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1.  Introduction
The terrestrial biosphere absorbs ∼30% of anthropogenic CO2 emissions, thus acting as a global carbon, C, sink 
(Friedlingstein et al., 2019). The terrestrial C sink is a result of complex interactions between C, nutrient, and 
water cycles in response to a variety of environmental change drivers, including climate change, rising CO2, and 
land use and land cover change. Multiple different feedbacks between the C cycle and climate act to moderate 
the balance between the land C sink and the anthropogenic CO2 and other greenhouse gas emissions remaining 
in the atmosphere (Canadell et  al.,  2021). Accurate representation of C cycle related processes in terrestrial 
biosphere models (TBMs), which form the land component of earth system models (ESMs), is therefore crucial 
for improving climate change projections. Key C cycle related processes such as photosynthesis, respiration, 
stomatal conductance, and soil C cycling (Ball et al., 1987; Farquhar et al., 1980; Parton et al., 1987) were origi-
nally developed for TBMs in the late 1980s/early 1990s (Pitman, 2003; Sellers et al., 1997). Since then, numerous 
additional vegetation and biogeochemical processes have been, and continue to be, implemented in these models 
(Blyth et al., 2021; Bonan & Doney, 2018; Fisher & Koven, 2020). In parallel, many studies have evaluated TBM 
C cycle simulations against observations with the aim of understanding the causes of individual model errors and 
inter-model spread (Anav, Friedlingstein et al., 2013; Keenan et al., 2012; Peng et al., 2015; Piao et al., 2013). 
Even after two decades of development, there remains high inter-model spread in all aspects of C cycle, including 

Abstract  Predicting terrestrial carbon, C, budgets and carbon-climate feedbacks strongly relies on 
our ability to accurately model interactions between vegetation, C and water cycles, and the atmosphere. 
However, C fluxes simulated by global, process-based terrestrial biosphere models (TBMs) remain subject 
to large uncertainties, partly due to unknown or poorly calibrated parameters. This is because TBMs have not 
routinely been confronted against C cycle related datasets within a statistical data assimilation (DA) system. 
In this review, we present 15 years' development of a C cycle DA system for optimizing C cycle parameters 
of the ORCHIDEE TBM. We analyze the impact of assimilating multiple different C cycle related datasets 
on regional to global-scale gross and net CO2 fluxes. We find that assimilating atmospheric CO2 data is 
crucial for improving (increasing) ORCHIDEE predictions of the terrestrial land C sink. The improvement 
is  predominantly due to the global-scale constraint these data provide for optimizing initial soil C stocks, which 
are likely in error due to inaccurate assumptions about steady state spin-up and incomplete knowledge of land 
use change histories. When comparing the data-constrained ORCHIDEE land C sink estimates to the CAMS 
atmospheric inversion, we show that while the two approaches agree on the global C sink magnitude, they 
continue to differ in how the global C sink is partitioned between the northern hemisphere and tropics. We 
also discuss technical challenges faced in our C cycle DA studies, in particular the difficulty in characterizing 
the error covariance matrix due to unknown observation biases and/or model-data inconsistencies. We offer 
our perspectives on how to tackle these challenges that we hope can serve as a roadmap for other TBM groups 
wishing to develop C cycle DA systems.
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phenology (Richardson et al., 2012; Anav, Murray-Tortarolo et al., 2013), gross CO2 uptake (or gross primary 
productivity, (GPP), Anav et al., 2015), vegetation and soil C stocks and residence time (Friend et al., 2014; 
Montané et  al.,  2017; Todd-Brown et  al.,  2013), the response of biogeochemical cycles to elevated CO2 or 
changes in climate (De Kauwe et al., 2014; Huntzinger et al., 2017; Paschalis et al., 2020; Walker et al., 2014; 
Zaehle et al., 2014), and future projections of global net CO2 fluxes (cf. Friedlingstein et al., 2014; and, 2006; 
Arora et al., 2020). These TBM evaluations are typically performed as part of model intercomparison projects 
(MIPs, e.g., Sitch et al., 2015) and thus have the same climate forcing, the same prescribed vegetation and soil 
texture maps, and the same simulation protocol. Model errors are therefore due to inaccurate model structure 
(i.e., which processes are included and the representation of those processes), and/or errors in the fixed values, or 
parameters, of the model. There is limited understanding about which processes, or which type of model errors, 
are contributing the most to inter-model spread in global C flux dynamics.

Similarly, these “bottom-up” process-based TBMs are not always in agreement with “top-down” atmospheric 
inversions on where global C sink is concentrated, the regions contributing to global C cycle interannual vari-
ability (IAV), and what the future trend of the land C sink will be (Kondo et al., 2020). Even though the two 
different approaches roughly agree on the overall magnitude of the current global C sink (Anav, Friedlingstein 
et al., 2013; Friedlingstein et al., 2019; Kondo et al., 2020), they tend to disagree on regional C budget estimates, 
and uncertainties in both approaches are high (Anav, Friedlingstein et al., 2013; Huntzinger et al., 2017; Peylin 
et al., 2013; Schimel et al., 2015). TBMs typically estimate an approximately equal land-atmosphere CO2 flux 
in both the tropics and northern hemisphere (NH) (Sitch et al., 2015). In contrast, atmospheric inversions tend to 
place a much stronger C sink in the NH compared to TBMs, whereas in the tropics they estimate an approximately 
neutral net CO2 flux (or small C source) (Anav, Friedlingstein et al., 2013; Liu et al., 2021; Peylin et al., 2013), 
with a strong natural C sink (possibly due to CO2 fertilization, Schimel et al., 2015) balanced by C emissions due 
to deforestation and forest degradation (Gatti et al., 2021; Qin et al., 2021). This remains true when using more 
spatially comprehensive satellite-based (OCO-2) CO2 retrievals instead of ground-based tower CO2 mole fraction 
data (Peiro et al., 2022). Even without considering the differences with atmospheric inversions, there is a huge 
uncertainty in long-term TBM/ESM projections of the net land CO2 flux (∼15 PgC spread across models; Arora 
et al., 2020), with some models even predicting the land may become a source of C to the atmosphere. While 
TBM simulations may agree with observations that the mean C sink and its long-term trend are likely dominated 
by high biomass forested regions (Ahlström et al., 2015; Schimel et al., 2015; Sitch et al., 2015), some modeling 
studies have shown that global C cycle IAV is dominated by semi-arid regions (Ahlström et al., 2015; Poulter 
et al., 2014; Zhang et al., 2018). However, these results are not consistently supported in the literature. Other 
studies suggest that tropical rainforests are the dominant contributor due to variability in water stores and fluxes 
(Worden et al., 2021). In their review, Piao et al. (2020) clearly point to tropical land ecosystems as driving global 
C cycle IAV, with approximately equal contributions from semi-arid and other tropical regions. Recent studies 
have shown that TBMs drastically underestimate semi-arid region net CO2 flux IAV (MacBean et  al.,  2021; 
Teckentrup et al., 2021); thus, TBMs clearly require improvements for modeling semi-arid ecosystems, and it 
remains to be seen exactly what role that drylands play in driving global C cycle IAV.

While there are many studies that have documented model errors or inter-model spread, there are comparatively 
fewer studies that have used data to quantify and reduce uncertainty in those TBMs within a statistical data assim-
ilation (DA) system. Bayesian DA methods allow model parameters or state variables to be optimized based on 
new information contained in the data via a statistical framework that considers uncertainties in both the model 
and the data (Rayner et al., 2019). However, most simulations that are used in MIPs and future climate change 
projections, such as the Coupled Model Intercomparison Project (CMIP) used for the climate change projections 
in IPCC reports, typically represent only one simulation following a given protocol - uncertainty due to different 
model structures or parameter errors is not assessed. For example, of the ∼50 modeling groups participated in 
the latest CMIP (CMIP6), only a few have developed global scale C cycle DA systems (Albergel et al., 2017; 
Fox et al., 2018; Kaminski et al., 2013; Peylin et al., 2016; Raoult et al., 2016; Schürmann et al., 2016). This 
means that most of the TBMs used in IPCC climate change projections have not been widely confronted against 
data within a statistical optimization framework. We do not have any estimate of individual model uncertainty 
on global estimates of key C cycle variables, nor do we know if the inter-model spread described above could be 
reduced if the models were confronted against data within such a DA system.
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Nevertheless, a growing number of groups are developing global scale C cycle DA systems, and the considerable 
progress made has been documented in numerous informative studies. Multiple different regional to global-scale 
data streams have been assimilated with the goal of either updating the state variables (e.g., Bonan et al., 2020; 
Fox et al., 2018; Ling et al., 2019; Quaife et al., 2008) or optimizing the model parameters (Bloom et al., 2016; 
Peylin et al., 2016; Rayner et al., 2005; Scholze et al., 2016; Schürmann et al., 2016). These C cycle DA systems 
have been used to constrain C allocation and residence time for different C pools (Bloom et al., 2016), to examine 
the impact of drought on vegetation (Albergel et al., 2019), to understand the role of forest disturbance due to 
management (Pinnington et al., 2017), and to better estimate regional to global C budgets and temporal variability 
in surface CO2 fluxes and atmospheric CO2 concentrations (Haverd et al., 2013; Konings, Bloom et al., 2019; 
Peylin et al., 2016; Rayner et al., 2005; Trudinger et al., 2016). More comprehensive reviews of C cycle related DA 
studies are provided by Rayner (2010), Kaminski et al. (2013), Scholze et al. (2017) and Exbrayat et al. (2019). 
Despite this progress, numerous DA technical and methodological challenges related remain, including: issues 
of biased observations and model-data inconsistencies, differences in assimilation results depending on the DA 
experimental configuration, and uncertainties in initial soil C stocks as a result of the steady-state assumption in 
model spin-up and lack of information on human activity over historical periods, to name just a few. Therefore, 
there is an urgent need to increase research into TBM DA system development and to encourage all modeling 
groups to contribute to these efforts. With growing numbers of datasets, longer observation record lengths, and 
rapidly increasing model complexity, there has never been a better time, nor more urgent need, for developing 
TBM C cycle DA systems. Understanding and constraining uncertainties in TBM predictions of key character-
istics of the global C cycle is imperative if we are to accurately estimate long-term carbon-climate feedbacks. 
Without accurate projections of carbon-climate feedbacks, we cannot reliably estimate the level of CO2 emissions 
that will keep us within a given threshold rise in global temperature (Jones & Friedlingstein, 2020).

