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WEAK UNIVERSALITY RESULTS FOR A CLASS OF
NONLINEAR WAVE EQUATIONS

CHENMIN SUN, NIKOLAY TZVETKOV, AND WEIJUN XU

Abstract. We study the weak universality of the two-dimensional fractional

nonlinear wave equation. For a sequence of Hamiltonians of high-degree potentials

scaling to the fractional Φ4
2, we first establish a sufficient and almost necessary

criteria for the convergence of invariant measures to the fractional Φ4
2. Then

we prove the convergence result for the sequence of associated wave dynamics

to the (renormalized) cubic wave equation. Our constraint on the fractional

index is independent of the degree of the nonlinearity. This extends the result of

Gubinelli-Koch-Oh [Renormalisation of the two-dimensional stochastic nonlinear

wave equations, Trans. Amer. Math. Soc. 370 (2018)] to a situation where we do

not have a local Cauchy theory with highly supercritical nonlinearities.
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1. Introduction

1.1. From microscopic to macroscopic wave dynamics. The aim of this article
is to study the macroscopic behaviour of the weakly interacting waves of the type

(1.1)

{
∂2
t ũ+ |∇|2αũ+N−θΠ̃NV

′(ũ) = 0 , (t, x) ∈ R×T2
N ,

ũ(0, ·) = φ̃ , (∂tũ)(0, ·) = ψ̃ ,

where T2
N = (R/2πNZ)2 is the two dimensional torus of side length 2πN , V is an

even polynomial satisfying certain structural conditions specified below, and Π̃N is
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the Fourier projection operator on T2
N such that

Π̃Nf(x) =
∑
|k|≤N

(FNf)(k)ei
k·x
N , (FNf)(k) =

1

(2πN)2

∫
T2
N

f(y)e−i
y·k
N dy.

The differential operator |∇|γ acts on functions on torus of side length N as

FN(|∇|γf)(k) :=
∣∣∣ k
N

∣∣∣γ(FNf)(k) .

Here in the microscopic model, we take γ = 2α and L = 2πN . The initial data φ̃
and ψ̃ are two random functions given by

φ̃N(x) =
1

2πN1−α

∑
|k|≤N

gk√
1 + |k|2α

ei
k·x
N , ψ̃N(x) =

1

2πN

∑
|k|≤N

hk e
i k·x
N ,

where {gk} and {hk} are independent standard complex Gaussian with g−k = gk and
the same for hk. This type of initial condition is natural since the Gaussian measure it
induces is invariant under the perturbed linear evolution above (with the differential
operator |∇|2α replaced by 1

N2α + |∇|2α and without nonlinear interaction).

Remark 1.1. The initial data is, very roughly speaking, of the type

1

2πN

∑
|k|≤N

ρ(k/N)gk(ω)ei
k·x
N

for suitable function ρ : R2 → R. In our case, ρ(x) = 1
〈x〉α for the initial position,

and ρ(x) ≡ 1 for the initial velocity. Although natural from the invariance of the
perturbed linear dynamics, we should also note that our choice is also very restrictive
relating to the support of the corresponding Gibbs measure.

Note that φ̃ has a stationary Gaussian distribution with φ̃N (x) ∼ N (0, σ2
N ), where

(1.2) σ2
N =

1

4π2N2(1−α)

∑
|k|≤N

1

1 + |k|2α
=

1

4π2

∫
|ξ|≤1

1

|ξ|2α
dξ︸ ︷︷ ︸

σ2

+ O(N−2(1−α)) .

Let σ2 be defined as above, µ̃ be the law of N (0, σ2), and

〈V 〉(z) :=

∫
R

V (z + y)µ̃(dy)

be the average of V under µ̃. Our main assumption on V is the criticality and
positivity of its averaged version 〈V 〉.

Assumption 1.2. V is an even polynomial of degree 2m ≥ 4 with the form

V (z) =
2m∑
j=0

ajz
2j .

Furthermore, we assume

(1) z = 0 is a bifurcation point of 〈V 〉 in the sense that 〈V 〉′′(0) = 0.

(2) 〈V 〉(z)− 〈V 〉(0) > 0 for all z 6= 0.
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The averaged version 〈V 〉 has the expression

〈V 〉(z) =
m∑
j=0

ajz
2j

with

(1.3) aj =
1

(2j)!
E
[
V (2j)

(
N (0, σ2)

)]
=

1

(2j)!

m∑
k=j

(2k)!

