
HAL Id: hal-03693764
https://hal.science/hal-03693764v1

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time high performance computing using a Jetson
Xavier AGX

Cyril Cetre, Florian Ferreira, Arnaud Sevin, Rémi Barrere, Damien Gratadour

To cite this version:
Cyril Cetre, Florian Ferreira, Arnaud Sevin, Rémi Barrere, Damien Gratadour. Real-time high perfor-
mance computing using a Jetson Xavier AGX. 11th European Congress Embedded Real Time System
(ERTS2022), Jun 2022, Toulouse, France. �hal-03693764�

https://hal.science/hal-03693764v1
https://hal.archives-ouvertes.fr

Real-time high performance computing using a Jetson Xavier AGX
Cyril Cetre1, 2, Florian Ferreira2, Arnaud Sevin2, Rémi Barrere1 and Damien Gratadour2

1Thales Research & Technology
2LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France

Abstract

While general purpose graphics processing units now embark tremendous amount of computing power, their use in real time
applications is still a challenge. The COSMIC platform, developed in the context of adaptive optics control for giant astronomical
telescopes is a demonstrated solution to perform real time computations using discrete GPUs while maintaining a high level of
abstraction and modularity. An implementation on embedded platforms with the goal to reach an acceptable level of time-determinism
would enable new real-time use cases in other application domains. In this regard, NVIDIA is offering a broad range of embedded
systems on chip delivering great performance and compatible with the CUDA ecosystem. However, specific hardware and software
features bring uncertainties regarding real-time performance. The approaches presented in this paper rely on COSMIC recipes to
expose part of the underlying unconventional GPU programming model to reach real-time performance. It shows how Jetson Xavier
performs on sub-millisecond complex pipelines made of several compute kernels, considering the limitations engendered by missing
CUDA features as compared to discrete devices, leveraging unified memory to work around these hurdles and enabling several
strategies for implementing real-time workflows on embedded GPU platforms.

Keywords: Real-time systems, graphics processing units, High Performance computing, embedded software, CUDA

Introduction

Real-time computing for adaptive optics

Adaptive Optics (AO) systems are used to compensate aber-
rations in real-time on optical systems. They are a core com-
ponent of extremely large telescopes for astronomy. They
aim at making partial compensation of image distortions
induced by atmospheric turbulence in real-time using a set
of computer controlled actuators, under the reflective sur-
face of so-called deformable mirrors, to observe astronomical
objects at high angular resolution and high contrast. As dis-
tortions and external constraints on AO are fluctuating on
very short time scales, AO controllers, working in closed
loop, need to infere the best actuators commands with min-
imum and stable time-to-solution (in the range of 1 ms or
less). In addition, the complexity of AO systems exacerbates
the need for a modular solution which provides the ability
to realize flexible computing pipelines.

The COSMIC [1] platform was designed to cover the re-
quirements of a wide variety of AO instruments considering
these constraints. This platform relies on off-the-shelf high
performance libraries and a modular approach, in order to
minimize implementation cost and complexity while maxi-
mizing performance and throughput of applications requir-
ing efficient GPU computations. It provides abstraction lay-
ers handling data transfers, inter-process communications
and synchronisations between computation units of a given
pipeline. Each computation of the pipeline is turned into an
independent process, allowing individual monitoring and
real-time pipeline modifications. The multi-process mecha-

nisms are thoroughly optimized to obtain the best possible
performance given the hardware configuration.

While COSMIC was originally designed for AO, its ap-
plication to other domains remains perfectly valid as it is
aiming at providing a framework for real-time computation
regardless the pipeline. Therefore, evaluating the use of its
programming methods on embedded platforms is mean-
ingful, although opening the door to new challenges. An
embedded implementation will have to ensure that perfor-
mance is preserved with scarce resources while proposing
possible solutions to overcome technical limitations. A stable
implementation on systems on chip (SoC) could prove useful
to implement simpler pipelines with specific use cases such
as smart cameras working as wavefront sensors.

Embedded systems and real-time computing
With the exponential growth of the use of deep learning
in various domains, SoC with integrated GPU (iGPU) are
becoming very popular thanks to their rather high perfor-
mance per watt. In particular, NVIDIA provides a broad
range of consumer products using custom ARM CPU and
iGPU. These SoC have many interesting features such as sup-
porting the CUDA ecosystem. This makes cross-platform
programming pretty straightforward with few differences
between SoC and discrete GPUs (dGPU) [2]. As opposed
to a dGPU, which is a separate device from the processor
with dedicated memory, one of the main features of iGPU
is to share memory with the CPU, which allows to reduce
the need for data transfers, although it opens the doors to a
number of challenges as well considering the CPU activity

1

2 ERTS 2022

may interfere negatively with the GPU computations.
In any case, achieving real-time GPU computing can be

challenging since this technology offers very few safeguards
on execution time determinism. That is why average jitter
and Maximum Measured Execution Time (MMET) must be
assessed carefully. Ensuring such features, combined with a
high throughput is a significant hurdle to overcome before
bringing GPU into time critical applications.