In the hope of guiding other modeling groups who wish to develop TBM C cycle DA systems, in this review 
we document the progress made, highlight successful studies, and discuss the above mentioned challenges we 
faced when developing a global scale C cycle DA system to constrain C cycle-related parametric uncertainty 
in the ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) TBM, which forms the land 
component of the French Institut Pierre Simon Laplace (IPSL) ESM (Dufresne et al., 2013). We document more 
than 15 years of C cycle DA studies ranging from the site scale to the globe. In Section 2, we briefly describe 
the ORCHIDEE DA system. In Sections 3 and 4, we present the range of C cycle DA studies conducted to date. 
Section 3 focuses on the global-scale C cycle assimilation studies that mostly constrained ORCHIDEE version 
AR5 (vAR5) using long-running C cycle datasets, while Section  4 highlights our ongoing, mostly site-scale 
assimilation studies with more recent versions of ORCHIDEE (v2.0+), in addition to various “branches” of the 
model that are under development, using novel datastreams and methods. We discuss the impact of our assim-
ilation experiments on the key characteristics of the global C cycle discussed above and their expected impact 
on our understanding of carbon-climate feedbacks. We also provide an overview of our “DA methods” studies 
that have investigated technical issues related to multiple data stream assimilation and choice of optimization 
algorithm (Section 5). All these studies have provided us with a wide-ranging perspective on the challenges we 
face in constraining TBM parameters. We present our perspectives on these challenges, as well as our proposed 
solutions, in the final Section 6 of this review.

2.  The ORCHIDEE Terrestrial Biosphere Model and the ORCHIDEE Data 
Assimilation System
2.1.  ORCHIDEE Terrestrial Biosphere Model

ORCHIDEE is a global, process-based TBM that simulates the surface energy balance, hydrological and bioge-
ochemical cycling, and the influence of anthropogenic activity on terrestrial ecosystems at a half hourly time 
step. In uncoupled mode, the model is run with meteorological forcing data or climate reanalyses (Table 1). All 
plant species are grouped into broad plant functional types (PFTs) depending on their physiological, structural, 
and phenological characteristics, as well as the main climate biomes in which they exist. ORCHIDEE vAR5 was 
used in CMIP5, which contributed to the IPCC fifth Assessment Report, and is described in (Krinner et al., 2005). 
The ORCHIDEE “trunk” (current main version of the model) has been updated since vAR5. ORCHIDEE v2.0, 
which is the version contributing to CMIP6, includes the following developments: (a) an 11-layer mechanistic 
description of soil hydrology and associated modifications as described in Ducharne et  al. (in prep); (b) an 
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analytical solution for the set of equations for photosynthesis, stomatal conductivity and internal CO2 concen-
tration in the leaf (described in Vuichard et al., 2019); (c) an update of the soil thermal properties and extension 
of the soil depth for heat diffusion (Wang et al., 2016); (d) a three-layer snow scheme (Wang et al., 2013); (e) a 
spatially explicit observation-derived estimate for background albedo and optimized vegetation and snow albedo 
coefficients; and (f) new PFT maps based on the European Space Agency Climate Change Initiative Land Cover 
product (Poulter et al., 2015). In addition to bare soil, there were 12 vegetated PFTs in vAR5, and from v2.0 
onwards there are 15 vegetated PFTs. Different PFTs share the same processes but with different parameters, 
which are fixed values that are used in the model calculations, with the exception of the phenology schemes 
that are PFT dependent. The ORCHIDEE-CN-CAN version used to assimilate effective LAI and Free Air CO2 
Enrichment (FACE) experiment data in Section  4.3 has been updated to include: (a) addition of a coupled 
carbon-nitrogen scheme (Vuichard et al., 2019); and (b) a physical description of vertical canopy structure with a 
2-stream radiative transfer (RT) scheme (in addition to other model developments related to forest management) 
(Naudts et al., 2015). In all assimilations reviewed here we do not account for any anthropogenic activity in the 
ORCHIDEE simulations, including land use change, agriculture and forest and grassland management.

2.2.  ORCHIDAS System and Different Inversion Methods Used

The ORCHIDEE DA system is variational DA system in which all observations within the assimilation time 
window are included in the optimization (https://orchidas.lsce.ipsl.fr; Figure  1). The optimization of model 
parameters requires the “minimization” of a cost function, J(x) (Figure 1 - where x is the parameter vector), 
which describes the difference between the modeled and observed variables considering uncertainties in both. 
We use a Bayesian DA framework in which prior information on the model parameters (default model values and 
their uncertainties) is also included in J(x) (Figure 1). Statistical DA frameworks use an inversion algorithm to 
minimize the cost function, therefore finding the best fit between the model and data considering all uncertain-
ties. Most of the ORCHIDEE C cycle DA studies have used the L-BFGS-B gradient descent inversion algorithm 
(Byrd et al., 1995), which requires the tangent linear (TL) or adjoint of the model to calculate the gradient of J(x) 
at each iteration of the inversion (further details can be found in Kuppel et al., 2014; Peylin et al., 2016). The algo-
rithm assumes a quasi-linear model and Gaussian error distributions. Unlike some other gradient descent  algo-
rithms, L-BFGS-B allows for bounds on the parameters to be accounted for in the inversion. However, some 
studies detailed here have used the genetic algorithm (GA; Haupt & Haupt, 2004) to minimize the cost function 
(further details of the specific implementation with ORCHIDEE are provided in Santaren et  al.,  2014). The 
GA is a so-called “global search” method, in which the gradient of the cost function is not needed to find the 
minimum of J(x); instead, the algorithm efficiently searches the entire parameter space: At each iteration checks 

Figure 1.  Schematic showing the different components of the ORCHIDEE Data Assimilation System.

https://orchidas.lsce.ipsl.fr/
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whether the new parameter has reduced the model-data fit and then either accepts or rejects that parameter vector 
based on the improvement (or lack thereof) in the model-data fit. The accepted parameters form the posterior 
parameter probability distributions. The GA, like all global search methods, is more flexible in that it does not 
require assumptions of a quasi-linear model or Gaussian error distributions; however, it is computationally more 
expensive to run. We discuss our studies investigating the differences between these two classes of algorithm 
more in Section 5.3.

Prior parameter values are set as the default values in the ORCHIDEE model. The bounds are prescribed based 
on literature reviews and expertise of the ORCHIDEE Project Team. The prior uncertainty is typically assumed 
to be 40% of the parameter value range following Kuppel et al. (2012). Unless otherwise specified, the obser-
vation error covariance matrix (R, Figure 1) in the ORCHIDEE DA system is based on the RMSE between the 
observations and the model to take into account the fact that R should account for both model and observation 
error. In all our DA studies, the observation (including model) and parameter errors are assumed to be uncor-
related and therefore both R and B (prior parameter error covariance matrix) are diagonal matrices. We discuss 
the implications of this simple approach to characterizing R and B in various sections throughout this paper. We 
calculate  the posterior errors on the assimilated variables, Rpost, using the posterior parameter covariance matrix 
and the assumption of local linearity (Tarantola, 2013).

2.3.  Datasets Used in Assimilation Studies

Many C cycle related datasets at different temporal and spatial resolutions have been used to constrain the C 
cycle parameters of ORCHIDEE. Table 1 summarizes the data used in both the global and site scale key studies 
discussed in this review, in addition to the observation operator that is used to link the data to the ORCHIDEE 
model processes. Further details on the data characteristics, pre-processing prior to assimilation, and detailed 
descriptions of the observation operators can be found in the respective ORCHIDEE DA studies.

2.4.  Assimilation Experimental Set-Up

Specific details of all studies described here can be found in each of the cited papers. In brief, any global-scale 
C cycle DA study that used site-based data (e.g., in Section 3.1), or selected grid cells from satellite datasets 
(Sections 3.2 and 3.3), included all sites in a so-called “multi-site” (MS) assimilation for each PFT. Some studies 
also compared the results of the MS assimilation to a case in which each site was assimilated separately (“single 
site”, SS, assimilations). The number of flux tower sites (see Table 1) included for each PFT was dependent on 
the available data. Satellite grid cells were randomly chosen from a selection of locations that had a majority 
fractional cover of the PFT being optimized (deciduous forest and grass PFTs only). To simulate atmospheric 
CO2 concentration (Section 3.4), we coupled the ORCHIDEE model to the LMDz atmospheric transport model 
(Hourdin et al., 2006). Note that the coupling with LMDZ involved the use of pre-calculated transport response 
functions (i.e., sensitivity of atmospheric concentrations at each station to surface fluxes) as detailed in Peylin 
et al. (2016). We also added to the transport model the other main carbon cycle flux components: that is, fossil 
fuel emissions, ocean flux estimates based on pCO2 ocean data, and biomass burning emissions (with partial 
forest regrowth also factored in) (see Peylin et al., 2016 for details). Inverting the coupled ORCHIDEE-LMDz 
model allowed us to use the atmospheric CO2 concentration data as a much broader scale constraint on net CO2 
surface fluxes (and related parameters).

Due to computational constraints (i.e., the complexity of inverting large matrices when all observations are used 
simultaneously), the first version of our multiple data stream assimilation system that assimilated satellite, flux 
tower, and atmospheric CO2 concentration data used a so-called step-wise approach to assimilate all three data-
streams (Peylin et al., 2016). In this step-wise version of the system, the three datasets were assimilated in the 
following order: in step 1 satellite NDVI data were assimilated to constrain leaf phenology parameters [i.e., the 
same set-up as described in MacBean et al., (2015)]; in step 2 the flux tower NEE and LE data were used to 
constrain photosynthesis, respiration, and phenology parameters, in addition to some parameters related to water 
fluxes (as described in Kuppel et al., 2014); and finally, in step 3, the atmospheric CO2 data were used to further 
constrain the same set of parameters as in step 2 but with the addition of regional “KsoilC” parameters (30 spatially 
coherent regions), which act as scalars on the slow and passive soil C pool at the beginning of the assimilation 
window (Peylin et al., 2016). The scaling of the slow and passive soil C pools (with decade to century scale 
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turnover times) by KsoilC is designed to account for biases in soil C content due to the fact we cannot accurately 
simulate historical changes in land cover and land use and their impact on C cycling during the spin-up procedure. 
We optimize a regional scale KsoilC, as opposed to a site-based KsoilC, for two reasons: first, because it is impossible 
to scale either SS, or even MS, estimates of KsoilC up to broader scales and second, because the land use history 
and resulting edaphic conditions at each site are likely highly site specific and thus not generalizable to broader 
scales. The 30 chosen regions were designed for potentially coherent land use and land management history. 
The posterior parameter and error covariance matrices were propagated at each step and the posterior parameter 
values from the previous step were used as prior values in the following step. In Section 3.4 we compare the 
results of the step-wise assimilation of all three datastreams to a “simultaneous” assimilation in which all three 
datastreams are assimilated in one assimilation experiment.

