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ARTICLE

Field-based tree mortality constraint reduces
estimates of model-projected forest carbon sinks
Kailiang Yu 1,2✉, Philippe Ciais 1,3, Sonia I. Seneviratne 4, Zhihua Liu2, Han Y. H. Chen 5,

Jonathan Barichivich1,6, Craig D. Allen 7, Hui Yang1,8, Yuanyuan Huang1,9 & Ashley P. Ballantyne1,2

Considerable uncertainty and debate exist in projecting the future capacity of forests to

sequester atmospheric CO2. Here we estimate spatially explicit patterns of biomass loss by

tree mortality (LOSS) from largely unmanaged forest plots to constrain projected

(2015–2099) net primary productivity (NPP), heterotrophic respiration (HR) and net carbon

sink in six dynamic global vegetation models (DGVMs) across continents. This approach

relies on a strong relationship among LOSS, NPP, and HR at continental or biome scales. The

DGVMs overestimated historical LOSS, particularly in tropical regions and eastern North

America by as much as 5 Mg ha−1 y−1. The modeled spread of DGVM-projected NPP and HR

uncertainties was substantially reduced in tropical regions after incorporating the field-based

mortality constraint. The observation-constrained models show a decrease in the tropical

forest carbon sink by the end of the century, particularly across South America (from 2 to

1.4 PgC y−1), and an increase in the sink in North America (from 0.8 to 1.1 PgC y−1). These

results highlight the feasibility of using forest demographic data to empirically constrain

forest carbon sink projections and the potential overestimation of projected tropical forest

carbon sinks.
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Forests are major drivers of biophysical land-atmosphere
feedbacks, the global carbon and water cycles, and thus
overall planetary climate regulation1—yet large uncertainties

and substantial debate persist regarding ongoing and potential
changes in the capacity of forests carbon sinks across continents
or biomes (i.e., tropical vs boreal) under anticipated future
climates2,3. It is often thought that increased net primary pro-
ductivity (NPP) across spatial resource gradients or under ele-
vated CO2 will increase carbon sinks4,5. The loss of ecosystem
carbon to the atmosphere through ecosystem heterotrophic
respiration (HR), however, has been observed to increase
worldwide6 and could lead to a trade-off or even outweigh the
positive effects of NPP in some regions7, thus potentially
amplifying warming through increased rates of ecosystem carbon
loss to the atmosphere8,9. Reducing uncertainties about the future
forest carbon sink thus requires an integrated understanding of
NPP and HR across space or time.

Recent studies have suggested that faster forest growth (NPP)
leads to higher tree mortality at local and regional scales, parti-
cularly in tropical forests10,11. This has been recently demon-
strated across spatial scales in boreal forests using tree-ring
datasets12 and is consistent with ESM projections across forest
biomes13. While the fraction of biomass subjected to tree mor-
tality is often treated as a proportion (constant or varying) of
standing stocks in ESM simulations13, this simple model repre-
sentation of mortality and growth is commonly not observed in
forests responding to global change. Ongoing climate change can
result in disproportionate mortality relative to growth, from
direct physiological mortality from more extreme drought and
heat events, insect outbreaks, windthrow, lightning, and
wildfire14,15. In contrast, growth may be exceeding mortality in
regrowing secondary forests16 or due to increased atmospheric
CO2 reducing drought stress17,18 and/or nitrogen deposition
enhancing growth19. At long-term and broad spatial scales,
however, NPP, biomass loss from tree mortality (hereafter LOSS)
and HR could be coupled with their strong positive relationships
because of the linkage of aboveground and belowground
processes20,21. The instantaneous rates of NPP, LOSS and HR,
however, could be decoupled over short term or local scales22,23

and these couplings could be altered with changed availability
and/or usage efficiency of resources (i.e., water and nutrients)
under global change18,24. Thus, data on LOSS which can be
directly measured in ground-based forest plots13 and linked or
correlated with NPP and HR, may provide an unique constraint
on the forest carbon sink in a future changing climate.