(2k − 2j)!!
· ak · σ2(k−j) .

Hence, Condition (1) above is equivalent to say that a1 = 0. Since the renormalisation
term in the wave dynamics and the measures are constant multiples of a1N

2(1−α)uN
and a1N

2(1−α)φ�2N respectively, Condition (1) guarantees that the divergent parts in
various terms are cancelled out automatically, and there is no need to subtract the
renormalisation by hand. With Condition (1), Condition (2) is then equivalent to
the following positivity condition:

m∑
j=2

ajz
2(j−2) > 0 , ∀z ∈ R .(1.4)

Exemple 1.3. If we fix a2 > 0, ... ,am > 0, we can find a1 < 0 such that our
assumptions on V are satisfied. For example

V (z) = z6 − 45σ2z2

satisfies the assumptions. We can also find V ≥ 0 such that our assumptions are
satisfied.

Our aim is to investigate the influence of the microscopic weak non-linear interaction
to the macroscopic behaviour of ũ under the above assumption on V . For T2 =
(R/2πZ)2, define the macroscopic process uN on R×T2 by

uN(t, x) := N1−αũ(Nαt, Nx) , (t, x) ∈ R×T2 .

It satisfies the equation

(1.5) ∂2
t uN + |∇|2αuN +N1+α−θΠNV

′(uN/N
1−α) = 0 , (t, x) ∈ R×T2

with initial data
(1.6)

(uN , ∂tuN)(0, x) = (φN(x), ψN(x)) =
1

2π

( ∑
|k|≤N

gk√
1 + |k|2α

eik·x,
∑
|k|≤N

hke
ik·x
)
,

where ΠN is the Fourier projector on the unit tori:

Π̂Nf(k) = 1|k|≤N f̂(k), f̂(k) = (F1f)(k) =
1

(2π)2

∫
T2

f(y)e−ik·ydy.(1.7)

In order for uN to converge to a cubic equation, one necessarily sets θ = 4α− 2 and
hence 1 + α− θ = 3(1− α).

1.2. The macroscopic model. Let T2 = (R/2πZ)2 be the two dimensional torus.
For every N > 0, let ΠN be the Fourier projection operator on the unit tori introduced
in (1.7). For α ∈ (3

4
, 1), let µ = µα be the probability measure on D′(T2) (the space
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of distributions on T2) with covariance operator (1 + |∇|2α)−1, and µ′ be the white
noise on T2. Equivalently, the Gaussian measures µα and µ′ are induced by the
random functions

φ =
1

2π

∑
k∈Z2

gk√
1 + |k|2α

eik·x , ψ =
1

2π

∑
k∈Z2

hke
ik·x

respectively, where {gk}k∈Z2 is a collection of centered complex Gaussian random
variables such that

g−k = gk , E|gk|2 = 1 , E(g2
k) = 0 ,

and otherwise independent, and the same for {hk}. Since α will be a fixed parameter
throughout the article, we simply write µ = µα.

Let µN := µ◦Π−1
N and µ′N = µ′◦Π−1

N be the marginals of µ and µ′ on frequencies up
to N . Hence, the initial data of the macroscopic wave dynamics (1.5) are distributed
according to µN ⊗ µ′N . Let σ̃2

N be the variance of φ under µN , which is invariant
under translations and hence σ̃2

N does not depend on the spatial variable x. In fact,
a direct computation shows

σ̃2
N := Eµ|ΠNφ|2 =

1

4π2

∑
k∈Z2,|k|≤N

1

1 + |k|2α
= (σ2 + errN)︸ ︷︷ ︸

=:σ2
N

·N2(1−α) ,(1.8)

where σ2
N and

(1.9) σ2 =
1

4π2

∫
|ξ|≤1

1

|ξ|2α
dξ

are as defined in (1.2), and errN = O(N−2(1−α)) as N → +∞.
Now, let V be an even polynomial satisfying Assumption 1.2. For every N ∈ N,

let

(1.10) VN(ϕ) = N4(1−α)V (ϕ/N1−α) ,

and we have

(1.11) VN(ϕ) =
m∑
j=1

aj,NN
−(2j−4)(1−α)H2j(ϕ; σ̃2

N) ,

where Hk(·, σ2) is the k-th Hermite polynomial with leading coefficient 1 and variance
σ2. The coefficients aj,N can be explicitly computed as

(1.12) aj,N =
1

(2j)!
E
[
V (2j)

(
N (0, σ2

N)
)]
.