The parameters selected for optimization were chosen based on site-based sensitivity analyses using the 
Morris (1991) method as well as expert judgment and prior model testing. Full lists of parameters can be found 
in each of the studies, but typically included parameters related to leaf phenology (e.g., temperature and mois-
ture thresholds controlling the start of leaf growth and senescence and leaf age), photosynthesis (e.g., maximum 
carboxylation rate and temperature optima for photosynthesis), soil water availability (e.g., empirical controls 
on rooting depth profile and water stress functions), autotrophic respiration (e.g., fraction of biomass for growth 
respiration and temperature dependence of maintenance respiration), and heterotrophic respiration and soil 
decomposition (e.g., soil Q10, moisture limitation on soil decomposition, litter height), and energy balance (e.g., 
the reference surface roughness and albedo). In addition, various parameters of the observation operators that link 
the ORCHIDEE model processes to the respective datasets were included in the assimilations.

Validation of the simulations with optimized parameters was performed in each of the studies either using addi-
tional time periods for the sites assimilated, or additional sites that were not included in the assimilation, or both. 
Validation against independent datasets for variables not included in the assimilation was also performed for 
many studies. These validation results are not reviewed here but details can be found in each of the studies cited.

3.  Highlights of Global-Scale C Cycle DA Studies With ORCHIDEE
3.1.  Eddy Covariance Flux Tower NEE and LE Data to Constrain “Fast” C Cycle Parameters

The earliest ORCHIDEE C cycle parameter optimization studies using a Bayesian DA framework were performed 
using eddy covariance flux tower NEE data at individual sites (Bacour et al., 2015; Santaren et al., 2007; Verbeeck 
et al., 2011; Williams et al., 2009). Kuppel et al. (2012) were one of the first to move beyond simple assimila-
tion of C and water flux data at individual sites by simultaneously NEE and LE data from multiple sites (“MS” 
assimilation). Kuppel et al. (2012) compared the assimilation results from single-site (“SS”) assimilations using 
flux data from different temperate broadleaf flux tower sites to an assimilation in which data from all sites were 
included in the same MS assimilation. They found that the MS assimilation could find a unique parameter set 
that resulted in as much of a reduction in RMSE at each of the sites as the equivalent SS assimilation (and better 
than taking the average of the SS optimized parameter values). This was a crucial step in scaling parameter opti-
mization up to global scales, because ultimately TBMs require one set of parameters per PFT for a global-scale 
simulation. Kuppel et al. (2014) went on to apply a MS NEE and LE parameter optimization framework to all 
PFTs for which flux tower data were available from the La Thuile fluxnet database (Table 1). This was the first 
time that such a MS assimilation had been used to constrain C cycle related parameters across a global scale 
network of sites. The assimilations resulted in a much-improved NEE (and LE) seasonal cycle for most PFTs, 
with the exception of tropical broadleaf evergreen trees (TrBE). The TrBE optimizations were likely hampered 
by the same model structural errors related to root zone water up identified in Verbeeck et al. (2011), whereby 
deep-root-mediated water access during the dry season, and the resulting sustained productivity, are not captured 
by that version of the ORCHIDEE model. Numerous other studies continue to use site-based flux tower data to 
constrain various C cycle related processes in ORCHIDEE, before applying the model to answer a range of global 
change related questions (Druel et al., 2017; Li et al., 2017; Liu et al., 2018; Peng et al., 2013).

3.2.  Satellite Normalized Difference Vegetation Index (NDVI) Data to Constrain Leaf Phenology

MacBean et al. (2015) used satellite NDVI data (Table 1) to constrain the ORCHIDEE phenology parameters 
for the six deciduous PFTs. NDVI is a measure of vegetation “greenness” and as such can be used to monitor 
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seasonal changes in vegetation dynamics. MacBean et al. (2015) showed that across all four temperate and boreal 
deciduous PFTs the prior model simulated too long a growing season, that is, leaf senescence started much later 
than was observed in the data. The assimilations resulted in an earlier start to the senescence (mostly through 
elevating the senescence temperature threshold) and therefore a much improved fit between the model and the 
data. However, MacBean et  al.  (2015) also showed that the prior model did not accurately simulate the LAI 
dynamics for the semi-arid and tropical deciduous PFTs and neither the SS or MS assimilations could correct for 
these model errors. These results highlighted a secondary goal of parameter DA, that once the model has been 
calibrated it is then easier to identify areas of possible structural errors.

3.3.  Satellite Solar-Induced Chlorophyll Fluorescence (SIF) Data to Constrain GPP

The advent of satellite measures of solar-induced chlorophyll fluorescence (SIF) in the early 2010s allowed an 
independent constraint on modeled GPP. Compared to space-borne estimates of FAPAR or vegetation indices 
(e.g., NDVI) that characterize vegetation dynamics, satellite SIF data are more closely related to photosynthesis 
activity and hence to GPP. Also, contrary to in situ GPP estimates, which are derived from flux tower NEE meas-
urements using a flux partitioning model [with associated uncertainties (Baldocchi et al., 2015)], space-borne SIF 
estimates provide a global scale constraint on GPP. The early SIF studies showed that the satellite SIF data were 
linearly correlated with GPP at broad spatial and temporal scales, with the exception that the slope of the linear 
relationship differed between different PFTs (Guanter et al., 2012). MacBean et al. (2018) used these assump-
tions of linearity to apply a simple linear observation operator for each vegetated PFT to link satellite SIF data 
(GOME-2; Table 1) and modeled GPP to constrain ORCHIDEE vAR5 photosynthesis and phenology parame-
ters. MacBean et al. (2018) demonstrated that SIF data can provide a strong constraint (considerable decrease in 
GPP uncertainty) on modeled GPP. Large reductions in the magnitude of GPP were observed for all PFTs except 
those in semi-arid regions (Figure 2c), resulting in a reduction in the global mean annual GPP budget of ∼30 PgC.
yr −1 for the 2000–2009 period; thus, removing ORCHIDEE's strong positive bias in simulated C uptake.

The objective of using a simple linear observation operator between GPP and SIF in MacBean et al. (2018) was to 
test quickly just how beneficial the newly available satellite SIF data could be in constrining model GPP parame-
ters. Following the work of MacBean et al. (2018), which used ORCHIDEE vAR5, Bacour, Maignan, MacBean 
et al. (2019) developed a mechanistic, or process-based, SIF observation operator in ORCHIDEE v2.0 to better 
leverage the information content of SIF signals for constraining photosynthesis and phenology processes. The 
SIF observation operator in Bacour, Maignan, MacBean et  al.  (2019) relies on two coupled scale-dependent 
modules: (a) a canopy scale RT modeling approach that relies on an emulator of the RT module embedded in 
the SCOPE model (van der Tol et al., 2009) to calculate the fluorescence flux emerging at the top of the canopy, 

Figure 2.  Global maps of mean annual GPP (averaged over 2000–2009) at 2 × 2 resolution: (a) and (b) show the posterior 
simulation after optimization with GOME-2 SIF over 2007–2011 using the linear SIF-GPP relationship (MacBean 
et al., 2018), and OCO-2 SIF over 2015–2016 using a physical or process-based model linking SIF and GPP (Bacour, 
Maignan, MacBean et al., 2019), respectively; (c) and (d) show maps of the difference in mean annual GPP (posterir minus 
prior simulation) for MacBean et al. (2018) and Bacour, Maignan, MacBean et al. (2019), respectively.
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and (b) a new leaf scale model to calculate the regulation of fluorescence related to meteorological forcing and 
plant stress. The empirical linear relationship approach of MacBean et al. (2018) is limited to coarse spatial and 
temporal scales where the assumption of a linear relationship between SIF and GPP holds. At finer spatiotempo-
ral scales fluorescence can be decoupled from photosynthetic uptake, particularly in the presence of heat, drought 
or biotic stress (Magney et  al.,  2020); therefore, the mechanistic SIF model developed in Bacour, Maignan, 
MacBean et al. (2019) can be applied at finer spatial scales, with the possibility of constraining model processes 
using in situ SIF data (Parazoo et al., 2020). With this process-based SIF observation operator, Bacour, Maignan, 
MacBean et al. (2019) used OCO-2 SIF data to constrain ORCHIDEE v2.0 photosynthesis and phenology param-
eters in addition to two parameters of the SIF model. The resulting optimization also had a considerable impact 
on the simulated GPP with a decrease of the global mean annual GPP budget by 29 PgC.yr −1 over the 2000–2009 
period (approximately the same reduction in GPP as MacBean et al., 2018). At regional scale, the correction of 
GPP was the most pronounced in the southern hemisphere (Figure 2d), and over the Tropics in particular - in 
contrast to MacBean et al. (2018 - Figure 2c).

Both SIF optimization studies proved that we now have a useful independent constraint on GPP (separate to other 
proxy measurements of GPP) that can, in theory, be used to help partition the gross from the net CO2 fluxes 
(although this is yet to be tested). We have yet to compare the improvement in model-data fit with respect to GPP 
using the linear versus mechanistic SIF observation operators with the same ORCHIDEE version. We note that 
the strong decrease in GPP in both studies is model dependent since other global-scale TBM SIF DA studies have 
found an increase in global mean annual GPP (Norton et al., 2019). In future work we will also test whether the 
simultaneous optimization of both NDVI and SIF provides independent constraints on LAI and GPP, respec-
tively, and how that might differ for different PFTs.

3.4.  Atmospheric CO2 Data as a Global Scale Constraint on C Fluxes and Stocks

Peylin et al. (2016) combined flux tower NEE and LE data (following Kuppel et al., 2014 - Section 3.1) and 
satellite measures of vegetation greenness (following MacBean et al., 2015 - Section 3.2) together with a network 
of atmospheric CO2 mole fraction data in a global scale step-wise assimilation (Section 2.4). To our knowledge, 
this study was the first to assimilate three different global-scale data streams to constrain C cycle related param-
eters of a process-based TBM. The inclusion of atmospheric CO2 data in the assimilation: (a) corrected the too 
strong a positive trend in simulated atmospheric CO2, mainly via small decreases in the regional KsoilC values; 
(b) resulted in a better prediction of the north-south gradient in atmospheric CO2 predictions; and (c) allowed for 
further improvement on the amplitude and phase of seasonal cycle in simulated atmospheric CO2 via adjustment 
of parameters related mainly (but not only) to heterotrophic respiration. Thus, as expected, atmospheric CO2 data 
provided a broad scale constraint on C flux related parameters, and in particular those related to soil C cycling.