Uncertainty in projections of forest carbon cycling could be
reduced through an emergent constraint (EC) approach by iden-
tifying heuristic relationships between a multi-model ensemble
and an observational estimate. The essence of such an EC
approach is to examine the statistical relationships between his-
torical and projected variables of interest in a multi-model
ensemble, whereby the historical observations are used to reduce
the uncertainty of model projections25. This empirical EC
approach is complementary to the bottom-up approach in which
data or process optimization (sometimes through data assimila-
tion) is applied to improve model projections26. This EC approach
has been used to constrain the projected land carbon storage27, or
photosynthesis/GPP28–31, with the assumption that the processes
driving the long-term response are also driving the historical
(short-term) patterns27,28. Interpreting the results of EC requires
caution in the confirmation of the verified mechanisms25,32 and
addressing the mismatch of spatial and temporal scales between
data and models25,30. Earlier studies usually used atmospheric
variables (i.e., CO2 concentrations) to constrain carbon storage
and photosynthesis at regional to global scales27,28. Using spatially
explicit observational products (i.e., GPP, evapotranspiration and

leaf area index), studies have emergently constrained the future
terrestrial carbon cycling projections at grid scale and then spa-
tially aggregated to broader spatial scales29,33. Recent studies
highlight the potential of integrating emergent constraints at
lumped broad spatial scales and machine learning to generate a
spatially explicit constraint on projected gross primary production
(GPP) by accounting for the non-linear relationships between
GPP and environmental drivers34. However, to date it remains
unclear how ground-based datasets, such as forest plot observa-
tions, could better constrain the projected forest carbon sink at
broad spatial scales in a future climate. Because observational
uncertainty has more influence than model ensemble uncertainty
in EC25, a LOSS constraint based on forest plot data is expected to
reduce the uncertainties in projections of future forest carbon
sinks and associated feedbacks to climate.

Here we generate spatially explicit patterns of LOSS from long-
term (1951 to 2018) forest plot data (n= 2676; Supplementary
Fig. 1) to constrain projected (2015–2099) NPP, HR and net
ecosystem exchange (NEE=NPP – HR) in six DGVMs across
continents - North America, South America, Africa and Asia &
Australia. The data are from largely unmanaged forest plots,
because management implies distinct LOSS patterns, and man-
agement/forestry is not incorporated in models. Our approach is
motivated by the positive heuristic relationships (Supplementary
Figs. 2 and 3) between historical LOSS and projected NPP and
HR carbon fluxes in DGVMs, in line with the known pattern of
faster growth and higher mortality10–13 and the couplings of
growth, mortality and respiration at long-term and broad spatial
scales20,21. We used LOSS also because: (1) it can be directly
measured in forest inventory datasets13 with high accuracy rela-
tive to remote sensing; (2) LOSS remains less studied relative to
NPP and LOSS is unrealistically represented (i.e., as a proportion
of NPP) in DGVMs13. Thus, more work with LOSS data products
is urgently needed in scientific communities; and (3) the accuracy
of constraining the projected carbon cycle in DGVMs largely
depends on the observational uncertainty25. We first used a
random forest to upscale spatial variations of LOSS with 57
environmental variables (see Supplemental Data 1) to generate a
spatially explicit map of LOSS at 0.25-degree resolution across
continents (see Methods). Second, we compared the observed
spatial patterns of LOSS with the patterns of DGVM35 in which
tree mortality was explicitly reported (see Methods). Finally, two
complementary approaches—a conventional emergent constraint
and a machine learning constraint—were used to constrain the
projected NPP and HR at continental scale in DGVMs (see
Methods, Supplementary Fig. 4). The conventional emergent
constraint (EC) approach was applied by identifying a statistical
(linear) relationship between historical LOSS, aggregated or
averaged at local forest-plot scale (using original forest plot data)
or continental scale (using upscaled LOSS maps), and projected
NPP and HR, summed at continental scale across the DGVM
ensemble. In this sense, each model was treated as a sample to fit
the heuristic (linear) relationship between LOSS and projected
NPP and HR and the observational LOSS (mean ± sd) was then
used to impose the constraint on projected NPP and HR (see
Supplementary Fig. 4 for more details). The mismatch of spatial
scale in the conventional EC approach highlights the need for
caution in interpreting results25. By comparison, the machine
learning (ML) approach was used to examine the non-linear
relationships by training a ML (random forest) model between
historical simulated LOSS and projected NPP and HR for each
DGVM at grid scale. This ML approach thus allowed for inclu-
sion of all gridded patterns of LOSS and a spatially explicit
constraint of projected NPP and HR, while we note that
the couplings of LOSS, NPP and HR could be weak at local or
pixel scales.
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Results and discussion
Biogeographic pattern of LOSS. The original forest plot data
aggregated at 0.25 degree show large spatial variations (Fig. 1a)
across the continents, with the greatest LOSS in Asia & Australia
(mean ± 1 SE; 6.5 ± 0.5 Mg ha−1 y−1) > South America (4.9 ± 0.2
Mg ha−1 y−1) and Africa (4.6 ± 0.2 Mg ha−1 y−1) > North America
(2.3 ± 0.1 Mg ha−1 y−1 in boreal and 2 ± 0.1 Mg ha−1 y−1 in
temperate)36 (Fig. 1b; Supplementary Fig. 5a). This pattern was
robust to bootstrapping (1000 iterations) to randomly select 90% of
plots for estimating the probability distribution of the mean con-
tinental values (Supplementary Fig. 5b). The upscaled gridded LOSS
maps generated by our random forest algorithm (see Methods) over
the spatial domain of our full datasets shows hotspots of high LOSS
in Southern Asia & Australia (> 6 Mg ha−1 y−1), Northwestern
South America (Amazon) (> 5 Mg ha−1 y−1), and the western coast
of North America (>3 Mg ha−1 y−1)10,36–38 (Supplementary
Fig. 6a). These patterns were robust to two bootstrapping approa-
ches – based on the sampled biomes of each point feature and also
randomly sampling 90% data with replacement (see Methods)
(Fig. 2a; Supplementary Fig. 6b). The uncertainty (coefficient of
variance - CV; %mean) was generally low (<10%) across continents,
with the exception of temperate forests in North America (CV >
10%), despite the larger sample size (n > 500 at 0.25 degree)