For every j, we have aj,N → aj as N → +∞, where aj are as given in (1.3).
Furthermore, the following slightly more delicate relation holds.

Proposition 1.4. Assume that α ∈
(

1
2
, 1
)
. There exists an absolute constant λ0 ∈ R,

such that as N →∞,

a1,N = a1 + λ0N
−2(1−α) +O(N−1) +O(N−4(1−α)).

Proof. See Appendix D. �
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1.3. Wave dynamics. Our first main result concerns the behavior of the macro-
scopic wave-dynamics as N → ∞. In this part, we always assume that V verifies
Assumption 1.2 and denote λ := 4a2 > 0. The theorem is stated as follows.

Theorem 1.5. Suppose that α ∈ (8
9
, 1). Let σ < α− 1 and suppose that V satisfies

Assumption 1.2 with λ := 4a2 > 0. Let uN be the solution of

∂2
t uN + |∇|2αuN + ΠNV

′
N(uN) = 0,

with initial data

(uN , ∂tuN)|t=0 =
1

2π

∑
|k|≤N

( gk(ω)√
1 + |k|α

eik·x, hk(ω) eik·x
)
.

Then solutions of (with λ0 ∈ R given in Proposition 1.4)

∂2
t vN + |∇|2αvN + 2λ0vN + λΠN((vN)3 − 3σ̃2

NvN) = 0

with initial data (1.5) converge almost surely in the sense of distribution on R×T2,
as N →∞ and satisfy

lim
N→∞

‖uN − vN‖C([−T,T ],Hσ(T2)) = 0, ∀T > 0.

Remark 1.6. We have a more detailed convergence statement by decomposing uN
(and also vN) into a random term with low regularity and a smoother contribution.
The latter converges in positive Sobolev norms. See Propositions 4.1 and 4.2 for
precise statements.

The restriction α > 8
9

is technical and can hopefully be improved using recently
developed methods ([6, 9, 10]). However, this is not in the objective of this work.
Instead we emphasize that our range of α is independent of the degree 2m of the
potential V . Indeed, the Cauchy problem (1.15) without the negative powers of
N in higher nonlinearities in V is highly supercritical1. What saves us here is the
truncation ΠN in frequency space and the negative power of N in front of the
high-power nonlinearity. The same situation appears in Hairer-Quastel [18] for the
KPZ equation (though in a different setup where the problem is the singularity of
the driving noise instead of the initial data).

Remark 1.7. The theorem still holds true if the sharp cutoff in the truncation is
replaced by a smoother cutoff with a sufficiently fast decay smooth function. The
constant λ in the final statement then will depend on the actual cutoff function.

1.4. The Gibbs measures. In order to prove Theorem 1.5, we re-write the macro-
scopic model (1.5) as

(1.13) ∂2
t uN + (1 + |∇|2α)uN + ΠN

(
V ′N(uN)− uN

)
= 0 ,

still with initial data (1.6). We add a mass term in the linear part in order to control
the free evolution of the zero-th Fourier mode, and modified the nonlinear term to
compensate the change. In fact, without the mass term, the zero-th mode will grow

1For large m, this is even supercritical with respect to the probabilistic scaling, a notion introduced
in [9, 10].
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in time under the linear evolution. Let

ṼN(ϕ) := VN(ϕ)− 1

2

(
ϕ2 − σ̃2

N

)
,

and let νN be the probability measure given by

(1.14) νN(dφ) =
1

ZN
e−

∫
T2 ṼN (φ)dxµN(dφ) .

The measure νN is well defined as long as am > 0, and νN ⊗ µ′N is invariant under
the dynamics (1.13). If λ := a2 > 0, then the measure

ν(dφ) =
1

Z
e−λ

∫
T2 φ

�4dx+ 1
2

∫
T2 φ

�2dxµ(dφ)

is also well-defined, where φ�k denotes the k-th Wick power of φ with respect to the
Gaussian structure induced by µ. ν is known as the fractional φ4

2 with exponent α.
See Section 2.3 for the precise definition.