Despite the success of the Peylin et  al.  (2016) study in correcting predictions of trends in atmospheric CO2 
concentration, arguably the more optimal configuration for assimilating multiple datastreams is to include them 
all in one assimilation - a so-called “simultaneous” assimilation. A step-wise approach to assimilating multiple 
data streams is equivalent to the simultaneous, but only if you can accurately characterize and propagate the full 
background and error covariance matrices between each step. To date, this has been difficult to achieve (and is not 
fully done in Peylin et al., 2016) because we do not know the full structure of the observation error covariance, R, 
matrix that could include model and observation biases, spatiotemporal autocorrelations, and error correlations 
between different data streams (see Sections 5 and 6.3 for more discussion). The more complex simultaneous 
assimilation, mixing site and global scale simulations, has been recently implemented by Bacour et al. (2022). 
Bacour et al. (2022) also found a strong influence of a reduction in the KsoilC parameter that decreased the prior 
predicted trend in atmospheric CO2 data - thus better matching the atmospheric CO2 time series.

3.5.  Impact for Global and Regional Budgets C Budgets and Comparison With Atmospheric Inversions

What impact did these global-scale parameter optimization studies have on regional to global scale C budget 
predictions? Neither the global assimilations of flux tower NEE and LE (Kuppel et al., 2014) nor satellite NDVI 
(MacBean et al., 2015) resulted in much of a change in the mean annual GPP when compared to the prior (default) 
version of ORCHIDEE vAR5 (Figure 3). For the NDVI assimilation this was perhaps not that surprising given 
that most of the changes in the temperate and boreal deciduous leaf phenology were related to leaf senescence 
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parameters. It is likely that during this time GPP is already limited by other 
climate or soil nutrient factors; hence, an earlier end to the growing season 
might not impact broader-scale GPP budgets as much as changes to spring 
onset would have. Therefore, it is worth noting that performing an optimi-
zation of leaf phenology using satellite NDVI might have a greater impact 
in other models that do have biases in spring leaf onset (e.g., Richardson 
et al., 2012). We did not optimize any phenology parameters for evergreen 
PFTs because there was no evergreen phenology scheme in ORCHIDEE 
at the time of these studies. That has since changed (Chen et  al.,  2020; 
Peaucelle, Ciais, et  al.,  2019); therefore, future phenology parameter opti-
mization studies across all PFTs may result in larger changes in simulated C 
fluxes across both taiga and tropical rainforest regions. Kuppel et al. (2014) 
noted that part of the improvement in their in situ NEE simulations resulted 
from compensating effects between GPP and Reco, highlighting the potential 
limits of solely using NEE to constrain gross C budgets at local to global 
scales.

Contrary to the flux tower and NDVI assimilations, the global-scale assim-
ilation of satellite SIF data into ORCHIDEE vAR5 (MacBean et al., 2018) 
did result in a considerable decrease in global mean annual GPP. The greater 
decrease in the northern hemisphere GPP resulted in a shift in the global 
GPP distribution, with the post-optimization simulations showing the trop-
ics are a more dominant region of C uptake (Figure 3), a result consistent 
with Parazoo et al. (2014) who used GOSAT SIF data to constrain the GPP 
simulated by TBMs participating in the TRENDY model intercompari-
son. The regional to global scale GPP estimates after the SIF optimization 
better matched estimates from the upscaled flux tower estimate from (Jung 
et al., 2011), although we note that this independent data-derived estimate is 
ultimately the result of a machine learning method with its own uncertainties, 
and not data in and of itself.

In Figure  4 we compare the prior ORCHIDEE global mean annual NEE 
budget (2000–2009) to the two posterior simulations (stepwise and simulta-
neous) that were constrained with atmospheric CO2 data (Peylin et al., 2016 
and Bacour et al.  (2022); Section 3.4). In both studies, the improved fit to 
atmospheric CO2 trend via a reduction in the KsoilC parameter resulted in a 
much stronger mean global net terrestrial CO2 sink than the prior (Figure 4 

second and third bars) – mostly via an increase in the net CO2 sink in the tropics for the step-wise assimilation, 
and both the NH and the tropics for the simultaneous. Consistent with the impact of the NDVI, NEE and SIF 
assimilations, the assimilations that included atmospheric CO2 also resulted in a reduction in global mean annual 
GPP over the 2000–2009 period (possibly in response to a too strong CO2 fertilization effect in the model - 
Figure A1a); however, the reduction in Reco was larger than the reduction in GPP (Figure A1b) due to the decrease 
in the initial total soil carbon via the reduction in KsoilC, and thus the overall result was an increase in the mean 
NEE. Over this short time period, the resultant increase in total above- and belowground C stocks was negligible 
(almost no change in aboveground biomass in either the NH or the tropics, with a 0.5% increase in total litter and 
soil C in the NH, and 0.35% increase in the tropics).

We compared the prior and posterior natural terrestrial CO2 flux simulations (stepwise and simultaneous) to the 
Global Carbon Project's 2018 Global Carbon Budget's (GCB; Le Quéré et al., 2018) residual terrestrial CO2 sink 
estimate (GCB residual SLAND – gray markers) and the mean and standard deviation from the 16 TRENDY model 
intercomparison v7 DGVM SLAND values (yellow markers) (Figure 4 first three bars). The default ORCHIDEE 
vAR5 drastically underestimates the prior global terrestrial flux (−0.23 PgC.yr −1) compared to the GCB and 
DGVM mean SLAND values (−2.9 ± 0.9 and −2.7 ± 0.7 PgC.yr −1, respectively) (Figure 4 first bar). Constraining 
the model with MODIS NDVI, FLUXNET NEE, and atmospheric CO2 data resulted in a natural terrestrial net 
CO2 flux for both the stepwise and simultaneous assimilation that was much more comparable with GCB and 

Figure 3.  Global annual GPP (PgCyr −1) simulated by ORCHIDEE vAR5 
averaged over the 2000–2009 period and separated into northern hemisphere 
(30°N–90°N - blue), tropics (30°S–30°N - red), and southern hemisphere 
(30°S–90°S - green) regions. The prior model (left bar) is compared with 
assimilations using FLUXNET NEE to constrain photosynthesis, phenology, 
respiration, and latent energy flux parameters (Kuppel et al., 2014); 
MODIS NDVI to constrain phenology parameters (MacBean et al., 2015); 
GOME-2 SIF data to constrain photosynthesis and phenology parameters, 
plus parameters of the linear relationship between GPP and SIF (MacBean 
et al., 2018) and to the right of the solid vertical line an independent 
data-driven estimate from upscaled FLUXNET flux tower data using the 
model tree ensemble approach (Jung et al., 2011). ORCHIDEE simulations 
were run with ERA-Interim climate reanalysis data at LMDz resolution 
(2.5 × 3.75°). The Bacour, Maignan, MacBean et al. (2019) study is not 
included in this plot because a later version of ORCHIDEE (v2.0) was used 
in these assimilations, which hinders the comparison to the other assimilation 
studies presented in this figure that were performed with vAR5.
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TRENDY v7 DGVM mean SLAND (Figure 4 second and third bars), although the simultaneous (−2.34 PgC.yr −1) 
better matched the GCB and DGVM mean values compared to the stepwise (−1.67 PgC.yr −1).

Given both the stepwise and simultaneous simulations shown here included a constraint from atmospheric CO2 
data in the assimilations, we also compared the global mean annual total land flux (2000–2009) from the stepwise 
and simultaneous (Figure 4 fourth and fifth bars) to the CAMS atmospheric inversion (Chevallier et al., 2005; 
Le Quéré et al., 2018) (Figure 4 sixth bar). CAMS uses the same prior ORCHIDEE vAR5 simulations as the 
prior in their inversion; therefore, these ORCHIDEE simulations can be more directly compared with the CAMS 
inversion. To calculate the ORCHIDEE total land flux we subtracted the net biomass burning emissions (that 
included partial forest regrowth – i.e., net land use change emissions equivalent to ELUC in Le Quéré et al., 2018) 
that we had accounted for in the assimilations with atmospheric CO2 data (see Section 2.4). These estimates are 
therefore comparable to the GCB and TRENDY v7 DGVM total land flux (which equals SLAND – ELUC) GCB 
and TRENDY v7 DGVM mean and standard deviation estimates of the total land flux are shown in black and 
orange markers in Figure  4. The stepwise, simultaneous and CAMS show markedly different total land flux 
values (−0.78, −1.45, and −2.23 PgC.yr −1, respectively). CAMS predicts a much stronger mean net total land 

Figure 4.  Global annual mean net biome productivity (PgC.yr −1) (averaged over 2000–2009) simulated by ORCHIDEE 
vAR5 (to the left of the vertical solid line) compared to the CAMS atmospheric inversion (Chevallier et al., 2005) (right of 
the vertical solid line), which used ORCHIDEE vAR5 surface net CO2 fluxes as prior information in the inversion (Le Quéré 
et al., 2018). The prior model (left bar) is compared with the step-wise (Peylin et al., 2016) and simultaneous (Bacour 
et al. (2022)) assimilation of MODIS NDVI, FLUXNET NEE and LE, and atmospheric CO2 concentration data (Table 1 and 
see Sections 3.1 to 3.4). Left of the vertical dashed line are the natural terrestrial fluxes (given that biomass burning emissions 
and partial forest regrowth were accounted for in the atmospheric CO2 assimilations – Section 2.4). These simulations are 
compared to an independent estimate of the terrestrial CO2 sink (SLAND) over the same 2000–2009 period from the Global 
Carbon Project's (GCP) 2018 Global Carbon Budget (GCB) (Le Quéré et al., 2018) (SLAND is calculated as the residual of all 
other budget terms and represented by the gray marker) and to the mean SLAND estimate from the 16 TRENDY v7 DGVMs 
(yellow marker). SLAND is due to impacts of elevated CO2, N deposition, and climate change on plant growth and soil C 
storage and does not take into account net CO2 fluxes due to LUC. Right of the vertical dashed line shows the same step-wise 
and simultaneous simulations but with the biomass burning emissions we imposed in the assimilation subtracted, resulting 
in the total land flux that can be more readily compared to the CAMS inversion. These simulations and the CAMS inversion 
are compared to the GCB total land flux (i.e., the sum of the terrestrial CO2 sink plus net LUC emissions - SLAND + ELUC in 
Le Quéré et al. (2018) - black markers) and for the ORCHIDEE simulations the mean TRENDY v7 DGVM total land flux 
(orange markers). Error bars represent ±1 s.d. about the mean. The overall global net CO2 flux for each of the ORCHIDEE 
simulations and CAMS inversion is shown by the horizontal black dashed lines. The ORCHIDEE simulations and the CAMS 
inversion are separated into northern hemisphere (30°–90°N - blue), tropics (30°S–30°N - red), and southern hemisphere 
(30°–90°S - green) regions. ORCHIDEE simulations were run with ERA-Interim climate reanalysis data (Table 1) aggregated 
to LMDz resolution (2.5 × 3.75). Negative values indicate a sink of C into vegetation and soil; positive values a source of C 
to the atmosphere.
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flux (horizontal black dashed lines in Figure 4) over the 2000–2009 period than either the stepwise, but is more 
comparable to the simultaneous. The simultaneous mean total land flux compares well with both the GCB and 
TRENDY v7 DGVM values (−1.6 ± 0.6 and −1.3 ± 0.5 PgC.yr −1, respectively), while the stepwise and CAMS 
estimates show a much weaker and stronger mean total land flux, respectively.