In addition, enabling workflows involving multiple pro-
cesses on a GPU brings uncertainties regarding the end-to-
end response time. Some functionalities like CUDA Multi
Process Service (MPS) are offered to allow kernels from dif-
ferent processes to execute concurrently. However, MPS and
some other features are not available on embedded NVIDIA
SoC, making multi-process application portability unpre-
dictable on such platforms.

Unconventional programming model for GPU
Ensuring time-to-solution repeatability with very low jitter
for a complex pipeline can be particularly tough when re-
lying on multi-process asynchronous GPU computations.
While achieving a high throughput is possible when tak-
ing into account intrinsic overheads of GPU computing,
such as memory transfers, kernel launches or synchroniza-
tions between the host and the device, reaching low perfor-
mance jitter usually requires unconventional programming
approaches, such as using persistent kernels [3] [4]. As the
name implies, these kernels are not terminated between each
iteration and just wait on the arrival of more data to be trig-
gered again. However, such technique heavily depends on
hardware features and the CUDA grid/block dimensioning
must be handled within the kernel. As a consequence, per-
sistent kernels must be redesigned when either the pipeline
or the targeted hardware changes. A proposed trade-off
between persistent kernels and traditional programming
models is the use of a combination of GPU busy wait ker-
nels and look ahead jobs scheduling, relying on the GPU
scheduler to launch new kernels while avoiding CPU/GPU
synchronization overheads [1].

This paper exposes this approach through a set of out-of-
the box use cases, comparing the discrete and embedded
behaviour in order to provide guidance about how to per-
form real-time multi-process computations with complex
applications in an embedded environment.

Focus of this paper
This paper relies on previous work done with the COSMIC
platform and extends the best practices implemented therein
to provide a suitable solution for critical real-time applica-
tions running on embedded platforms in terms of average
jitter, worst observed execution time and throughput.

Porting these recipes on Jetson Xavier AGX provides an
overview of how architectural and software differences be-
tween embedded platforms and integrated GPUs can be
worked around to achieve real-time performance.

We highlight these differences and show why it could
be a serious impediment to determinism. We also propose

workarounds using multi-thread or multi-process implemen-
tations of GPU inter-process communication through busy-
waiting.

Finally, we evaluate through benchmarking the perfor-
mance and overall behaviour obtained using different meth-
ods for efficient inter-process communication

Related Work
Using GPUs for real-time applications is not straightforward,
as it has not necessarily been designed to minimise MMET,
although modern GPUs are slowly overcoming technological
limitations with increased features and capabilities. [5, 6].

Unlike dGPUs, the CPU and the iGPU share the same
SoC DRAM on Tegra devices. As a consequence, CPU ac-
tivity may interfere negatively with GPU computation and
conversely [7]. That is why some authors have proposed to
improve determinism by protecting GPU applications from
memory throttling through custom schedulers [8, 9]. In ad-
dition, several studies are aiming to unveil closed-source
details of GPU schedulers to get a better understanding of
their behaviour. [10, 11].

On a positive note, shared DRAM implies that data trans-
fers from host to device are avoidable. In such circumstances,
pinned host memory accessed from GPU will not have copy
overheads and will be bounded by the same bandwidth
as memory allocated from device code. Combined with
CPU shared memory, it is used in this contribution as a
workaround to bypass the lack of CUDA Inter-Process Com-
munication (IPC) features. In addition, previous work has
shown that using pinned host memory on embedded sys-
tems can be a way to increase determinism by reducing
memory requirements of GPU programs [12].

Real-time multi-process computing on GPU
Inherited from a project having strong requirements for scal-
ability, maintainability and modularity [3], COSMIC was
designed as a framework able to overcome the underlying
limitations by supporting separate kernels that can run either
concurrently or sequentially, with an efficient synchroniza-
tion mechanism. However, a complex software architecture
does not necessarily scale well when GPU computations are
involved depending on the exact setting.

For instance, the default behaviour of CUDA is not suited
for real-time multi-process applications. As every process
has its own CUDA context only one context can run at the
same time on the GPU, the device has to switch constantly
between them, leading to extra jitter. In addition, running
kernels with a small number of threads will lead to poor GPU
performance as another kernel could have run concurrently.
For a single process (and single context) application, the
CUDA streams were created to overcome this issue and
enable the overlapping of kernels executions.