Remark 1.8. Note that the measure ν has an additional quadratic term on the
exponential with the opposite sign compared to the usual fractional φ4

2. This
is because we define the Gaussian measure µ to have covariance (1 + |∇|2α)−1.
Indeed, the measure ν is the same with the quadratic term removed if the reference
Gaussian measure has covariance |∇|−2α and 0-mode being a N (0, 1) random variable
independent of all other modes.

Let µ′ be the white noise measure on T2, and define the measures ~µ, ~νN and ~ν by

~µ := µ⊗ µ′ , ~νN := νN ⊗ µ′N , ~ν := ν ⊗ µ′ .

More precisely, writing ~φ = (φ, φ′), we have

~νN(d~φ) = νN(dφ)µ′N(dφ′) = Z−1
N e−

∫
T2 ṼN (φ)dx µN(dφ)µ′N(dφ′)︸ ︷︷ ︸

~µN (d~φ)

,

and
~ν(d~φ) = ν(dφ)µ′(dφ′) = Z−1e−λ

∫
T2 φ

�4dx µ(dφ)µ′(dφ′)︸ ︷︷ ︸
~µ(d~φ)

,

where the values of ZN and Z are the same as before. The equation (1.13) can be
written as a Hamiltonian system for ~uN := (uN , ∂tuN) as

(1.15) ∂t

(
uN
∂tuN

)
=

(
0 1
−1 0

)
∂EN

∂(uN , ∂tuN)
,

where the Hamiltonian is given by

EN(f, g) =
1

2

(
〈|∇|2αf, f〉L2 + 〈g, g〉L2

)
+

∫
T2

VN(ΠNf)dx .

For every N , the probability measure ~νN is invariant under the above Hamiltonian
dynamics. Theorem 1.10 implies that ~νN ⊗ µ⊥N ⊗ (µ′N)⊥ converges to ~ν in the sense
that the density with respect to ~µ converges in Lp(~µ) for every p ≥ 1. The measures
~µ and ~ν are supported on

H−(1−α)9(T2) := H−(1−α)9(T2)×H−19(T2) ,
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where
Hγ9 :=

⋂
ε>0

Hγ−ε .

The invariance of νN ⊗ µ′N under the dynamics (1.13) is an essential ingredient in
the proof of Theorem 1.5. In addition, convergence of the measures itself may of
independent interest.

Remark 1.9. We would like to emphasize that the invariance of νN ⊗ µ′N under the
dynamics (1.13) is used in two different ways. The first one is that it gives key a
priori bounds for truncated dynamics (for fixed N). Second, the convergence of the
invariant measures to a limiting measure (as stated in Theorem 1.10 below) and the
invariance of the limiting measure under the limiting dynamics allows us to pass
from local to global in time convergence.

1.5. Convergence of the measures. We now state our result on the convergence
of the Gibbs measures. For convenience, we introduce another measure νN by

νN(dφ) := νN ⊗ µ⊥N =
1

ZN
e−

∫
T2 ṼN (ΠNφ)dxµ(dφ) ,

where the normalisation constant ZN is the same as the one in (1.14). For every
p ≥ 1, define

Z(p)
N := Eµ

[
e−p

∫
T2 ṼN (ΠNφ)dx

]
.

Then ZN = Z(1)
N . Our first theorem is the following:

Theorem 1.10. Let α ∈ (3
4
, 1). Suppose that V verifies Assumption 1.2. Then for

every p ≥ 1, we have

sup
N
| logZ(p)

N | < +∞

Furthermore, λ := a2 > 0, and

Eµ

∣∣∣∣e− ∫
T2 ṼN (ΠNφ)dx − e−λ

∫
T2 φ

�4dx+ 1
2

∫
T2 φ

�2dx

∣∣∣∣p → 0

for every p ≥ 1. Hence, νN converges to the fractional φ4
2 measure ν in the sense

that the densities with respect to µ converge in Lp(µ).

Remark 1.11. The restriction α > 3
4

is natural in the sense that in this range, one
can define the φ4 measure ν by an absolutely continuous density with respect to the
Gaussian measure µ. The fourth Wick power φ�4 fails to exist under µ when α = 3

4
,

in which case one expects to end up with a measure (after further renormalisations)
that is mutually singular with respect to µ.