The partitioning between regions is very different when comparing the two optimized ORCHIDEE vAR5 esti-
mates and CAMS. CAMS puts a much stronger sink in the NH and a source for the tropics (similar to other 
atmospheric inversions described in Peylin et al., 2013 and supported by data from Gatti et al., 2021 and Qin 
et al., 2021, although see Yin et al., 2020). The simultaneous does place a greater C sink in the NH, thus better 
matching the CAMS inversion than the stepwise, which shows a roughly equal split in the total land flux between 
the NH and tropics. However, both ORCHIDEE estimates show a small C sink in the tropics, unlike CAMS. 
Bacour et  al.  (2022) demonstrated that posterior ORCHIDEE terrestrial CO2 sink values vary considerably 
depending on the assimilation configuration (i.e., number of years and different datasets included in the opti-
mization). One of the key differences that could explain the difference between the stepwise and simultaneous 
regional to global scale C budget estimates is that only three years of atmospheric CO2 data were used in the 
stepwise (compared to 10 years in the simultaneous), which means that the stepwise is likely biased by assimilat-
ing such a short period of data. Thus, in the results presented here, constraining a process-based model with the 
same prior fluxes and the same atmospheric CO2 data used in the CAMS atmospheric inversion has not resolved 
the differences in regional partitioning or global total land flux estimates between the “bottom-up” process-based 
ORCHIDEE versus “top-down” CAMS atmospheric inversion. The optimized ORCHIDEE versions have been 
confronted against atmospheric CO2 and therefore can be considered to have accounted for all processes contrib-
uting to changes in atmospheric CO2 concentrations. However, the fact that errors related to missing processes 
in the model (including land management processes that are not accounted for in the biomass burning emissions 
used in the atmospheric CO2 data assimilations) are likely aliased onto posterior parameter estimates during the 
optimization may mean that ORCHIDEE regional or global budgets are not correctly estimated. Other sources 
of errors in both the process-based models and inversions may be contributing to the different regional budget 
estimates, but more research is needed to uncover the causes of discrepancies between these “bottom-up” versus 
“top-down” approaches. Bastos et al. (2020) and Kondo et al. (2020) suggest possible solutions for reconciling 
estimates from these two approaches. Nonetheless, the simultaneous prediction of a stronger land C sink in the 
NH than in the tropics in the simultaneous assimilation (Bacour et al., 2022) is more in line with other atmos-
pheric inversion estimates (Peiro et al., 2022) and contrasts with the roughly equal NH-Tropical land partitioning 
predicted by many (non-optimized) TBMs (or at least TBM ensemble means; Sitch et al., 2015).

In contrast to the shift in regional to global scale magnitude of the mean annual C flux budgets resulting from 
assimilating a number of different datastreams, none of the global scale assimilation studies to date have had a 
dramatic impact on the IAV or medium-term trend in either the gross or net CO2 fluxes. Figure 5 shows NEE 
and GPP examples for the NH and tropics, but the same is true for all regions (and for Reco, not shown). We note 
that this is in contrast to the dramatic impact that assimilating atmospheric CO2 data has on the simulated trend 
in atmospheric CO2 data (Section 3.4 and see Figure 6 in Peylin et al., 2016). This result suggests that the opti-
mizations are not currently altering the model's ability to capture the impacts of inter-annual changes in climate 
extremes on regional to global scale C budgets. Next steps in addressing this issue will include modifications to 
the cost function to specifically account for longer timescales (e.g., Desai, 2010) and anomalous extremes will 
also be considered.

4.  Ongoing C Cycle DA Studies With ORCHIDEE Using Novel Datasets and Methods
4.1.  Optimization of Effective LAI Using the Two-Stream Radiative Transfer Model Implemented in 
ORCHIDEE-CAN

LAI is a difficult variable to assimilate in TBMs due to the inconsistent values found across different products 
applying a range of different RT algorithms; hence,why NDVI was used to constrain leaf phenology param-
eters in MacBean et  al.  (2015) and Peylin et  al.  (2016). With the development of a multi-layered canopy in 
ORCHIDEE (ORCHIDEE-CAN; Naudts et  al.,  2015), the 1-D two-stream radiative transfer (RT) scheme of 
(Pinty et al., 2006) was implemented into the model. Since in a 1-D scheme it is nearly impossible to account for 
the orientation of the randomly distributed vegetation scatters, this scheme uses effective LAI (eLAI; a statistical 
description of the vertical distribution of leaf mass that accounts for their orientation and clumping) instead of 



Global Biogeochemical Cycles

MACBEAN ET AL.

10.1029/2021GB007177

14 of 29

true LAI, to reproduce the radiative fluxes of a 3-D model. In as yet unpublished work, satellite retrieved eLAI 
was assimilated from the EU H2020 MULTIPLY Project platform (http://www.multiply-h2020.eu) to constrain 
the phenology of ORCHIDEE-CAN. As the MULTIPLY eLAI data uses the same assumptions and retrieval 
algorithms as ORCHIDEE-CAN, we did not have to rely on normalizing the LAI retrievals, as is sometimes done 
when assimilating true LAI (Chen et al., 2018; Huang et al., 2015). Normalization usually means we lose some of 

the information content of the measurements and are only able to improve the 
timing of vegetation dynamics, not the magnitude. By directly assimilating 
eLAI ("eLAI opt") at a number of in situ broadleaf deciduous and needleleaf 
evergreen forest flux tower sites, the model fit to observed LAI was improved 
for all sites (blue crosses all below the 1.0 horizontal dashed line in Figure 6). 
In contrast, calibrating the model using normalized eLAI ("norm opt") only 
improved the fit at the deciduous sites (last five sites in Figure 6). This work 
therefore highlighted the importance of (a) developing the model so it more 
accurately represents what is observed, and (b) the value of directly simulat-
ing measured variables.

4.2.  Can Free Air CO2 Enrichment (FACE) Data be Used to 
Optimize Modeled Carbon-Nitrogen Interactions Under Scenarios of 
Elevated  CO2?

Carbon–nitrogen interactions are essential in understanding global terrestrial 
ecosystem productivity and the response of plants to rising atmospheric CO2. 
Following the inclusion of the nitrogen, N, cycle in ORCHIDEE (Vuichard 
et  al.,  2019), members of the ORCHIDEE DA group have started experi-
ments calibrating the new model against FACE elevated CO2 experimental 
manipulation data and investigating the difference in the modeled N limita-
tion on the fertilizing effect of CO2 between the default and optimized model. 
These DA experiments are useful since future model projections are likely to 
exceed historical and present-day conditions; therefore, optimizing against 

Figure 5.  Time series of annual NEE (left column) and GPP (right column) over the 2000–2009 period for the northern 
hemisphere (top row) and tropics (bottom row) comparing the prior ORCHIDEE simulations (gray curve) with, for NEE: 
the stepwise (red curve) and simultaneous (blue curve) assimilation of flux tower NEE, satellite NDVI and atmospheric CO2 
data; and for GPP: flux tower data only (orange curve) and satellite NDVI only (green curve). Horizontal grey dashed line 
shows net zero CO2 flux.

Figure 6.  Changes in LAI model-data fit over a number of FLUXNET sites 
for “eLAI opt”, in which effective LAI was directly assimilated, and “norm 
opt”, in which normalized effective LAI data were assimilated. The dashed 
horizontal line at 1.0 represents the initial model fit at each site, points found 
below this line show an improvement in fit (measured by RMSE), points above 
show a degradation in fit. The first five sites are evergreen needleleaf forests 
and the latter five are deciduous broadleaf sites.

http://www.multiply-h2020.eu/
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present day observations does not necessarily give us confidence in model projections under a changing climate 
and rising atmospheric CO2 (Wieder et al., 2019). The modeled CO2 fertilization effect on GPP at the two FACE 
sites included in the assimilation (the Oak Ridge broadleaf deciduous forest - Norby et al., 2010, and the Duke 
needleleaf evergreen dominated forest site (with deciduous understorey) - McCarthy et al., 2010) was reduced 
after optimization of data from the elevated CO2 plot. These results are promising for providing data-constrained 
model estimates of how C stocks will evolve under elevated CO2 (e.g., Jiang et al., 2020), which is encouraging 
given the net impacts of CO2 fertilization on different components of biogeochemical cycles, carbon-water inter-
actions, and vegetation dynamics is currently a key source of uncertainty in TBMs (Canadell et al., 2021; De 
Kauwe et al., 2014; Walker et al., 2014, 2021; Zaehle et al., 2014).

4.3.  Parameter Optimization as a Tool for Improving CO2 Flux Simulations in Regions Sensitive to 
Climate Variability and Carbon-Climate Feedbacks

The possible loss of C stored in arctic soils from permafrost thaw is one of the more uncertain carbon-climate 
feedbacks (Canadell et  al.,  2021). TBM groups are continuing to implement the relevant processes needed 
to improve predictions of the magnitude of this feedback over the coming centuries to millennia (Bowring 
et al., 2019; Lawrence et al., 2019; Melton et al., 2019). Parameter calibration will be crucial to those efforts 
(e.g., Schneider von Deimling et al., 2015). In the ORCHIDEE group, several studies have already made headway 
in calibrating hydrological, soil thermal, and biogeochemical parameters at a number of northern tundra, perma-
frost, and peatland sites (Dantec-Nédélec et al., 2017; Salmon et al., 2022). Parameter optimizations using soil 
temperature and moisture data at two arctic forest and tundra sites allowed improvements in vertical soil and heat 
transfers simulated by a version of ORCHIDEE with the latest hydrology and snow schemes (Dantec-Nédélec 
et al., 2017). This work presents a crucial step in simulating future permafrost thaw and carbon-water-vegetation 
interactions in those regions. Salmon et al. (2022) performed the first optimization of CH4 related parameters 
with eddy covariance CH4 fluxes at 14 peatland sites with the ORCHIDEE-PCH4 model. They found generally 
higher CH4 emissions across Eurasian and North American peatland regions as a result of using values from the 
MS assimilation. However, SS assimilations revealed variability in methanogenesis at different sites depending 
on substrate limitation and seasonal fluctuations in soil temperature. The latter result highlights the need for more 
research into coupled hydrological-soil thermal-biogeochemical interactions when considering CO2 and CH4 flux 
estimates in high latitude ecosystems, and further model developments (and parameter calibrations) in line with 
improved process understanding. Ongoing work in this area within the ORCHIDEE group is focused on applying 
soil drying manipulation experimental data within ORCHIDAS to better estimate the impact of lowered water 
tables on C stocks and fluxes (Kwon et al., 2022).