(Fig. 2b; Supplementary Fig. 6c), likely because of potential effects of
forest recovery or regrowth following past disturbance16 as well as
the small plot size (i.e., 0.067 ha in each plot)39.

Drivers of LOSS. Mean annual temperature (MAT), aridity index
(the ratio of precipitation to potential evapotranspiration), and
precipitation seasonality were identified as the dominant pre-
dictors of LOSS across continents (Supplementary Fig. 7a), with
positive relationships with LOSS (Fig. 3a)10,36. In contrast to
local-scale studies40,41, wood density, forest stand density, and
soil conditions were poor predictors of LOSS when all data were
used. These relationships were largely driven by the spatial pat-
tern of LOSS and climate gradients, whereby LOSS and MAT,
aridity index, and precipitation seasonality were high in tropical
forests (Supplementary Fig. 8). This motivated us to examine the
drivers of LOSS in tropical vs non-tropical biomes (Supplemen-
tary Fig. 7b, c; Fig. 3b–d). With a smaller gradient in climate
within wet tropical forests, soil properties such as nutrient con-
tent and cation exchange capacity (CEC) were significant pre-
dictors of LOSS (Supplementary Fig. 7b; Fig. 3b)42. In wet tropical
forests, the relationships between soil nutrient content and CEC
and LOSS were positive (Fig. 3b) and thus appeared to support
the pattern of higher mortality in more productive tropical forests
growing over nutrient rich soils42,43. In non-tropical regions,
basal area or a competition index based on the degree of crowding
within stocked areas44 (see Methods) were the dominant pre-
dictors of LOSS, especially in extra-tropical North America
(Supplementary Fig. 7c; Fig. 3c, d). This result highlights the role
of stand competition in driving the spatial patterns of LOSS44,45.
This pattern also supports the existence of a spatial tradeoff
between faster growth and higher mortality because of resource
limitations or younger death, whereby competition plays the
fundamental role13,45. In contrast to other studies15,46, forest age
(available in boreal and temperate forests in North America) was
not a good predictor of LOSS (Supplementary Fig. 9), likely
because of our focus on mature and old-growth forests (i.e., age >
80 and 100 years in boreal and temperate forests, respectively).

Data and model comparisons. We then compared the observed
patterns of LOSS with those simulated by six state-of-the-art
DGVMs in which tree mortality and LOSS were explicitly
simulated35. The results show divergent predictions of LOSS among
DGVMs with four models (ORCHIDEE, JULES, LPJmL, and SEIB-
DGVM) overestimating LOSS compared to our observation-based
estimate, particularly in tropical forests and temperate eastern
North America, while CABLE-POP and LPJ-GUESS underestimate
LOSS across continents (Supplementary Fig. 10). This led to a
model ensemble mean overestimation of LOSS, particularly in
tropical forests (historical ΔLOSS > 5Mg ha−1 y−1, where Δ is the
model minus observed value) and eastern North America
(ΔLOSS > 4Mg ha−1 y−1) (Fig. 2c, e), while the spread of LOSS
prediction between models was greatest (CV > 130%) in western
boreal forests in North America (Fig. 2d).