The next proposition says that (1.4) is actually almost necessary for the main
theorem.

Proposition 1.12. If there exists θ ∈ R such that
∑m

j=1 a2θ
2(j−2) < 0, then there

exists c > 0 such that logZN > cN4(1−α) for all N ∈ N. As a consequence, the
densities dν̄N

dµ
do not converge in L1(µ).
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1.6. Comparison with parabolic equations and other dispersive models.
This type of weak universality was first studied by Hairer-Quastel ([18]) in deriving
the KPZ equation from a large class of microscopic growth models. It has later been
extended in various directions in the setting of parabolic singular stochastic PDEs
([20, 19, 24, 13, 12]). A key feature in this type of this problem is that every term in
the expansion of the nonlinearity has the same size — and hence the constant λ of
this limiting equation depends on the whole nonlinearity rather than the naive guess
of the corresponding power only. As far as we know, our Theorem 1.5 is the first one
for dispersive models fitting in this situation.

Technically, one difference between dispersive and parabolic equations is the lack
of L∞ based estimates in the dispersive setting. Hence, the heuristic reasoning that
negative powers of N balance out high powers of singular objects needs more involved
justification with the help of dispersive tools. A second technical difference lies in
the globalisation argument. In the parabolic setting, the global-in-time convergence
follows from the global well-posedness of the limiting equation and stability. However
in the current dispersive setting, even though the limiting equation is globally well-
posed, the stability properties are not good enough here, and we need to make an
essential use of invariant measure to get global convergence.

Note that our techniques can be used to extend the weak universality result of
Gubinelli-Koch-Oh for the 2D stochastic nonlinear wave equation to the stochastic
nonlinear fractional wave equation with space-time white noise, formally written as

∂2
t u+ |∇|2αu+ ∂tu+ λu�3 = ξ, (t, x) ∈ R+ ×T2

when α > 8
9
. The weak universality result of Gubinelli-Koch-Oh is a consequence

of the almost sure global well-posedness for the two-dimensional nonlinear wave
equation (α = 1) with any order nonlinearity, while for the fractional wave equation
with α < 1, the situation is radically different.

1.7. Notations and conventions. We fix the parameter α ∈ (8
9
, 1) throughout

this article. In the Gibbs measure part, we relax its range to α ∈ (3
4
, 1). For z ∈ R,

we write 〈z〉 := (1 + |z|2α)
1
2α , and write

〈∇〉 := (1 + |∇|2α)
1
2α .

We use the short symbol D := 〈∇〉 throughout this article (and hence Dα = 〈∇〉α).
The estimates X . Y (X & Y ) stand for X ≤ CY (X ≥ C ′Y ) for some unrelated
constants C,C ′ > 0. We denote by X ∼ Y if X . Y and X & Y . We also write
X .ε,δ Y to emphasize that the constant depends only on parameters ε, δ.

Space-time norms are frequently used in the article. For a Banach space X ,
an interval I ⊂ R and q ∈ [1,∞], we denote by LqtX (I) the space Lq(I;X ). If
there is no risk of confusing about the time interval, we will simply write LqtX .
Banach spaces X can be Sobolev or Lebesgue spaces for the spatial variable, such
as Hs(Td),W s,p(Td), Lp(Td), etc. Furthermore, since no local spatial norm will be
used, we write Xx to stand form X (Td).
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Globally reserved parameters: α ∈ (1
2
, 1), β := 1 − α, s0 = 4α − 3. The even

number 2m ∈ N stands for the degree of the potential V (z). We may specify more
restrictive ranges of them in different contexts.

For parameters A,B, the symbol A � B means that B > CA for a very large
constant C, depending on the context.

1.8. Organization of the article. This article is organized as follows. In Section 2,
we give some preliminary lemmas on functional inequalities and stochastic estimates.
These will be used throughout the article. In Section 3, we prove the convergence of
the measures νN to ν under Assumption 1.2 on V , and also give evidence to show
that this positivity assumption is also almost necessary for the convergence result.
Section 4 is devoted to the proof of Theorem 1.5, convergence of the wave dynamics
to the cubic wave equation. The appendices collect detailed proofs of some technical
lemmas.