In the case of multi-process applications, NVIDIA has
made various tools available to improve the device manage-
ment. In this regard, the next sub-section offers an overview
of these CUDA features providing a good understanding of
their implication and why they are critical for real-time.

CETRE et al. 3

CUDA MultiProcess Service (MPS)
CUDA MPS is a binary-compatible client-server runtime
implementation of the CUDA API. MPS is especially useful
when multiple processes are making use of the GPU, in
particular when these processes underutilize GPU resources.
Its main benefits are the following :

• Kernels and memcopy operations from different pro-
cesses may overlap on the GPU.

• MPS handles only one GPU context and set of schedul-
ing resources between its clients instead of one context
for each process. This removes the need for context
switching between two GPU kernels.

CUDA Interprocess Communication
Part of the CUDA Toolkit and available since compute capa-
bility 2.0, CUDA IPC enables sharing device buffers between
multiple processes. While the COSMIC memory manager
implementation relies on CUDA IPC to share device buffer
between processes, these calls are not supported on Tegra
device.

GPU busy wait synchronization
At some point, a process will have to wait for another to
complete, thus needing to synchronize. Previous work on
the COSMIC framework provided an assessment on which
kind of synchronization gives the best response time in order
to maximize performance [1]. From this study, it appears
that busy wait synchronization (meaning different processes
actively wait for data to be written on the GPU through
memory polling) shows a significant latency improvement
compared to a regular CPU based POSIX semaphore syn-
chronization. It has several benefits :

• The pipeline processing is now fully asynchronous from
the CPU, allowing the user to hide kernel launch latency
by accumulating jobs on the GPU scheduler in advance.

• A CPU, even isolated is still more likely to get non pre-
emptible interruption request from the OS kernel com-
pared to a GPU which is dedicated to computations.

On the other hand, each busy wait process is using a
GPU streaming multiprocessor to spin on a given location in
memory which is increasing system occupancy and resource
consumption.

Figure 1 and 2 shows how busy waiting with CUDA MPS
enabled performs compared to POSIX semaphore implemen-
tation, revealing non negligible latency improvement on a
NVIDIA DGX server (286 µs of average execution time for
semaphore and 235 µ s for GPU Busy wait). Even though
the semaphore synchronization shows a better average jit-
ter (2.1 µs for semaphore and 4.4 µs for GPU busy wait),
this synchronization process is more prone to jitter peaks
(semaphore : 35 µs of peak to valley and 30 µs for GPU busy
wait). In addition, the NVIDIA DGX server performs espe-
cially well to minimize this kind of interference, which tends
to show higher peak to valley in the case of semaphore syn-
chronization as compared to other GPU equipped servers.

Figure 1 Time-to-solution execution profiles obtained with
COSMIC in the context of the AO application, using 2
different synchronization mechanisms over 1M iterations
[1]

Figure 2 Time-to-solution histogram obtained with COS-
MIC in the context of the AO application, using 2 different
synchronization mechanisms over 1M iterations [1]

As a consequence, the GPU busy wait is preferable both in
terms of latency and jitter stability.

Considering the sub-millisecond response time require-
ment, such gains represents a great asset and are hardly
dispensable. Reproducing such results on an embedded
SoC would bring us closer to hard real-time embedded GPU
computing, although the road ahead is full of obstacles.

The challenge of embedded GPU computing
As GPUs are growing in complexity with features includ-
ing dedicated cores for specific operations including tensor
cores for matrix multiplication or RT cores for raytracing,
NVIDIA is regularly proposing new SoCs featuring the lat-

4 ERTS 2022

est innovations. As a consequence, each SoC has a specific
hardware architecture (CPU and GPU) which makes it diffi-
cult to predict performance on the targeted board without
comprehensive testing. That is why this paper will focus on
NVIDIA Jetson Xavier AGX, which is providing some fea-
tures (for instance I/O coherency) which were not available
on previous NVIDIA boards.

The Jetson Xavier AGX
Released in 2018, the Jetson Xavier AGX is currently the most
powerful embedded GPU platform available on the market.
It is featuring within its Xavier Tegra SoC a Volta GPU with
512 CUDA cores and 8 streaming multiprocessors.

Figure 3 Block diagram of Jetson Xavier complex (credits :
[13]

The CPU is composed of 8 ARM 8.2 architecture compli-
ant cores. Regarding the cache hierarchy, it is important to
notice that the CPU complex is composed of 4 islands. Al-
though each core has its own private L1 cache, the CPU L2
cache is shared between two threads. Two cores from the
same island will interfere if both are executing highly band-
width dependant tasks. As a consequence, the combined
bandwidth of two CPUs of the same island is worse com-
pared to a single core doing heavy bandwidth computations
paired with an idle one. [13].