Conventional emergent constraint. We first used the conven-
tional emergent constraint approach27 to constrain the projected
(2015–2099) NPP and HR across continents. This approach was
conducted by building the statistic (linear) relationship between
the historical LOSS averaged at forest-plot scale (derived from
original plot data of LOSS) or continental scale (derived from the
map of LOSS) and projected NPP and HR summed across con-
tinents (see Methods and Supplementary Fig. 4 for details). We
found that the emergent constraint approach worked well in
North America, where the relationship between historical LOSS
and projected NPP and HR was significant (the scenario of using
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Fig. 1 Map of sample locations and biomass loss to mortality (LOSS)
data. a Sampling sites. A total of 2676 samples were collected and
aggregated into 814 grids at 0.25 degree that were used for geospatial
modeling. b The median and interquartile range of LOSS across continents
—North America, South America, Africa, and Asia & Australia.
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original plot data of LOSS: R2= 0.68 and P= 0.04 for grid-level
NPP; R2= 0.97 and P= 0.0001 for grid-level HR; the scenario of
using map of LOSS at continent scale: R2= 0.7 and P= 0.04 for
grid-level NPP; R2= 0.95 and P= 0.0008 for grid-level HR)
(Supplementary Fig. 11a; Supplementary Fig. 12a). This emergent
constraint approach was less effective, however, for other con-
tinents, where tropical forests are predominant (all P > 0.05;
Supplementary Fig. 11b, c, d; Supplementary Fig. 12b, c, d). These
results suggest a weak linear relationships when observations are
lumped or averaged at broad continental scales for tropical
continents, thus highlighting the importance of spatial scale and
non-linear relationships in emergent constraint25. We interpret
the result that this LOSS emergent constraint works better in
North America than in the tropical forests, by a better repre-
sentation of forest plot distribution and couplings of LOSS and
NPP and HR across space in North America.

Machine learning constraint. To overcome this limitation, we
trained a machine learning algorithm34 to reproduce the emer-
ging relationship between historical LOSS and projected NPP and

HR at grid level in each DGVM by incorporating all grid values
without or with climate predictors, expressed as NPPpro or
HRpro= f(LOSShis) or f(LOSShis, MATpro, MAPpro), respectively,
where pro refers to projected variables, his refers to historical
variables, and MAT and MAP is mean annual temperature pre-
cipitation, respectively (see Methods). The results show con-
sistently positive non-linear relationships between LOSShis and
NPPpro or HRpro across DGVMs (Supplementary Fig. 3). Our
machine learning algorithms can surrogate well the results of
process-based models between the historical LOSS and the pro-
jected NPP and HR (R > 0.65 and R > 0.9 in both scenarios
without climate effects and with climate effects, respectively; see
Methods) (Supplementary Fig. 13). After including the observed
LOSShis (derived from LOSS) in the machine learning algorithm,
we were able to generate spatially explicit constrained estimates34

of projected NPP and HR, and then compare them with the
scenario without the constraint (Supplementary Fig. 14; Supple-
mentary Fig. 15). These patterns essentially show a lower NPPpro
or HRpro in locations of overestimated LOSShis in DGVMs,
consistent with the positive relationship between LOSShis and
NPPpro or HRpro (Supplementary Fig. 3).

Fig. 2 Map of biomass loss to mortality (LOSS) and its uncertainty across continents. a, b Ensemble mean of LOSS a and its uncertainty (coefficient of
variation, b across continents at 0.25 degree derived from forest plot data using the bootstrapped (10 iterations) approach by randomly sampling 90% plots
with replacement. c, d Ensemble mean of LOSS c and its uncertainty (coefficient of variation, d across continents at 0.5 degree derived from six dynamic
vegetation models (DGVMs, ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). Coefficient of variation was quantified as the standard
deviation divided by the mean predicted value as a measure of prediction accuracy. e The difference of LOSS between ensemble mean of DGVMs and ensemble
mean of LOSS derived from forest plots data across continents at 0.5 degree, quantified as difference between c and a, whereby LOSS in Fig. 2a is resampled
at 0.5 degree.
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Our results show that most DGVMs overestimate tree
mortality, particularly in tropical regions (Fig. 2c, e). Thus, if
modeled mortality is over-estimated, we expect that NPP is over-
estimated as well. Ultimately, we used a bootstrap approach to
generate 100 maps of mean value of LOSS with its distribution
following the values of the average and 2 times of standard
deviation of LOSS maps as a conservative constraint (see
Methods). Then the 100 maps of mean value of LOSS were used
to constrain the projected NPP or HR as ensemble means in our
ML constraint and the uncertainty of the constraint was assessed.
Our bootstrapping constraint approach by LOSS reduces this
common bias of models and decreases projected NPP down to
7.9, 2.3, 2 Pg C y−1 in South America, Africa and Asia &
Australia, compared to original NPP values of 9, 2.4, 2.3 Pg C y−1