The results of semi-arid site phenology optimization from the MacBean et al. (2015) study (Section 3.2), in addi-
tion to other ORCHIDEE model evaluation studies showing poor performance of simulated vegetation dynamics 
in semi-arid regions (MacBean et al., 2021; Traore et al., 2014), motivated the focus on optimization of semi-arid 
C and water fluxes using a more recent version of ORCHIDEE (v2).2; (Mahmud et al., 2021). They demon-
strated using flux tower NEE data from 12 southwestern US semi-arid tree-, shrub-, and grassland-dominated 
sites that the strong prior model underestimate in mean annual NEE and NEE IAV could be accounted for by 
optimizing C cycle parameters (contrary to the lack of change in regional C cycle IAV from earlier optimizations -  
Figure 5) - mostly via constraint on the phenology parameters. In future work we need to expand semi-arid C 
related parameter optimization to other semi-arid sites worldwide. By repeating global scale simulations with 
TBMs that have been optimized at a wider range of semi-arid ecosystem sites, we will be able to determine if 
semi-arid ecosystems are as important in controlling global C cycle IAV as previously suggested (e.g., Ahlström 
et al., 2015; Poulter et al., 2014).

4.4.  Impact of Optimizing Surface Soil Moisture Drydowns on Carbon-Vegetation-Water Interactions

The strong coupling between the C and water cycles has motivated the use of soil moisture (SM) datasets in 
our recent assimilation studies. By using International SM network data to calibrate SM drydowns simulated 
by ORCHIDEE following significant rainfall events for a range of different PFTs (Table 1), Raoult et al. (2021) 
were able to improve the soil drying rates in the model without degrading the fit to other fluxes (e.g., GPP). 
By better simulating drydowns, it is possible that we improve the simulation of root water uptake and therefore 
better capture the response of the C fluxes to both drought and to rainfall pulses, which is a particular feature of 
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semi-arid ecosystems that are thought to dominate global C cycle IAV (Huxman et al., 2004) (see Section 4.3). 
This study provides an example of the need for more future DA studies coupling both C and hydrology related 
datasets in the assimilation system (e.g., Moore et al., 2008).

4.5.  Accounting for the Ecological Properties of Ecosystems to Better Constrain the Parameter 
Optimization

Past attempts in optimizing the ORCHIDEE model with multiple sources of data have mainly focused on model 
performances, with less of a focus on the ecological and physiological consistency of optimized parameters. 
By optimizing the model parameters against flux tower-derived GPP estimates at a range of different forest and 
C3 grassland sites, Peaucelle, Bacour et al. (2019) were able to explore the relationships between trait-related 
parameters as well as their variability with climate conditions for each PFT. They showed that optimized param-
eter values are consistent with leaf-scale traits and well-known trade-offs observed at the leaf level, echoing the 
leaf economic spectrum theory (Wright et al., 2004). This exercise demonstrated that it is ecologically sound 
to use known trade-offs between parameters to better define the B matrix (as in Ziehn et al., 2011; Bloom & 
Williams, 2015; and Pinnington et al., 2016) and thus potentially reduce the risk of model parameter equifinality 
(where multiple different parameter values result in a similar minimum of the cost function). Accounting for the 
ecological properties of ecosystems is also relevant given the increasing development of trait-based approaches 
(Franklin et al., 2020; Scheiter et al., 2013) to represent the acclimation of plant physiological traits and thus 
improve projections of ecosystem responses and feedbacks to climate change.

5.  Technical Challenges Addressed in ORCHIDEE DA Studies
5.1.  Challenges of Assimilating Multiple Data Streams

In addition to the main focus on improving global C cycle predictions via parameter optimization, the ORCHIDEE 
DA team has performed several studies exploring the impact of using a combination of different datastreams in 
an assimilation, particularly with regard to the impact assimilating only one datastream has on other variables 
(Bacour et al., 2015; Bacour et al., 2022; Thum et al., 2017). Such studies are important because a common 
assumption is that assimilating additional independent datastreams should improve the constraint on different 
parts of the model and therefore result in much improved C budget estimates. However, these mostly site-level 
studies have highlighted that assimilating one datastream can often degrade the fit to other variables, usually 
because of a mismatch between what the model represents (including the observation operator) and what the data 
are actually measuring, incomplete characterization of the R matrix (including both model structural and obser-
vation errors), or the choice of parameters is not appropriate. Bacour et al. (2015) demonstrated at two temperate 
forest sites that assimilating satellite observations related to vegetation dynamics (in this case, FAPAR - Table 1) 
can degrade the fit to flux tower C flux observations. They found that assimilating both FAPAR and flux tower 
NEE resolved this issue, resulting in an improvement in RMSE to both datastreams. Bacour et al. (2022) find the 
same issue, and solution, at global scale when assimilating normalized NDVI and comparing to multiple flux 
tower site NEE records. Bacour et al. (2015) suggested that the joint assimilation of the two datastreams results 
in a posterior parameter set that is a compromise from the case where either datastream is assimilated alone, 
analogous to Kuppel et al. (2012, 2014) who showed that MS assimilations of flux data find a “middle-ground” 
set of optimized parameter values with a similar, or even better, model fit to the data compared to averaging indi-
vidual site values. Including more data in the assimilation potentially “smoothes” the cost function and therefore 
lowers the chance that the algorithm gets trapped in local minima. These studies thus suggest that it is preferable 
to include more data streams in an assimilation.

Thum et al. (2017) explored the potential benefit from assimilating aboveground biomass data at two different 
temperate forest sites, in addition to C fluxes. The goal of including biomass data was to constrain “slower” 
process parameters related to C allocation and biomass pool turnover, as well as those related to the “faster” 
photosynthesis, respiration, and phenology parameters. Assimilating total biomass data improved the fit to the 
data, but only by estimating too rapid a biomass turnover. This is because the AR5 version of the model assumed 
a constant turnover rate due to mortality and did not consider stand scale dynamics of disturbance and manage-
ment; therefore, optimization against biomass data results in an unrealistically high turnover rate. These results 
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highlighted that assimilation of certain data is only possible if the model accurately represents all processes that 
contribute to those measurements, otherwise that model structural error will be “aliased” onto the parameters.

5.2.  Challenges Associated With Biased Observations and Model-Data Inconsistencies

Mathematically speaking, many of the issues described in Section 5.1 are related to an incorrect characterization 
of the R matrix - that is, model structural error and/or observation biases are not properly accounted for in the error 
covariances, resulting in the degradation of model-data fit to non assimilated variables or and “aliasing” of that 
bias onto the parameters, which results in inaccurate posterior parameter values (Wutzler & Carvalhais, 2014). 
The same result can occur when observation biases are present. Global scale models are computationally expen-
sive to run; thus, the inversion algorithms chosen must be as efficient as possible. However, the assumptions 
involved with the algorithms typically used to constrain global scale models (e.g., quasi-linear models and Gauss-
ian error distributions with zero mean) are often violated if biases are not accounted for in the R matrix. The 
result may be inaccurate posterior parameter values, even when it appears that the parameter uncertainty has been 
reduced, as demonstrated in synthetic assimilation experiments in MacBean et al.  (2016) in which the “true” 
parameter values of a simple C cycle model were known. It is therefore not enough to simply examine the reduc-
tion in parameter uncertainty, or how the reduction in parameter uncertainty propagates to reduced uncertainty 
on state variables. This issue was further highlighted in Bacour, Maignan, Peylin et al. (2019), who demonstrated 
that biased real-world SIF data results in a strong bias component to the prior mean squared deviation between the 
model and data that can be entirely removed via parameter optimization. They therefore argued that data products 
(in this case, SIF) need to be examined for potential biases, and that those biases should either be removed prior to 
assimilation or properly accounted for in the cost function. This study also highlighted just how careful modelers 
should be when choosing a data set to assimilate from a variety of available products.

Several ORCHIDEE DA studies have shown a degradation to the C fluxes when assimilating measures of vege-
tation dynamics (NDVI or FAPAR) (Sections 4.1 and 5.1). Several hypotheses have been proposed for why satel-
lite measures of vegetation activity are causing a degradation in the fit to C fluxes, including scale mismatches 
between the model and data resulting in a bias that we are not accounting for in the R matrix (Section 6.3), or 
possible large discrepancies in how vegetation canopies are represented in the model versus reality. In ORCHIDEE 
vAR5, vegetation canopies are approximated using the so-called “big leaf” approach, in which the canopy for 
each PFT is represented by a single uniform green column with PFT-dependent maximum LAI, and with a simple 
beer-lambert law describing attenuation of light through the canopy. No vertical canopy structure nor spatial 
heterogeneity within the grid cell is represented. However, even the use of effective LAI within the two-stream 
RT model of ORCHIDEE-CAN (Section 4.1) degraded the fit to flux tower GPP. Therefore, use of effective 
LAI and a more complex RT model did not resolve this issue. Furthermore, unpublished work investigating the 
impact on C fluxes when satellite NDVI is assimilated at grassland sites results in the same degradation; there-
fore, inaccurate representation of forest canopies and RT schemes cannot be the only issue. This is an unsolved 
issue and we continue to investigate. One possible explanation is that LAI (and FAPAR) and GPP may be too 
tightly coupled in the model, when in reality they may not be as well correlated for some PFTs and/or at certain 
times of the year. This has been observed in several different biomes when comparing satellite-derived SIF 
and NDVI/FAPAR with in situ GPP, with SIF tracking photosynthetic activity much better than NDVI/FAPAR 
(Joiner et al., 2014; Smith et al., 2018; Walther et al., 2016). This may point to a model structural issue, or, it may 
simply point to the need to optimize phenology parameters in a first step using satellite NDVI/FAPAR, followed 
by parameters related to photosynthesis and the use of carbohydrate reserves for plant growth using GPP/SIF in a 
second step (as suggested by Kolassa et al. (2020) following their use of satellite FAPAR to calibrate vegetation 
parameters).