This is why it is recommended to always isolate CPUs by
island to avoid extra interference from shared L2 cache on
this platform.

Unlike discrete GPU (dGPU), CPU and integrated GPU
(iGPU) share 16GB of DRAM clocked at most at 2133 MHz,
reaching a theoretical bandwidth of 137 GB/s.

Shared CPU/GPU memory
From a software point of view, shared memory does not
mean that a CPU pointer is accessible from GPU and con-
versely. Depending on how memory is allocated, the cache
behaviour differs and memory might not be accessible from
both the host and the device. Similarly to dGPU, memory

allocated with cudaMalloc is not accessible from the host
and a buffer allocated with cudaMallocManaged will return a
buffer accessible from both sides. The main difference with
dGPU is that there is no hidden memory copies between the
host and the device and the source code should be adapted
to make copies only when unavoidable. NVIDIA provides
detailed documentation about the cache behaviour depend-
ing on how the memory was allocated [2]. Starting with
the Xavier architecture, Tegra boards are featuring I/O Co-
herency which allow I/O devices such as the GPU to read
the latest updates in CPU caches. This is beneficial in our
case as it allows to cache CPU pinned host memory and to
register an existing host memory range for use by CUDA,
which is crucial in our proposal to bypass the lack of CUDA
IPC.

CUDA IPC/MPS unavailable on Jetson
At the time this paper was written, aforementioned multi-
process features are not available on NVIDIA embedded
systems. As a consequence, multi-process GPU busy waiting
is not viable as it is introducing strong jitter interference due
to GPU context switching. We will see in the next sections
various options we explored to get performance similar to
the classical multi-process approach, followed by experimen-
tal results.

Multi-process real-time computing on Jetson em-
bedded platforms

GPU buffer sharing on Jetson Xavier
When trying to reproduce complex GPU pipelines on Jetson,
the first obstacle lies in being able to share GPU buffers
among processes which is usually done on a discrete device
through CUDA IPC. So far, this feature is not available on
Tegra SoC although sharing device memory is a core feature
of the platform.

Fortunately, on Tegra devices with I/O coherency [2]
(starting with the Jetson Xavier, not applicable on previous
devices) it is possible to register an existing host memory
range for use by CUDA. The identified workaround takes ad-
vantage of the CPU and GPU unified memory to keep decent
performance while using a mix of POSIX shared memory and
zero-copy mechanism which allows a GPU to fetch pinned
host data.

Using GPU kernels to access pinned host memory is com-
ing with drawbacks. First, it will result in separated pointers
for host and device calls, although using the same memory
space. Second, pinned host memory accessed by the GPU
will not be cached. As a consequence, user must take ex-
tra care when accessing memory to avoid any performance
drop.

GPU busy-waiting efficiency on Jetson Xavier
Although the aforementioned shared GPU buffers enables
GPU busy wait synchronization, results showed really
poor performance using a straightforward implementation.
Recording sub-milliseconds computations through a non-
intrusive timer (meaning that it is using a separate process in

CETRE et al. 5

order to avoid interference with the main pipeline) requires
responsive measurements.

Unfortunately, measuring those events on GPU turns out
impossible as the GPU timer is unable to start and stop at
the right moment while performing sub-millisecond mea-
surements. Considering that this timer has its own process
and CUDA context, the GPU scheduler will not necessarily
give the hand back to the timer process right after the com-
putation process sends the stopping signal, thus providing
misleading results.

Although CUDA preemption mechanism and context
loading are not publicly disclosed, we know that the GPU is
handling multiple clients (i.e., multiple processes requesting
GPU resources) with a time-slicing behaviour. In addition, a
GPU always serialise two kernels from different processes,
even though the resources to run them in parallel are avail-
able.

As a consequence, the scheduler regularly interrupts the
pipeline computations to perform GPU busy waiting from
other computing units, leading to unintended performance
and jitter degradation. Considering that multi-process busy-
wait synchronization relies heavily on launching small ker-
nels from different processes, it is impossible to achieve a
satisfactory level of determinism in highly constrained envi-
ronments using regular busy-waiting without CUDA MPS.

Possible workarounds
Thanks to unified memory, potential workarounds are
available although they don’t completely overcome the lack
of CUDA MPS.

Multiple-context CPU active-wait strategy
It is possible to keep going with multiple CUDA contexts.