(Fig. 4a). The reason for this is that NPP or growth is strongly
positively correlated with LOSS across space in both inventory
data and DGVMs (Supplementary Figs. 2 and 3; Supplementary
Fig. 16). The constant mortality parameter used in most models
may be too large if modelers have tuned this parameter to obtain
reasonable biomass stocks, thus compensating for an over-
estimate of NPP in absence of modeled competition between
individuals and nutrients (e.g. phosphorus) limitations in tropical
forests13. Likewise, HRpro showed similar patterns with NPPpro
because of coupling of HR and NPP and LOSS at broad spatial
and long term scales20,21, despite the likely decoupling of the
instantaneous rate of HR and NPP and LOSS at local and short-
term scales22,23. Thus, we also constrained a decrease in projected
grid-level HR with values of 6.5, 1.9, 1.7 Pg C y−1 in South
America, Africa and Asia & Australia compared to 7, 1.9, 1.8 Pg C
y−1 in the original model ensemble (Fig. 4b). Taken together, our
results constrain a weaker future tropical forest carbon sink from
observation-based LOSS estimates down to 1.4, 0.4, 0.3 Pg C y−1

in South America, Africa and Asia & Australia as compared to 2,

0.5, 0.5 Pg C y−1 in the original models. The projected sink is
reduced in particular over the Amazon basin, while North
America showed an enhanced future carbon sink (1.1 and 0.8 Pg
C y−1 after and before constraint, respectively). The constraint by
the machine learning approach significantly reduced the model
spread in grid-level NPPpro and HRpro generally in tropical
regions and particularly in South America (Fig. 4; Table 1). This
was in contrast to the case of constraint at the whole North
America scale (Fig. 4; Table 1), presumably because of spatial
trade-off or compensation from regions of mortality over-
estimation (i.e., eastern North America—temperate zones) vs
underestimation (i.e., boreal zones). To this end, we further
divided the whole North America into temperate and boreal
forests and found the significant effects of the ML constraint
(Supplementary Fig. 17). These results highlight the importance
of spatial scale in the ML constraint approach. We thus
recommend accounting for the role of spatial trade-off in our
ML constraint approach or using our ML constraint approach at
broad spatial scales whereby the effect of spatial trade-off is
minimal. We also caution that the bootstrapping (100 times)
approach used in our ML constraint increases the sample size and
could have increased the significant difference with and without
LOSS constraint. Overall, the uncertainty of the ML constraint
was low in the bootstrapping approach (Supplementary Fig. 18).

Our results were robust to the inclusion of projected climate
(temperature and precipitation) across space in the machine
learning algorithm (Supplementary Fig. 19; Supplementary
Table 1), while we note that our approach does not account for
effects of atmospheric CO2 concentrations27,28,30. Indeed, our
study focuses on the carbon flux—NPP and HR and carbon sink
averaged over the long-term projected future (2015–2099) in
mature forests across continents. The mechanistic basis under-
lying this approach is the observed pattern of faster growth and

Fig. 3 Standardized response coefficients (mean ± 95% CIs) between LOSS and dominant environmental drivers. The scales analyzed were at
continents a, tropical regions b vs non-tropical regions c, d. The response coefficients were quantified by linear mixed model which account for each plot as
a random effect. Panels c and d used basal area and stand density index (SDI) as competition index, respectively. SDI was defined as the degree of
crowding within stocked areas and quantified as a function of tree density and the quadratic mean diameter in centimeters. Basal area is strongly correlated
with total biomass and higher LOSS in higher basal area may be merely because of its correlations. Thus, we used another competition metrics – SDI to
further confirm the role of competition in LOSS. The error bars denote the 95% confidence interval. *P < 0.05; **P < 0.01; ***P < 0.001.
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higher mortality and thus an emerging coupling of growth,
mortality, and respiration averaged over long-term and broad
spatial scales, which have been demonstrated in forest inventory
datasets11,47, tree rings12, eddy flux towers20 and Earth System

models13 and DGVMs here. Our approach assumes that this
emergent coupling holds both in the short-term historical period
and will hold in the future, thus allowing us to use observed
historical LOSS to constrain the future projected NPP and HR
carbon fluxes.

Conclusions and implications. Models typically have a simple
representation of tree mortality processes, as a fraction of
standing stock13, but increasingly more detailed global datasets of
tree biomass and demography will also make it possible to test
more realistic simulations of competition for light, water and
nutrients in the next generation of vegetation models35,48. The
finite resources and vegetation carrying capacity govern the tra-
deoffs between growth and mortality and respiration across space
or time. We note, however, that changes in availability and/or
usage efficiency of resources (i.e., water and nutrients) could
potentially change the tradeoffs or couplings of mortality and
growth across space18,24, thus highlighting the significance of
accounting for resource usage efficiency in the model projections.
Another non-modeled factor of decoupling is the role of climate-
induced disturbances that could strongly increase LOSS
and have a delayed positive or negative effect on NPP in the
recovery phase.