Acknowledgement. The authors thank the Hausdorff Research Institute for Math-
ematics for the hospitality, since the beginning of this work has been done during the
program Randomness, PDEs and Nonlinear Fluctuations. C. Sun and N. Tzvetkov
are supported by the ANR grant ODA (ANR-18-CE40- 0020-01).

2. Preliminaries

2.1. Functional spaces and nonlinear estimates. Let ϕ ∈ C∞c (Rd; [0, 1]) be a
radial functions such that supp(χ) ⊂ {ξ : |ξ| ≤ 4

3
}, supp(ϕ) ⊂ {ξ : 3

4
≤ |ξ| ≤ 8

3
}. For

j ≥ 0, define ϕj(ξ) = ϕ(2−jξ). Let χ : Rd → [0, 1] be a radial bump function such
that

χ(ξ) +
∑
j≥0

ϕj(ξ) ≡ 1.

Define the Fourier multiplier

P−1 = F−1
x χFx, Pj = F−1

x ϕjFx, j ≥ 0.

The Besov space Bγ
p,q(T

d) with indices γ ∈ R, 1 ≤ p, q ≤ ∞ is defined via the norm

‖f‖Bγq,r(Td) :=
∥∥2jγ‖Pjf‖Lq(Td)

∥∥
lpj
.

In the main part of the article, we use frequently the convention Cγ := Bγ
∞,∞. For

γ ∈ R, 1 ≤ p ≤ ∞, the fractional Sobolev spaces W γ,p(Td) is defined via the norm

‖f‖W γ,p(Td) := ‖Dγf‖Lp(Td)

By Littlewood-Paley’s square-function theorem, when γ ≥ 0 and 1 < p < ∞, we
hvae

‖f‖W γ,p(Td) ∼γ,p
∥∥‖2jγPjf‖l2j

∥∥
Lp(Td)

.

Lemma 2.1 (Fractional Leibniz rule). Let p ∈ (1,+∞) and p1, p2, p̃1, p̃2 > 1 such
that

1

p1

+
1

p2

=
1

p̃1

+
1

p̃2

=
1

p
.
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Let β ≥ 0. Then there exists C > 0 depending on all the above parameters such that

‖〈∇〉β(fg)‖Lp ≤ C
(
‖〈∇〉βf‖Lp1‖g‖Lp2 + ‖f‖Lp̃1‖〈∇〉βg‖Lp̃2

)
for all f, g ∈ C∞(T2).

Proof. This is [16, Theorem 1]. �

Proposition 2.2 (General Gagliardo-Nirenberg inequality). Let p ∈ (1+,∞), β > 0
and θ ∈ [0, 1]. Let p1, p2 > 1 and β1, β2 > 0 be such that

1

p
=

θ

p1

+
1− θ
p2

and β = θβ1 + (1− θ)β2 .

Then we have
‖f‖Wβ,p . ‖f‖θWβ1,p1‖f‖1−θ

Wβ2,p2

for all f ∈ C∞. The proportionality constant depends on all the above parameters
but is independent of f .

Proof. This is the content of [3, Theorem 1]. �

2.2. Strichartz estimate. Consider the fractional wave equation on Rd, with
0 < α < 1:

∂2
t u+ (Dα)2u = F.(2.1)

We say that (q, r) is admissible, if

2

q
≤ d
(1

2
− 1

r

)
, (q, r, d) 6= (2,∞, 2),

and (q, r) is sharp admissible if the equality holds. Denote by

γq,r := d
(1

2
− 1

r

)
− α

q
.

We have the following Strichartz estimate:

Proposition 2.3 ([11]). Assume that α ∈ (0, 1). Let (q, r) be a sharp admissible
pair. For any solution u of (2.1), we have

‖u‖LqtLrx([0,T ]×Td) ≤ Cq,r‖(u, ∂tu)|t=0‖Hγq,r (Td) + Cq,r‖F‖L1
tH

γq,r−α
x ([0,T ]×Td)

,(2.2)

where the constant Cq,r is independent of T > 0.

Note that when d = 2, if (q, r) is sharp admissible, then γq,r = 2−α
q
. We will only

make use of the Strichartz space LqtL
r
x for q slightly greater than 2 in this article.