In this case, the important aspect is to avoid doing active
waits on GPU at all costs as explained in the previous
subsection. Active waiting with CPU on a GPU data buffer
is working, although forcing CPU thread spinning. This
avoids a synchronization between the host and the GPU as
notifications are sent through the device. However, the GPU
won’t be able to schedule kernels ahead of time as the CPU
is now blocking the execution. Adding context switching,
this strategy will introduce some overhead compared to
straightforward GPU busy-wait.

Semaphore strategy
While having an overhead compared to active wait strat-

egy, implementing POSIX semaphore based signals remains
perfectly viable and will suffice in most cases.

Multi-thread strategy for real-time computing
After establishing that the principal constraint is to keep only
one CUDA context to get best results when using the GPU
busy waiting technique, it seems that an approach relying
on both multi-thread and multiple streams is an approach to
consider. CUDA streams were specifically designed to allow
concurrency on a single process, which is a requirement for
this kind of busy-wait.

On the positive side, a multi-threaded implementation
removes software dependency to inter-process features
(CUDA MPS and CUDA IPC). As a consequence, it is de-
ployable on both discrete and integrated GPU environments
as opposed to the multi-process approach.

However, it must be pointed out that the GPU behaviour
is not strictly identical. For instance, considering the GPU
busy-wait mechanism, it is very important to synchronize
the CPU with the CUDA execution at some point. A CUDA
context has a limited queue depth in terms of kernel schedul-
ing. When this limit is reached, a forced synchronization
occurs on the CPU before it can be able to enqueue more
kernels. It is thus very easy to end up with a deadlock, with
busy wait kernels exceeding the queue depth leading to the
impossibility to send notifications. This limitation must be
taken into account by the implementation.

The described behaviour may not be the only differ-
ence between multi-thread and multi-process strategies.
Unfortunately, as for the multi-process preempting be-
haviour, CUDA stream scheduling is scarcely documented
by NVIDIA although several studies are working toward
exposing it in more details [14]. Thus, it is likely that new
behaviour specificities will be empirically discovered in the
future.

Regarding performance, results with a multi-thread im-
plementation appeared to be very similar to regular MPS
multi-processing, which is encouraging.

Environment setup and results

Use Case
For the sake of reproducibility and modularity, the decision
was taken to implement a simplified pipeline while keeping
only COSMIC core synchronization mechanisms. It allows
us to propose multiple test cases, with both embedded and
iGPUs whenever necessary.

Figure 4 shows an example of how a given sample test
behaves regardless of the synchronization approach and
its kind of parallelization, being either multi-threaded or
multi-processed. The basic architecture of the pipeline is the
following :

• A camera emulator which sends notifications at a given
framerate. The notification to start computation is sent
to both the timer and the first computation unit.

• A pipeline that can be composed of one or more com-
pute units. In our test environment, it essentially per-
forms matrix vector multiplications (MVM). It sends a
notification to the timer once it is done.

• A timer which gets notifications from the camera em-
ulator to start and from the last computation unit to
stop.

Each test is performed first in a multi-processed environ-
ment, meaning each unit (timer, camera, first MVM, second
MVM and so on) are launched as separated processes. The
only way these units have to communicate is through shared
memory and signals to synchronize, which is done either

6 ERTS 2022

Figure 4 Timeline of a test with two computing units

through POSIX semaphores or GPU busy-wait. In a second
experiment, the test is performed with the multi-threaded
approach : the computation units are launched in the same
process. However, each unit is given a distinct CUDA stream
which allows kernel execution overlapping. Both synchro-
nization methods are performed as well.

WCET and MMET
The Worst Case Execution Time is a term typically used
in critical real-time systems where reliability and safety is
paramount. As of today, it is very unlikely that an embed-
ded environment such as a Jetson can allow a demonstrated
WCET such as it is meant in avionics. In order to avoid mis-
conception about the testing process, this paper is addressing
Maximum Measured Execution Time (MMET), meaning the
worst case measured in the test session with a representa-
tive number of executions (1 million). Figure 5 shows how
MMET does not necessarily shows the worse possible case,
compared to the WCET.

Figure 5 This paper uses maximum measured execution
time (MMET) figure credit : Thales Research Technology

Timing measurement
Timing events with asynchronous CPU and GPU interactions
can be surprisingly difficult. In order to record overheads
between a computation unit sending a signal and another
receiving it, the timer must stay in a separate thread. It is

also a great asset as a timer needs to synchronize with CPU
and GPU in order to get execution time, which is unavoid-
ably introducing overhead. This kind of timer needs the
first pipeline unit to send a notification to launch measure-
ment and the last one to send a another one to stop it. The
downside is that the timer is not bounded to computation
anymore and might miss some iterations at some point if is
not awaiting for a signal when a notification is sent.