HR remains even more poorly understood and more simply
represented than LOSS and NPP in DGVMs. Thus, the couplings
of LOSS with HR could be weaker or more uncertain (subject to
changes) relative to the couplings of LOSS and NPP at long term
and broad spatial scales. This presumably explains why our ML
constraint has a greater influence on NPP than HR found in this
study. Our results show the potential of leveraging a machine-
learning (ML) approach of constraint and forest demography
data to constrain the projected NPP and HR at broad spatial
scales. This ML approach accounts for the non-linearity and all
pixel values of variables of interest (i.e., LOSS here), which is not
necessarily considered using the conventional EC approach. Our
results indicate that the projected increase in tropical forest
productivity after constraint may not be as large as previously
thought relative to predictions of unconstrained models,
especially over the Amazon. These reductions in tropical carbon
uptake may offset projected increases in boreal and temperate
forest productivity, thereby reducing the model estimates of
carbon sink potential of global forests.

Methods
Forest plot datasets. Forest plot data used in this study met the following
criteria13: (1) all plots had at least three consecutive censuses and long-term (>9
years) observations between the first and last census so that LOSS averaged over all
censuses was representative of the historic forest status; (2) plots were natural,
unmanaged forest stands that have not been disturbed by fires, harvesting, and
other human activities; (3) the plots were largely mature or old-growth forests and
were screened by criteria such as forest age or forest gymnosperm fraction (see
Supplementary Information for details); (4) the plots were in a quasi-steady state
and were screened by criteria that plots with growth more than 3 times of LOSS or
LOSS more than 3 times of growth were excluded—such large differences (i.e.,
more than 3 times) between LOSS and NPP are likely due to disturbances such as
fires that are not well-represented yet in DGVMs. Thus this criterion is thus used to
further select natural mature and old-growth forest stands; and (5) the plots with
low values of biomass (i.e., <3 Kg m−2) were excluded because they are not fully
stocked and thus not likely to be mature forests. Ultimately, we compiled a broad-
scale (n= 2676) and long-term (1951 to 2018) dataset of largely unmanaged forest
plots in a quasi-steady state, distributed in Canada, USA, Amazon, Africa and Asia
& Australia (Supplementary Fig. 1). When compared with DGVMs, the above-
ground woody biomass loss was converted to total woody biomass loss including
belowground roots using the root-shoot biomass ratio product49. Otherwise, the
original aboveground woody biomass loss (i.e., in the constraint or analysis of
drivers of LOSS) was used and reported to avoid the additional uncertainty from
the root-shoot biomass ratio product. More details for the criterion of plots
selected, plot establishment, and measurements are described in Supplementary
Methods.

Fig. 4 Projected grid-level NPP and grid heterotrophic respiration (HR)
across continents. a, b Projected (2015–2099) grid-level NPP a and grid-
level HR b across continents quantified by six dynamic vegetation models—
DGVMs (ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-
DGVM). The y axes are the minimum, mean, and maximum values in six
DGVMs. ‘DGVMs’ refers to the scenario before constraint and ‘DGVMs +
Observation’ refers to the scenario after constraint without climate
predictors. The constraint was achieved by using the observational maps
(n= 100; through a bootstrapping approach; see Methods for details) of
LOSS derived from forest plots data to feed into the trained ML (random
forest) model. Reported are ensemble means of constraint. The constraint
effect was significant when North America were divided into temperate and
boreal forests (see results of Supplementary Fig. 17). *P < 0.05; **P < 0.01;
***P < 0.001.

Table 1 Modeled projected (period 2015–2099, units in
Pg C y−1) grid-level NPP and grid-level HR before and after
constrain across the continent in six DGVMs.