5.3.  Technical C Cycle DA Studies

A third focus in past ORCHIDEE DA studies has been to explore different DA system configurations for param-
eter optimization. Kuppel et al. (2013) moved beyond previous ORCHIDEE DA studies that simply define the 
R matrix as the prior RMSE between model and data [or by simply inflating the observation uncertainties by 
the number of observations as in (Kuppel et al., 2012; Thum et al., 2017)] by exploring a method for quanti-
fying the model structural error and its impact on C cycle parameter optimization with NEE based on simple 
model-minus-observation mismatch statistics (Desroziers et al., 2005). They found that this error has a standard 
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deviation of 1.5–1.7 gC m −2 day −1 in the NEE space, without a significant temporal correlation beyond the lag 
of a few days but with a large spatial persistence that can be approximated with an exponential decay of e-folding 
length of 500 km. The same Desroziers et al. (2005) consistency checks were used by Bacour et al. (2022) to 
determine if the prior parameter errors (set to 40% of the range of variation for each parameter) were over- or 
underestimated. Their experiments suggest that the 40% is likely an overestimate (i.e., the prior parameter errors 
are too high), although it is highly dependent upon the assimilation set-up (data used and associated observation 
errors).

Two papers by Santaren et al. (2014) and Bastrikov et al. (2018) examined the advantages and disadvantages 
of using a gradient descent (L-BFGS-B) versus a “global search” (GA) inversion method for parameter esti-
mation with flux tower data (see Section 2.2). Global search algorithms have the advantage of fewer assump-
tions compared to gradient descent methods, which may be violated in the case of using complex TBMs and/
or biased observations (see Section 5.2). In a SS assimilation, both studies found that the GA was better able 
to find the minimum of the cost function because, unlike L-BFGS-B, the GA algorithm did not get caught in 
so-called “local minima”. Bastrikov et al. (2018) expanded the investigation to multi-site (MS) optimizations 
across a wider range of PFTs and found that in the MS case the difference between the two methods in terms 
of reducing the cost function was smaller. They suggest that this smaller difference between the two methods 
is because adding more data into the assimilation acts to “smooth” the cost function - thus, making it easier for 
a gradient-based method not to get trapped in local minima. Nonetheless, Bastrikov et al. (2018) demonstrate 
that the GA is still the superior method for adequately exploring the parameter space and for finding the “true” 
parameters (as evidenced by performing synthetic experiments). The caveat is that it is currently too computa-
tionally expensive to run the GA using a greater number of data points than is typically used in a MS flux tower 
assimilation. If we add in a greater number of sites, global gridded datasets, or a greater number of different data-
sets, the time it would take to perform just one assimilation with the GA would be prohibitively expensive. More 
recent ORCHIDEE DA studies using L-BFGS-B have relied on the use of multiple initial parameter guesses 
in order to improve the convergence efficiency to the global minimum of the cost function (Bacour, Maignan, 
MacBean et al., 2019; MacBean et al., 2015; Peaucelle, Bacour, et al., 2019). As the computational efficiency 
of running the ORCHIDEE model and the optimization code continues to increase, it may be feasible to run all 
our optimizations using the GA (or another global search algorithm such as Metropolis Hastings Markov Chain 
Monte Carlo) in the near future.

6.  Perspectives and Roadmap for Future C Cycle DA Studies
6.1.  The Challenge of Initializing Regional to Global-Scale Aboveground Biomass and Soil C Stocks

Peylin et al. (2016) and Bacour et al. (2022) demonstrated the need to have accurate initial estimates of soil C 
stocks in order to correctly predict trends in atmospheric CO2. If ESMs cannot accurately simulate current trends 
in atmospheric CO2 then we cannot have confidence in our predictions of whether the land will remain a sink of 
C, nor in the allowable C emissions for remaining under a given threshold rise in temperature. The widely used 
approach for model spin-up results in biased estimates of soil C (Exbrayat et al., 2014; Schwalm et al., 2019). It 
is likely that our current approach of spinning up the C stocks to equilibrium (i.e., the steady state assumption) 
prior to the industrial revolution (∼1,750) is flawed because humans have been actively managing the land 
for thousands of years before this point (Ellis et al., 2021) and we do not have enough information on the land 
management and land use history for every point on the land surface (Pongratz et al., 2018). Indeed, model-data 
fit within a DA system has been shown to improve when the steady state assumption is relaxed (Carvalhais 
et al., 2008, 2010). Therefore, we believe that one key objective of near-term C cycle DA efforts should be on 
accurate initialization of model biomass and C cycle stocks (Luo et al., 2016) either after spin up at the beginning 
of the industrial revolution (although data on this time period are scarce, but see Matthes et al., 2016) or after 
the transient run and before the historical simulation at the beginning of the assimilation window as in Peylin 
et al. (2016) and Carvalhais et al. (2008, 2010). This can be achieved by including scalars on initial C pools as 
parameters in the optimization (e.g., KsoilC in Peylin et al., 2016, and possibly an equivalent Kbiomass scalar for the 
aboveground biomass stocks). Another option would be to include the spinup period in the parameter optimiza-
tion; however, the computational expense of including the spinup within a regional to global scale assimilation 
prohibits this as a realistic option. An alternative approach might be to use state DA with gridded estimates of 
changes in C stocks - even satellite estimates of aboveground biomass can propagate through to adjustments in 
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belowground C stocks (e.g., Fox et al., 2018). This would also have the benefit of helping to keep the models 
up-to-date with how C stocks are responding to recent land use and cover changes. A third option would be to 
focus data-collection efforts on accurately estimating global gridded soil C stocks, which can be used to initialize 
the model (e.g., the International Soil Carbon Network, ISCN; Harden et al., 2018; Nave et al., 2016). Parameter 
optimization could then be performed after accurate soil C stocks values have been prescribed and state DA 
approaches could then be used to adjust aboveground biomass with continuing land use and cover changes. It is 
worth noting that while we can optimize initial C stocks at site level (e.g., using a KsoilC parameter), for global 
scale simulations it is likely necessary to constrain the soil C stocks at regional to global scales using global-scale 
data (e.g., global gridded data or global atmospheric CO2 concentrations) rather than networks of in situ data. 
We have yet to make full use of global gridded datasets in ORCHIDEE C cycle DA studies. This is a clear goal 
for the future.

6.2.  Novel Datasets Needed for Constraining Predictions of Carbon-Climate Feedbacks

Despite the fact that Peylin et al. (2016) were one of the first to use three separate C cycle related datastreams to 
constrain global TBM C flux estimates, these three sources of data represent just a fraction of the data that are 
now available for C cycle model optimization. We must utilize the data from the increasing number of both in 
situ eddy covariance CO2 flux sites and tall tower atmospheric CO2 mole fraction measurement stations, as well 
as longer running records at many existing sites. In Sections 3 and 4, we discussed some of the newer datasets 
that we have started to use to constrain different variables in the ORCHIDEE model, including satellite-derived 
SIF products, effective LAI, and elevated CO2 manipulation data. Other ongoing studies within the ORCHIDEE 
DA group aim to use tree ring width data to optimize C allocation, and carbonyl sulphide (COS) measure-
ments to constrain GPP. Initial work has focused on developing models - or observation operators - linking the 
relevant processes already implemented in ORCHIDEE to the new data. Jeong et al.  (2020) have proposed a 
novel approach for linking ORCHIDEE-CAN to tree ring width estimates from the International Tree Ring Data 
Bank that accounts for sampling biases in tree ring chronologies, while Barichivich et al.  (2021) used C and 
oxygen isotopes derived from tree rings as an integrative benchmark of simulated tree growth and physiological 
responses to drought. Follow up work will use these data formerly within the DA system to constrain relevant 
C uptake and allocation and stomatal conductance related parameters. A process-based model for vegetation 
COS uptake has been developed for ORCHIDEE (Maignan et al., 2021). To be able to assimilate the COS flux 
meas ured at the ecosystem scale, we have also modeled the soil COS contribution (Abadie et al., in prepartion). 
The next step will be to assimilate COS observed fluxes to constrain the simulated GPP.  A complementary 
approach would be to exploit COS atmospheric concentration data in a similar way to atmospheric CO2 data - that 
is, by coupling ORCHIDEE to the LMDz transport model. Remaud et al. (2021) have already used atmospheric 
CO2 and COS concentration data in an atmospheric inversion of LMDz. Analogous to using both NEE and GPP, 
these two sources of constraint on both net and gross surface CO2 fluxes resulted in a 2 PgC.yr −1 increase in the 
NH net C sink.

As we noted above, better understanding and predictions of carbon-climate feedbacks will rely on accurate 
estimation of longer-term C cycling and changes in above- and belowground C stocks; therefore, we must find 
new methods and data to address this issue. The global soil respiration database (Jian et al., 2021) and ISCN 
should be more widely used in TBM C Cycle DA. Soil radiocarbon measurements (Lawrence et  al.,  2020) 
are also a promising source of information for constraining rates of soil C cycling (Shi et al., 2020). With the 
increasing development of models that represent the vertical and spatial heterogeneity of forest canopies (e.g., 
Fisher et  al.,  2018; Naudts et  al.,  2015), new remote sensing datasets related to forest canopy biomass and 
structure (e.g., the full waveform lidar data of vegetation height from the GEDI mission; Dubayah et al., 2020) 
or aboveground biomass from the ESA BIOMASS mission (Quegan et al., 2019), methods for detecting crown 
fractional coverage (Brandt et al., 2020), and novel machine learning approaches linking ground-based forest 
inventory data with remote sensing of vegetation height (e.g., Xu et al., 2021) will be instrumental in aiding 
initialization and parameterization of the new vegetation demographic models. Scholze et  al.  (2017) and 
Exbrayat et al. (2019) provide useful reviews of how satellite data can be utilized in C cycle DA systems. These 
satellite datasets will be particularly useful for high carbon regions such as the Arctic boreal zone or tropical 
rainforests that are particularly sensitive to carbon-climate feedbacks yet have a relative paucity of in situ 
field stations. Similarly, with recent developments of mechanistic plant hydraulic schemes in TBMs (Kennedy 
et al., 2019; Li et al., 2021; Naudts et al., 2015), simultaneous assimilation of C and water stocks and fluxes will 
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be needed to constrain these complex, interacting processes. This should help to improve predictions of deep 
root water uptake and therefore ecosystem vulnerability or resilience to water stress (Fan et al., 2017; Kleidon 
& Heimann,  1997). Microwave satellite derived estimates of vegetation optical depth data (e.g., Konings 
et al., 2016; Liu et al., 2011; Moesinger et al., 2020) may also be useful in this regard, particularly for separating 
out leaf growth versus plant water responses to water stress (Feldman et al., 2021; Konings, Rao et al., 2019). 
Finally, we recommend that modeling groups rapidly increase their use of experimental manipulation data 
in parameter optimization studies, as we have documented in a pilot study described in Section 4.2 (and see 
Medlyn et al., 2015). Ultimately, accurate predictions of carbon-climate feedbacks will rely on models being 
able to accurately simulate how ecosystem processes respond to elevated CO2 and changing climate; therefore, 
it is imperative that we make full use of the experimental data that can give us insights into these responses. 
As with all past C cycle DA studies, it will take time to test the best approaches for how to best use novel data-
streams within a DA system.