Due to the finite propagation speed for the linear wave when α < 1, the Strichartz
estimate is the same as that in Rd, which follows from a standard stationary phase
analysis and a TT ∗ argument. In order to be self-contained, we include a proof of
Proposition 2.2 in the appendix.

2.3. Renormalisation and the white-noise functional. First we recall that the
Hermite polynomials Hk(x;σ) can be defined via the generating function

F (t, x;σ) = etx−
1
2
σt2 =

∞∑
k=0

tk

k!
Hk(x;σ).
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It follows that

Hk(x;σ) =

⌊
k
2

⌋∑
j=0

(
k

2j

)
(2j − 1)!!(−σ)jxk−2j.(2.3)

When σ = 1, we denote by Hk(x) = Hk(x; 1). The relation of Hk(x, σ) and Hk(x) is
given by

Hk(x;σ) = σ
k
2Hk

( x√
σ

)
.

Taking derivatives of the generating function, one deduces easily that

∂jxHk(x;σ) =
k!

(k − j)!
Hk−j(x;σ).

Furthermore, by the multiplicative property of the generating function:

F (t, x+ y;σ1 + σ2) = F (t, x;σ1) · F (t, x;σ2),

we have the binomial expansion

Hk(x+ y;σ1 + σ2) =
k∑
l=0

(
k

l

)
Hl(x;σ1)Hk−l(y;σ2).(2.4)

Hermite polynomials can be used to define the Wick-ordered product for real-valued
Gaussian random variables. Let z be a real-valued Gaussian random variable
generated by (g̃k)k∈N with ν. Then we define its Wick product as

z�k := Hk(z; ν).(2.5)

From (2.4), we have for any function w,

Hk(z + w; ν) =
k∑
l=0

Hl(z; ν) · wk−l.

When w represents a deterministic function, sometimes we will also use (z + w)�k to
represent Hk(z+w; ν). For independent real-valued Gaussian random variables z1, z2

generated by (g̃k)k∈N with variance ν1, ν2, with respectively, we have the binomial
expansion:

(z1 + z2)�k := Hk(z1 + z2; ν1 + ν2)

=
k∑
l=0

(
k

l

)
Hl(z1; ν1)Hk−l(z2; ν2) =

k∑
l=0

(
k

l

)
z�l1 · z

�(k−l)
2 .(2.6)

In order to estimate the regularity of wick-products, it is convenient to use the
white-noise functional calculus. Let

ξω(x) =
∑
n∈Zd

g̃n(ω)einx

be the real-valued white noise distribution on Td, where (g̃n)n∈Z is a sequence
of complex-valued independent NC(0; 1) Gaussian random variables on a given

probability space (Ω,F ,P), conditioned to g̃n = g̃−n,∀n ∈ Zd. We define the
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white-noise functional
W(·) : L2(Td)→ L2(Ω,F ,P)

by

f 7→ Wf (ω) = (f, ξω)L2(Td) :=
∑
n∈Zd

f̂(n)gn(ω).

Note that for any f, h ∈ L2(Td), we have

E[WfWh] = (f, h)L2(Td).

Moreover, for any real-valued functions f, h ∈ L2(Td) with ‖f‖L2 = ‖h‖L2 = 1,

E[Hk(Wf )Hm(Wh)] = δkmk![(f, h)L2 ]k.(2.7)

We refer [23] for a proof. To represent the Wick-product as white noise functional,
we denote

ηN(x, y) :=
1

σ̃N

∑
|k|≤N

1√
1 + |k|2α

eik·(x+y).

Then for

φωN(x) :=
∑
|k|≤N

gk(ω)√
1 + |k|2α

eik·x,

we have

φN(x) = σ̃NWηN (x,·), φ�lN(x) = Hl(φN(x); σ̃2
N) = σ̃lNHl

(
WηN (x,·)

)
.(2.8)

Next we recall the Wiener chaos estimate. Let (hn)n∈N be a sequence of independent
standard Gaussian random variables on a probability space (Ω,F ,P). Given k ∈ N
(including the 0), we define the space of homogeneous Wiener chaos of degree k,
Hk, to be the closure in L2(Ω,P) of polynomials

∏∞
n=1Hkn(gn), where

∑
n=1 kn = k.

Then we have the Ito-Wiener decomposition

L2(Ω,P) =
∞⊕
k=0

Hk.