Continent Before constraint After constraint

NPP Mean SD Mean SD

North America 6.1 2.9 6.4 2.1
South America 9.0 3.0 7.9*** 2.1
Africa 2.4 0.8 2.3* 0.6
Asia & Australia 2.3 0.9 2.0*** 0.5
HR
North America 5.4 2.0 5.3 0.9
South America 7.0 1.7 6.5*** 0.7
Africa 1.9 0.5 1.9 0.2
Asia & Australia 1.8 0.5 1.7*** 0.2

Note: (1) the scenario is without accounting for the effects of projected climate—precipitation
and temperature;
(2) a bootstrapping (100 times) approach was used for constraint of projected NPP or HR (see
Methods) and ensemble means were reported;
(3) the ANOVA test was used to explicitly evaluate whether the difference before and after
constrain of projected NPP or HR was significant. * for P < 0.05; ** for P < 0.01; *** for P < 0.001.
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DGVMs. Simulated NPP, mortality flux, and HR of six DGVMs (ORCHIDEE,
CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM) were publicly
available from the carbon turnover inter comparison project https://zenodo.org/
communities/vegc-turnover-comp/?page=1&size=2035. We used these six
DGVMs because they explicitly reported tree mortality. To be comparable with
forest plot data, we used the components of tree mortality flux without disturbance,
such as fires (Supplementary Table 2). The historic mortality flux was averaged
over 1961–2014 forced by CRU-NCEP v5 climate data and the projected NPP and
HR were averaged over 2015–2099 forced by bias-corrected IPSL-CM5A-LR RCP
8.5 simulated climate data. Because the output of HR is reported at grid scale and it
is not able to be decomposed into components of HR contributed by trees vs non-
trees, we used grid scale NPP to estimate forest carbon sink, quantified as the
difference of grid-level NPP and grid-level HR. To be consistent with forest
inventory data, outputs of historical mortality at tree-level were used to compare
with observations. All outputs were resampled and analyzed at 0.5 degree.

Geospatial modeling and environmental drivers. We used the Random Forest
machine learning algorithm50 (see Supplementary Methods) with the derived 57
environmental covariates including climate, vegetation and soil conditions (Sup-
plementary Data 1) to extrapolate these relationships between LOSS and envir-
onmental conditions across continents and generate the first spatially-explicit and
quantitative map of LOSS at the continental scale. The 57 environmental covariates
were derived based on the georeferenced coordinates of forest plot data (n= 814)
aggregated at 0.25 degree. 10-fold cross-validation was used to evaluate the strength
of prediction and the best model having high coefficient of determination and low
standard deviation in the mean cross-validation were used to generate the map of
LOSS. The standard error sharply decreased with increasing sample size across all
vegetation biomes and the analysis showed that an efficient prediction required a
large sample size (n > 400) (Supplementary Fig. 20a). Random Forest was able to
predict the variation in LOSS with high predictive accuracy (R2= 0.48 in 10-fold
cross-validation; R2= 0.93 in final model; Supplementary Fig. 20b). Two types of
bootstrapping were used to evaluate the uncertainty (standard deviation as a
fraction of the mean predicted value) in the map of LOSS. One was based on a
stratified bootstrapping (100 iterations) procedure51, which was the sampled
biomes of each point feature (LOSS) with the total number collection of LOSS
points to avoid biases. The second bootstrap was based on randomly sampling 90%
with replacement (10 iterations) to account for the biases from an unbalanced
sample distribution. In both the two types of bootstrapping, ensemble mean and
95% confidence intervals of LOSS were computed by grid. Rasters of tree cover,
human footprint index, percentage of annual burn area and managed land cover
(see Supplementary Methods) were used as mask to define the natural forest areas
across continents.

To examine the environmental controls of LOSS, we chose the top drivers
which include climate conditions (mean annual temperature, MAT; aridity index;
precipitation seasonality), vegetation properties (tree density, basal area,
competition index, wood density and biome type) and soil properties (soil organic
carbon, SOC; soil N; soil hydraulic conductivity, Ks; cation exchange capacity; clay
content; and pH) (see Supplementary Methods). Competition index was defined as
the degree of crowding within stocked areas and quantified as a function of tree
density and the quadratic mean diameter in centimeters44. These variables were
examined to avoid multicollinearity using a matrix of pairwise correlations to
remove any variable with high correlations (R > 0.7) with other predictor
variables52 and variation inflation factor (VIF < 4). The Random Forest machine
learning algorithm was then used to determine the importance of each predictor
variable53. Mean decrease in accuracy (%IncMSE) were reported and the variables
with greater values of %IncMSE are more important in influencing LOSS. To
account for each plot as a random effect, we also used a linear mixed model to
examine the dominant factors on LOSS across continents and in tropical regions vs
non-tropical regions (see Supplementary Methods).