6.3.  Challenge of Accurate Characterization of the Prior Observation and Parameter Error Covariance 
Matrices, R and B

As discussed in Sections 5.1 to 5.3, accurate characterization of the R and B matrices is difficult to achieve; 
however, this is a key goal of the ORCHIDEE DA group, as it is for many other groups in the land modeling 
DA community. Most land model DA studies to date have only prescribed the diagonal elements of R - meaning 
that we assume that observation (including model structural errors) errors are independent of each other. This 
is not the case in reality: correlated errors can exist in individual datasets due to spatial and temporal autocor-
relation, as well as between two or more different datasets of related variables. The magnitude of the model 
structural component of R is also typically poorly constrained in TBM C cycle DA. As discussed in Section 5.3, 
Kuppel et al. (2013) presented a novel approach adapted from the atmospheric DA community for estimating the 
off-diagonal elements of the R matrix, but more “DA science” research needs to be conducted in this area. As we 
argued in Section 5.2, data providers and users need to identify observation biases and/or inconsistencies between 
the model and the data and incorporate that information into the R matrix.

In a similar vein, we need to increase our use of the types of consistency tests employed in Bacour et al. (2022) 
for defining the variance terms of the B matrix (Section 5.3). In another study with the JULES TBM, Raoult 
et al. (2016) performed similar tests for determining the prior parameter errors. They included a multiplicative 
factor on the prior parameter (“background”) error term in J(x), which, in the absence of more information 
on the prior errors, was tuned to ensure a normal distribution with sufficiently high variance to not be too 
constrained to the prior value, nor too broad that the parameters hit the bounds of their ranges. This ensured 
the inversion problem was well posed and well conditioned. Using known ecological relationships between 
parameters (i.e., error correlations between parameters - see Section 4.5) is also critical for a better charac-
terization of the off-diagonal B matrix terms. We also need more information (e.g., field measurements) on 
parameter ranges, which necessitates that model parameters are measurable. Without this extra information 
and better characterization of B, the optimization likely will be ill posed, resulting in model equifinality. 
Synthetic experiments with pseudo-observations and known parameter values should help to identify the types 
issues with characterizing R and B presented here, and thus should form one of the first steps in a rigorous 
DA framework.

6.4.  Further C Cycle DA Methods and Inter-Comparison Studies Needed

Throughout this review we have highlighted that the posterior parameter values and resultant estimates of C 
cycle budgets can vary considerably depending on the specific DA system configuration used (e.g., the data type 
included, stepwise vs. simultaneous assimilation of multiple datastreams, the record length and frequency of 
the observations, the number of sites, single vs. multi-site optimization, which PFTs are optimized, the number 
parameters included and to which variables they are sensitive, prior uncertainties on parameters and assimilated 
quantities, error correlations, and which terms/metrics are included in cost function, among other factors). As a 
result of this issue and of ongoing ORCHIDEE developments, relatively few parameters derived from our C cycle 
DA studies have been incorporated in the ORCHIDEE trunk version. In the earliest days of terrestrial ecosys-
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tem model C cycle DA studies different aspects of the DA system configuration were explored in more detail 
(Braswell et al., 2005; Keenan et al., 2013; Moore et al., 2008; Ricciuto et al., 2008, 2011; Santaren et al., 2007; 
Zobitz et al., 2014). We have continued this research direction (see Section 5) but we argue that much more tech-
nical DA research is needed, including:

1.	 �More studies to determine how the DA experiment configuration is impacting our predictions of all aspects of 
regional to global scale C budgets, IAV and future trends.

2.	 �Extensive assessments by all modeling groups of the impact of different sources of uncertainty in their models, 
in order to better target model development and optimization efforts.

3.	 �To fully characterize the contributions of different sources of uncertainty we should adopt ensemble approaches 
that can not only explore the full parameter space, but also include different driving datasets and versions of 
the model that account for different representations of physical processes.

4.	 �Development of more consistent and robust C cycle DA frameworks, which would include initial steps of 
global sensitivity analyses (Morris, 1991), synthetic DA experiments (Sections 5.2, 5.3, 6.3), and a wider 
range of consistency checks and diagnostic metrics (e.g., Desroziers et al., 2005) to assess DA system perfor-
mance. This type of framework should be used prior to assimilating “real” data so we can have more confi-
dence that the DA system set-up we are using can reliably and accurately estimate and reduce uncertainty on 
C cycle parameters and processes.

5.	 �These DA frameworks should be easily adaptable and robust to changes in the underlying model version. 
Keeping the DA system up-to-date with TBM developments is not an easy task, particularly when you have 
to derive the TL or adjoint version of the code. In the ORCHIDEE DA team a tool has been developed to 
do the required preprocessing of any version of ORCHIDEE so the TL version of the model can be easily 
derived using the automatic differentiation tool TAF (Transformation of Algorithms in Fortran; Giering 
et al., 2005). However, we need to test other approaches such as the 4D ensemble variational (4DEnVar) 
DA method (e.g., Pinnington et al., 2020) that may be helpful in this regard. In the case of 4DEnVar a TL 
or adjoint version is not needed and the computational time required for the assimilation is much lower. 
Such approaches can therefore accommodate increasing complexity in TBMs, which usually require longer 
simulation times.

6.	 �Increasing model complexity does not always increase predictive power (Famiglietti et al., 2021). Therefore, 
model sensitivity and DA studies should be expanded to examine the relative benefit of increasing model 
complexity (and realism) versus the constraint on model structural and parametric uncertainty that differ-
ent datasets can achieve (Famiglietti et al., 2021; Bacour et al., 2022). Indeed, improved predictive power 
with more complex model developments may only be realized once observations have been used within a 
formal DA framework to constrain model parametric uncertainty (Famiglietti et al., 2021). Model develop-
ment would also benefit from applying DA approaches in a hypothesis testing approach, specifically for test-
ing different assumptions about how various processes can be represented in models (Mahmud et al., 2018; 
Walker et al., 2018).

7.	 �More calibrated MIPs (i.e., global DA system intercomparison studies) are needed to determine if the spread 
between models seen in so many model benchmarking studies (see Introduction) is reduced once parameter 
uncertainty has been accounted for. Such studies would present a clear signal to the broader CMIP modeling 
community that accounting for parameter uncertainty within a rigorous, formalized DA system is a much 
needed and worthwhile endeavor.

8.	 �Finally, we need to explore: (a) which parameters (and therefore, which processes) are mostly responsible 
for the changes we see in the optimized global-scale simulations; (b) whether the data-constrained model 
can capture observed changes in the land C sink at finer regional scales within a given biome (e.g., Hubau 
et al., 2020); and, (c) what the impact of the optimizations will be in future projections of carbon-climate 
feedbacks.

7.  Conclusions
Our global C cycle DA studies have shown that optimizing the C cycle parameters of a model can dramati-
cally change in which region the model estimates the strongest C sink; therefore, it is imperative that mode-
ling studies aiming to address this question use a formal DA system to quantify and reduce parametric (and 
ideally, structural) uncertainty. The studies that the ORCHIDEE DA group have performed to date have often 
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been pioneering studies in the C cycle DA field. However, much more technical “DA science” work needs 
to be done in testing different TBM C cycle DA configurations (see Section 6.4) before we can reliably use 
data-constrained TBMs to answer questions such as which regions dominate the global land C sink and IAV, 
which C cycle processes and which C pools are responsible for the net uptake of CO2, and the resilience of 
ecosystem functioning in response to future climate change under possible confounding effects of elevated 
CO2 (Gampe et al., 2021; Yuan et al., 2019). In particular, more attention is needed to address the C cycle DA 
challenges related to spin-up and accurate initial C stocks, and to identify observation biases and inconsisten-
cies between what is represented in the data and what is observed in reality so that we can better characterize 
the prior observation error covariance matrix. DA science studies need to continue in coordination with the 
process-based model developments still needed to account for the complex interactions between the terrestrial 
biosphere, climate change, rising CO2, and land use change and management. DA allows us to make optimal use 
of information from both models and data; thus, it is a crucial tool for improving predictions of carbon-climate 
feedbacks. We argue that the TBM community should move rapidly toward development of DA systems, and 
the preferential use of data-constrained simulations in the annual global carbon budget and IPCC/CMIP future 
climate change projections.

Appendix A:  Partitioning of Net CO2 Fluxes Into GPP and Reco for Assimilations 
Including Atmospheric CO2 Concentration Data
Figure A1 shows the separation of regional to global net ecosystem exchange (NEE) shown in Figure 4 into the 
two component gross C fluxes: gross CO2 uptake (GPP) and ecosystem respiration (R_eco).
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cecill.info/index.en.html, CeCILL,  2020). The associated ORCHIEE documentation can be found at https://
forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. The ORCHIDEE model code is written in Fortran90 and is 

Figure A1.  Global annual (a) GPP and (b) Reco (PgCyr-1) simulated by ORCHIDEE vAR5 averaged over the 2000–2009 period and separated into northern 
hemisphere (30°N–90°N - blue), tropics (30°S–30°N - red), and southern hemisphere (30°S–90°S - green) regions.
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maintained and developed under an SVN version control system at the Institute Pierre Simon Laplace (IPSL) in 
France. The ORCHIDAS data assimilation scheme (in Python) is available through a dedicated web site (https://
orchidas.lsce.ipsl.fr). Simulation post-processing and plotting scripts for the figures presented in this paper were 
performed in Python and are provided on NM's GitHub repository: https://github.com/nmacbean/ORCHIDEE-
Param-DA-Review-GBC/ https://doi.org/10.5281/zenodo.6621632, MacBean et al., 2022.
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