Making the timer independent of computation units will
not introduce interference to computation or forcing unin-
tended CPU/GPU synchronization, ensuring measurement
closest to the actual computation time.

The semaphore synchronization approach is measured
through the C++ high_resolution_clock API while the GPU
busy wait approach is using CUDA events.

Results will be shown through two different displays that
highlights different kind of information :

• Histograms are helpful to get a grasp of an approach
latency and jitter.

• Execution profiles include each iteration execution time.
It is useful to show how an approach is affected by jitter.
The wider the plot "line", the more jitter this approach
gets. it also shows infrequent outliers, that would not
appear on histograms.

Environment

Table 1 and 2 show both configuration used in the following
tests.

OS CentOS 8

Linux kernel 4.18.0-193.19.1.el8 2.x86 64

CPU 15 Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz

CUDA version 11.5

GPU Tesla V100

Table 1 Benchmark environment setup with dGPU

OS Ubuntu 18.04

Linux kernel 4.9.253-rt168-tegra

CPU 8-core ARM v8.2 64-bit

CUDA version 10.2

GPU 512-core Volta integrated GPU

Table 2 Benchmark environment setup on Jetson Xavier
AGX

CETRE et al. 7

Optimizations for real-time
Several optimisations are done to achieve real-time perfor-
mance. This includes :

• CPU isolation at boot.
• Processes scheduling set to FIFO with high priority.
• Running CUDA MPS server (for dGPU only).

In order to get comparable results across all experiments
for a given setup (dGPU or Jetson), MVM are based on a
fixed size. The framerate of the camera is set to always let
the pipeline finish its job before notifying for the arrival of a
new image.

To reach sub-millisecond computation time with both
settings, the matrix size is reduced with the Jetson Xavier,
giving the following sizes :

• 4096 X 12500 with the Tesla V100.
• 4096 x 1562 with the jetson Xavier.

Experimental results with the Tesla V100
The first step requires to study how different implementa-
tions behave with dGPUs compared to known results (Multi-
process with Active wait synchronization and CUDA MPS).
Figures 6, 7 and Table 3 shows an experiment with 1M itera-
tions of the same test performed with different paralleliza-
tion and synchronization techniques. The pipeline is the
simplest possible, composed of one camera, one processing
unit performing a matrix-vector multiplication (MVM) and
a non intrusive timer.

Figure 6 Normalized histograms with their estimated
probability density function (solid lines) of a pipeline com-
posed of one MVM unit with various synchronization ap-
proaches (SEMaphore and Active Wait) over 1M iteration
on DGX server

The best results in terms of latency come from active wait
synchronization (AW) regardless if using multi-thread or
multi-process approach with 274.3 µs of Mean Execution
Time (MET) for multi-process and 272.4 µs for multi-thread.
Even with this extremely simple pipeline, it still shows no-
ticeable improvement regarding the worse case compared
to semaphore based synchronization (gap < 25µs between
MMET and MET). However, the histogram of both active

Figure 7 Execution profiles over 1M iterations for various
scheduling and synchronization approaches on the DGX
server

Compute
type

Mean
execution
time (µs)

MMET
(µs)

Average
jitter (µs)

Jitter
Peak-to-
Valley

(µs)

Multiprocess
AW + MPS 274.3 288.8 3.5 25.6

Multiprocess
SEM 290.0 310.8 2.3 29.2

Multithread
AW 272.4 294.9 10.7 42.0

Multithread
SEM 296.0 334.3 2.3 45.9

Table 3 Summarised results of different synchronization
approaches on DGX server

wait synchronization approaches shows that results are scat-
tered across two Gaussian distributions. That is why the av-
erage jitter of multi-thread active wait is considerably higher
compared to the three other approaches. This behaviour is
not yet explained as it doesn’t look like an external interfer-
ence, which would have been highlighted with semaphore
approach as well. The multi-thread approach shows slightly
higher Peak-To-Valley jitter (P2V – MMET minus the mini-
mum measured time) with 42.0 µs with AW synchronization
and 45.9 µs with semaphore synchronization. The multi-
process approach (25.6 µs for AW and 29.2 µs) is slightly
more stable.

With these considerations, the active-wait based synchro-
nization is still outperforming semaphores in terms of la-
tency and MMET and remains the preferred option with a
dGPU. The multi-process approach shows slightly more sta-
ble results, although these gains are not sufficient to discard
the multi-threaded approach.