Constraining projected forest carbon sinks. Constraint analyses were conducted
at a spatial resolution of 0.5 degree, with model outputs and observational LOSS
maps resampled at 0.5 degree. We first attempted to use the conventional emergent
constraint (EC) approach to constrain the projected (2015–2099) NPP, HR, and
forest carbon sink. This was achieved by least-squares linear regressions27 between
historical (1961–2014) LOSS and projected grid-level NPP and grid-level HR across
DGVMs:

NPPproorHRproðiÞ ¼ a ´ LOSShisðiÞ þ b ð1Þ

where pro is ‘projected’, his is ‘historic’, i is the index of model, and a and b are
coefficients. NPP and HR were aggregated as sum within each continent and LOSS
were aggregated as average across forest plot sites or within each continent
(Supplementary Fig. 4). In details, we first used LOSS at forest-plot local scale to
constrain the projected NPP and HR at continental scale in DGVMs and found its
limited feasibility in the conventional emergent constraint approach because of
spatial mismatch between data and model25 and non-significance of EC in tropical
regions (Supplementary Fig. 11). This motivated us to generate a spatially explicit
map of LOSS derived from the machine learning algorithm (see Methods) to

constrain the projected NPP and HR at continental scale in DGVMs. To this end,
we further used LOSS map values averaged across pixels within each continent to
constrain the projected NPP and HR at continental scale in DGVMs. But we still
found non-significance of EC in tropical regions (Supplementary Fig. 12), pre-
sumably because averaging LOSS across pixels still led to substantial reduction of
sample size.

Alternatively, we used the historical (1961–2014) LOSS as the predictor to train
a random forest model and constrain the projected (2015–2099) NPP, HR, and
forest carbon sink:

NPPproorHRpro
ðiÞ ¼ f ðLOSShis ið ÞÞ ð2Þ

NPPproorHRpro
ðiÞ ¼ f ðLOSShis ið Þ;MATpro;MAPproÞ ð3Þ

where Eq. 2 is the scenario without the projected climate effects and Eq. 3 is the
scenario with the projected climate effects. Climate effects were incorporated to
account for their potential influence on the couplings or relationships between
historical LOSS and projected NPP and HR across environmental (climate)
gradients. CO2 was not included in Eq. (3) because of the minimal spatial
heterogeneity on annual timescales. We clarify that all these variables were averages
over the historical or future periods and our study thus focused on the spatial
patterns of variables of interests in the quasi-steady state.

We stress that the random forest model allowed for inclusion of all grid values
of variables of interests and consideration of non-linearity. This was achieved with
1000 trees and 10 maximum tree depth and 80% of the data for training purpose
and the rest 20% for validation. With this approach, we surrogated the predictive
relationship between the historical (1961–2014) LOSS and the projected
(2015–2099) NPP and HR from a complex but physically driven DGVMs with an
empirical machine learning model (random forest). Then, we feed the observed
maps of LOSS derived from forest plots datasets into the trained random forest
model to assess the impacts of historic LOSS on the projected NPP and HR. In this
way, we were able to generate the spatially explicit34 constraint of the projected
NPP and HR, which was subsequently aggregated as sum within each continent to
assess the forest carbon sink at the continental scale. Forest carbon sink was
quantified by the difference of grid-level NPP and grid-level HR. The mechanistic
underpinning justifying the linear (emergent) and non-linear (machine learning)
constrain was the theory of faster growth and higher mortality12,13,47 and thus
couplings of growth, mortality and respiration averaged over long term and broad
spatial scales20,21.

To assess the uncertainty of our ML constraint, we conducted a bootstrapping
approach to account for uncertainty from LOSS maps. As stated above, two sources
of uncertainty of LOSS maps were assessed in this study, with one bootstrapping
approach based on the sampled biomes of each point feature (LOSS, 100 times) and
the second bootstrapping approach based on randomly sampling 90% with
replacement. Here we summed up the two sources of uncertainty (standard
deviation – mean × coefficient of variance) and times 2 (hereafter overall standard
deviation) to account for other potential sources of uncertainty such as
environmental covariates as a conservative constraint. We averaged the two
ensemble means of LOSS maps from these two types of bootstrapping approaches
to derive the overall average value of LOSS. Then we used a bootstrapping
approach to generate 100 maps of mean value of LOSS, with its distribution
following the values of the overall average and overall standard deviation of LOSS
maps (see Methods). The 100 maps of mean value of LOSS were used to constrain
the projected NPP or HR. The uncertainty of the constraint was assessed and
ensemble means of constraints were reported.

Data availability
Data of LOSS aggregated at 0.25 degree and the final LOSS maps (mean and standard
deviation) at 0.5 degree used in our ML constraint approach are deposited in github. The
raw inventory data are available upon reasonable request from the corresponding author.

Code availability
The codes of machine learning used to generate LOSS maps were adapted from https://
github.com/KailiangYu/Biogeography-of-soil-microbes.git. The code of ML constraint
developed in this study is deposited in github.
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