scales.
For some behaviors such as fibers, differential approximation requires a closure relation-
ship [2]. Unfortunately, in most cases (except for some special ones), there is no equivalence
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between the constitutive laws and the microscopic definition of the structure. A microscopic
simulation at the scale of the kinetic theory is then required.

The most common technique for kinetic theory problems is the stochastic approach. A
lot of work has been done on different models of kinetic theory (dumbbell models, fibers,
polymer melts . . . ) see, for example [3,4].

For higher dimensions (much higher than three) stochastic methods become limited.
In the few studies that we find in the literature on the simulation of this type of problem,
the authors use a discrete approach (Brownian or with Monte Carlo) that involves the use
of a large number of particles. In very special cases, the probability distribution evolution
can be expressed as N evolution problems of N different functions with a vectorial change
of variable.

The framework for these problems requires the development of specific numerical
techniques applicable for problems with large numbers of degrees of freedom.

The difficulty of multidimensional models resolution is related to the proposal of
new appropriate strategies able to circumvent the curse of dimensionality. One possibility
lies in the use of sparse grids [5]. However, as argued in ref. [6], the use of sparse grid is
restricted to models with moderate multidimensionality (up to 20). Another technique able
to circumvent, or at least alleviate, the curse of dimensionality consists in using a separated
representation of unknown fields (see ref. [7]. for some numerical elements on this topic).

The question of multidimensionality has also been subject of works related to the
space-time separated representation. In fact, such decompositions were proposed many
years ago by Pierre Ladeveze as an ingredient of the powerful non-linear-non-incremental
LATIN solver that he proposed in the 80s. During the last twenty years many works were
successfully accomplished by the Ladeveze group. The interested reader can refer to [8]
and the references therein related to the radial approximation, denotation given to the
space-time decomposition in the LATIN framework.

The resolution of problems with analytical solution is rarely possible. Analytical
solution is provided only for specific simplified equations. Otherwise, solution is searched
for as a discrete form over a given set of points. Once the discrete solution is obtained in
these points the continuum solution can be built on using an appropriated interpolation.
When model is defined in dimension D, and with N degrees of freedom in each direction the
resolution requests ND discrete points. The difficulty related to the information processing
and storage becomes exponentially dependent on the dimension D. Beyond the value of D
equals to 3, standard discretization techniques (such as finite elements, finite differences, or
finite volumes methods) suffer from the limitations related to the high number of degrees
of freedom.

On this numerical point of view, some contributions have been focused on the devel-
opment of a new strategy different from the classical based-mesh techniques (FEM, FDM,
FVM). The developed method called the PGD (Proper Generalized Decomposition) allows
circumventing the curse of dimensionality and allows particularly to solve space-time
problem avoiding the use of standard incremental time scheme. It allows more generally to
solve problems defined in multidimensional space. The main idea consists to build up the
multidimensional solution as a tensor product of functions expressed in lower dimensions.

This strategy was useful for transient problem, but also has proved its robustness
for solving micro-macro problems by including configuration and physical spaces in the
same discretization. In addition, this strategy has been successfully applied for solving
kinetic theory problem when configuration space dimension exceeds the value three. This
situation in encountered in the kinetic theory of melt polymer or for bead-spring-chain
model for polymer suspension.

The obtained results as well as the potential application are encouraging to carry on
the development of this technique and to improve its performance in terms of convergence
speed and optimality and to enlarge its application fields.

In addition, considering in general the behavior of statistical fluids, fiber suspensions,
polymers suspensions, viscoelastic fluids, we see that there are two levels of flow description:
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(i) The first one is a level related to the global flow kinematics variables (such as velocity)
requiring a variational formulation of the problem overall the physical domain.

(ii) The second one is a level related to the elementary representative volume which
characterizes a state of matter: an orientation or conformation induced by the flow.
This condition defines the effect of the microscopic structure of the flow.

Taking into account the state of microscopic structure can be done at different scales.
One can use in a first approach a constitutive law (differential or integral) to describe the
evolution of the stress tensor characterizing the structure. For some behaviors such as fibers,
the constitutive law is written in terms of an approximation introducing a closure relation.
Unfortunately, in most cases (excluding some constitutive equation written rigorously),
there is no equivalence between the definition of the microscopic structure evolution and
the constitutive law. In fact, the approximation introduces some errors. This is particularly
the case for fiber suspension where there is a high incidence of the error induced by a
closure relation on the orientation tensor when the diffusion parameter is small.

If we wish to describe directly the evolution of the structure, a fine modeling at the
microscopic scale reveals itself indispensable.

The way in which we describe a microscopic behavior is based on (i) the kinematics
of each particle and (ii) the evolution of a probability distribution on the configuration
space of all the particles, also called the probability space. From a probability distribution
one can go back to the macroscopic state through a calculation of the stress tensor giving
the microscopic contribution. We consider that the kinematics of each particle is given by
a hydrodynamic contribution and interactions efforts contribution. Terms arising from
Brownian effects are obviously taken into account in the diffusive contribution of the
convection-diffusion equation characterizing the evolution of the probability distribution.
This equation is the so-called Fokker-Planck equation.

For example, in the context of multi-dumbbells models some contributions have
allowed to find a solution of the Fokker-Planck equation as a sum of functions products in
the context of the PGD [9]. This also has been done in the case of polymer melts [10].

Such approaches of numerical modeling at small scales also have many advantages
in the bio-medical field. Macromolecules such as DNA chains can be modeled with high-
dimensional configuration spaces. The difficulty arises in situations in which one wants to
lead a macromolecule (pharmaceutical drug for example) in into a pipe of very small size
(e.g., a vein) without the use of tools. We should then be able to predict the properties of
the velocity field so that the macromolecule gets the desired state.

In the same framework, the kinetic description of the rheology of carbon nanotubes
suspensions where the direction and also the aggregation state of the system has been
addressed [11].

In carbon nanotubes suspensions one must distinguish the case where the nanotubes
are functionalized to prevent their aggregation and the case if they are not. This latter situa-
tion is able to lead to their aggregation with significant effects on the rheological properties.

In the case of the functionalized nanotubes, kinetic model has been developed for
short suspensions and has been relevant to describe the nonlinear rheology.

When now we come back to the upper scale of the global flow (in a framework of
micro-macro approach), the difficulty lies in predicting the state of micro-structure which
affects directly the final properties. We then have a level of modeling on the scale of the
geometry of the flow giving kinematics, thermal field, pressure . . . and a level of modeling
of the microscopic characterization, of the state of orientation, of a fiber suspension, or of
the conformation of a macromolecule’s population . . .

To this end, developments are necessary:

- To be able to consider the relevant microscopic information in order to integrate more
physical responses such those finely described with molecular dynamics.

- To integrate the micro-macro coupling—for which we must create the required tech-
niques in adequacy with a rapid integration of microscopic behavior (finely described
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at the representative elementary volume of flow with the probability distribution) in a
simulation code.

The scope of application of this work is the engineering of complex fluids. Although
several studies have been done by substituting the microscopic description by using ap-
proximations based on constitutive differential or integral equations, it turns out that the
kinematics of the flow is highly affected by the topology of the microstructure; conse-
quently, we have to treat more carefully the microscopic information. The objective is
to make the interaction between the kinematics of the flow behavior and the molecular
information at the lowest numerical cost. This then requires an appropriate use of specific
techniques of model reduction to adequately describe the probability distribution on a
hyperspace resulting from a combination of physical space, the configuration space and
the temporal dimension.

Conflicts of Interest: The authors declare no conflict of interest.
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