8 ERTS 2022

Figure 8 Normalized histograms with their estimated
probability density function of a pipeline composed of
one MVM unit with various synchronization approaches
(SEMaphore and Active Wait) over 1M iterations on the
Jetson Xavier

Figure 9 Execution profiles over 1M iterations for various
scheduling and synchronization approaches on the Jetson
Xavier

Compute
type

Mean
execution
time (µs)

MMET
(µs)

Average
jitter (µs)

Jitter P2V
(µs)

Multithread
AW 239.4 252.5 4.4 21.5

Multithread
SEM 263.9 346.4 4.8 139.8

Multiprocess
SEM 277.4 378.8 8.4 129.7

Table 4 Summarised results of synchronization techniques
on the Jetson Xavier

Experimental results on Jetson Xavier
As MPS is not available on Jetson Xavier, only 3 cases can be
assessed. We performed the exact same experiment on this
hardware and the results are presented in figures 8, 9 and

Table 4.
When comparing results obtained on both the dGPU and

iGPU platforms, a noticeable difference is that semaphore
synchronization approaches lead to less stable results on the
iGPU case with a up to 101.4µs gap between the MET and
the MMET for multi-process and 82.5 for multi-threaded
based approach. The multi-threaded active wait synchro-
nization is performing best with only 13.1 µs difference. The
P2V jitter shows the same kind of outcome with 21.5 µs for
multi-thread AW, 139.8 µs for multi-thread SEM and 129.7
µs for multi-process SEM. Even though CPU cores are iso-
lated on Jetson, semaphore synchronization is more prone
to interference compared to the dGPU case. Multi-thread
results are still considered satisfactory results, both in terms
of MMET and average time to solution.

Regarding semaphore performance, it appears that multi-
thread performs slightly better compared to multi-process.
When comparing to the dGPU (Figure 6), the reverse occurs
with multi-process semaphore delivering slightly better ex-
ecution time. It may be caused by how CPU contexts are
handled on both platforms (introducing CPU context switch)
and probably some CPU interference, more pronounced on
Jetson Xavier. We will investigate further such behavior in
future work.

Multiprocess with hybrid active wait

Figure 10 Normalized histograms with their estimated
probability density function of a pipeline composed of
two MVM units with the proposed hybrid (CPU/GPU)
active wait compared to other synchronization approaches
(Semaphore and active wait) on the Jetson Xavier

As aforementioned, the way the GPU handles multiple
processes and CUDA contexts is not suitable for GPU busy
waiting synchronization. A proposed workaround is to take
advantage of shared memory to avoid busy waiting with
GPU threads.

This hybrid active-wait strategy relies on letting the CPU
do the busy waiting on data shared with the GPU while
notifications are sent through GPU kernels. This allows
the GPU scheduler to stop constantly switching between
multiple CUDA contexts requiring GPU usage.

Although this implementation should not benefit from the
latency hiding obtained with look ahead kernel launch and

CETRE et al. 9

Figure 11 Execution profiles over 1M iterations of the hy-
brid active wait compared to other synchronization ap-
proaches on the Jetson Xavier

Compute
type

Mean
execution
time (µs)

MMET
(µs)

Average
jitter (µs)

Jitter P2V
(µs)

Multithread
AW 488.9 572.4 3.0 93.2

Multithread
SEM 519.0 611.1 5.8 116.9

Multiprocess
SEM 766.16 893.3 11.6 158.9

Multiprocess
AW hybrid 719.3 752.5 2.4 56.1

Table 5 Summarised results of hybrid synchronization
techniques on Jetson

still partly suffers from context switching overheads, using
the GPU for notification may help to reduce noxious interfer-
ence coming from the CPU, plus avoiding some CPU/GPU
synchronizations compared to semaphore approach.

It is important to note that such implementation is pos-
sible only with a sequential pipeline as concurrent kernels
have to be implemented through CUDA streams, otherwise
the resulting performance and determinism will be severely
affected.

In this test case (Figure 9, 10 and Table 5), the new mech-
anisms described are implemented (results named Multi-
process AW hybrid), resulting in a new approach for multi-
process synchronization. In order to expose how different
kinds of synchronization affect performance, two sequential
computing units are instantiated thus reproducing exactly
the setting for Figure 4. The first noticeable thing is that the
gap between multi-threaded and multi-processed synchro-
nization increases as the pipeline complexity grows. Regard-
ing latency, the multi-thread approach shows best results
regardless the kind of synchronization (488.9 µs for active

wait and 519.0 µs for semaphore) where the multi-process
approach is taking an extra 200 µs for the exact same com-
putations (766.16 µs for semaphore and 719.3 µs for the new
hybrid synchronization). This brings to light the cost of GPU
context switch which never happens in a multi-threaded
application.

However, it also shows that synchronization on the GPU
is an environment less prone to interference. The difference
between the MMET and MET of the hybrid active wait ap-
proach is 33,2 µs where the second best being multi-thread
AW with a difference of 83,5 µs. Finally, semaphore syn-
chronization with multi-thread gives a difference of 92,1 µs
and the multi-process approach comes last with a 127,14 µs
difference. The P2V jitter confirms this result with 56.1 µs
for the multi-process hybrid AW, 93.2 µs for multi-thread
AW, 116.9 µs for multi-thread SEM and finally 158.9 µs for
multi-process SEM.

As a consequence, the hybrid active waiting, although
showing marginal latency improvement compared to using
multi-process semaphore is still far from reaching multi-
threaded approaches performance and cannot be proposed
as a universal replacement for active wait with CUDA MPS.
Still, it is a great replacement for pipelines that need to com-
municate through multi-process and is a good solution in
terms of determinism.

Conclusion
The best practices introduced in the COSMIC framework en-
able the realization of complex compute intensive pipelines
while keeping a high level of modularity thanks to its effi-
cient synchronization mechanism.

It delivers latency improvements while keeping a stable
jitter with discrete GPUs, but its use on embedded platforms
needs to be adapted in order to work around missing fea-
tures on such hardware and supporting ecosystem. Best
results are obtained when reproducing the same mecha-
nism with a multi-thread implementation, instead of multi-
process. This allows the CUDA environment to keep a sin-
gle context, avoiding both kernel preemption and context
switching. However, the behaviour may differ between mul-
tiple processes and multiple streams implementations de-
pending on how the scheduler handles kernels.

The embedded Jetson CUDA package is still missing some
critical features of multi-process programming. However, it
is possible to get it working using using the hybrid active
wait strategy detailed in this paper. While the user needs to
be aware of the corresponding performance trade-off, mak-
ing sure only one context is executed at a given point in time,
a pipeline can be built with processes sending notifications
using the GPU by taking advantage of shared memory be-
tween CPU and GPU. Such approach performs better than
synchronization through CPU semaphores both in terms of
jitter and latency.

Future work will focus on further testing these new ap-
proaches to get a better understanding of embedded plat-
forms behaviour in order to get closer to true GPU real-time
determinism.

10 ERTS 2022

Acknowledgements
This work is sponsored through a grant from project 873120,
a.k.a. Rising STARS, funded by European Commission un-
der program H2020-EU.1.3.3 coordinated in H2020-MSCA-
RISE-2019.

References
[1] F. Ferreira. Hard real-time core software of the AO

RTC COSMIC platform: architecture and performance.
Proceedings of SPIE - The International Society for Optical
Engineering, 2020.

[2] NVIDIA. Cuda for tegra. https://docs.nvidia.com/cuda/
cuda-for-tegra-appnote/, 2021.

[3] Julien Bernard. Design and performance of a scalable
GPU-based AO RTC prototype. Proceedings of SPIE -
The International Society for Optical Engineering, 2018.

[4] Allen Todd. Improving Real-Time Performance with
CUDA Persistent Threads (CuPer) on the Jetson TX2.
Concurrent Real-Time White Paper, 2018.

[5] Yang Ming. Avoiding Pitfalls when Using NVIDIA
GPUs for Real-Time Tasks in Autonomous Systems.
ECRTS 2018, 2018.

[6] Paweł Czarnul. Investigation of parallel data processing
using hybrid high performance CPU+GPU systems and
CUDA streams. Computing and informatics, 2020.

[7] Ali Waqar. Protecting Real-Time GPU Kernels on Inte-
grated CPU-GPU SoC Platforms. ECRTS 2018, 2018.

[8] Kenjić Dušan. One Solution for Deterministic Schedul-
ing on GPU for Automotive Algorithms. 2021 Zooming
Innovation in Consumer Technologies Conference, 2021.

[9] Jason Baietto. Real-Time Linux: The RedHawk Ap-
proach. Concurrent Real-Time whitepaper, 2019.

[10] Tanya Amert. Gpu scheduling on the NVIDIA TX2: hid-
den details revealed. IEEE Real-Time Systems Symposium,
2017.

[11] Ignacio Sanudo Olmedo. Dissecting the CUDA schedul-
ing hierarchy: a Performance and Predictability Per-
spective. RTAS, 2020.

[12] Vance Miller. Determinism in GPU Programs, Real Time
Applications on the NVIDIA Jetson TK1. Senior Honors
Thesis, University of North Carolina, 2016.

[13] Nicola Capodieci. Contending memory in heteroge-
neous SoCs: Evolution in NVIDIA Tegra embedded
platforms. IEEE Real-Time Systems Symposium, 2020.

[14] Nathan Otterness. Inferring Scheduling Policies of an
Embedded CUDA GPU. Department of Computer Science,
University of North Carolina, 2017.

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/