By the hypercontractivity, we have the following Wiener chaos estimate:

Proposition 2.4. Assume that X ∈
⊕

j≤kHj, then for any finite p ≥ 2,

‖X‖Lp(Ω) ≤ (p− 1)
k
2 ‖X‖L2(Ω).

3. Convergence of the Gibbs measure

3.1. A variational formula for the partition function. The main strategy to
prove Theorem 1.10 and Proposition 1.12 is the recently developed variational
approach to QFT ([1]). We first give a variational formula for − logZN . We adapt
the setting in [17].

Let {Bk(·)}k∈Z2 be a collection of standard Brownian motions on the probability
space (Ω,F ,P) such that Bk = B−k and otherwise independent. Let

X(t) =
∑
k∈Z2

Bk(t)ek ,
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which is the cylindrical Brownian motion on L2(T2) adapted to the filtration (Ft)
generated by {Bk}.

For every N , let SN be the operator such that

(3.1) ŜNf(k) =
f̂(k)

〈k〉α
· 1|k|≤N .

Let WN(t) := SNX(t), and for every N , define the measure QN by

dQN

dP
:=

1

ZN
e−

∫
T2 ṼN (WN (1))dx .

Here, the integration variable in x is from WN(1) = WN(1, ·). For t = 1, we also
simply write WN for WN(1). Then

LawP

(
WN(1)

)
= µ ,

and the normalisation constant ZN is the same as above.
By the martingale representation theorem, there exists an adapted L2 process u

such that

(3.2)
1

ZN
e−

∫
T2 ṼN (WN )dx =

dQN

dP
= e

∫ 1
0 〈u(t),dX(t)〉− 1

2

∫ 1
0 ‖u(t)‖2

L2dt .

Re-arranging the terms and taking logarithm, we get

− logZN =

∫
T2

ṼN(WN)dx+

∫ 1

0

〈u(t), dX(t)〉 − 1

2

∫ 1

0

‖u(t)‖2
L2dt ,

where we recall the notation WN = WN(1). Now, for the above u, define

X̃(t) := X(t)−
∫ t

0

u(s)ds .

Then by Girsanov theorem, X̃ is a QN Brownian motion. Writing

(3.3) W̃N(t) := SNX̃(t) , IN(v) = SN
∫ 1

0

v(s)ds ,

we get

− logZN =

∫
T2

VN
(
W̃N + IN(u)

)
dx+

∫ 1

0

〈u(t), dX̃(t)〉+
1

2

∫ 1

0

‖u(t)‖2
L2dt .

Note that the second term on the right hand side above is a martingale under QN ,
and hence vanishes under EQN . We have thus arrived at the following proposition.

Proposition 3.1. Let u be the adapted L2 process in (3.2). Then we have the
identity

− logZN = EQN

[ ∫
T2

VN
(
W̃N + IN(u)

)
dx+

1

2

∫ 1

0

‖u(t)‖2
L2dt

]
,

where W̃N = W̃N(1) = ΠNX̃(1), and LawQN
(
W̃N

)
= Lawµ(φN).

The above representation is sufficient for us to prove Theorem 1.10. But it will
be convenient for us to be able to change the “drift” u freely while keeping the
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underlying probability space unchanged. For this reason, we use the following deeper
variational formula.

Proposition 3.2 ([2, 26]). We have

(3.4) − logZN = inf
v∈Ha

EP
[ ∫

T2

ṼN(WN + IN(v))dx+
1

2

∫ 1

0

‖v(t)‖2
L2dt

]
,

where the infimum is taken over all predictable processes in L2 with respect to the
filtration generated by X.

Before we get into the proof of the main theorem, we first give a preliminary
lemma controlling ‖IN(v)‖Hα by the space-time L2-norm of v.

Lemma 3.3. There exists C > 0 such that

sup
N
‖IN(f)‖2

Hα ≤ C

∫ 1

0

‖f(t)‖2
L2dt

for all f ∈ L2
(
[0, 1];L2(T2)

)
.

Proof. By definition of IN , we have

ÎNf(k) = 1|k|≤N
1

〈k〉α

∫ 1

0

f̂(t, k)dt ,

and hence

|ÎNf(k)|2 ≤ 1

〈k〉2α
∣∣∣ ∫ 1

0

f̂(t, k)dt
∣∣∣2 ≤ 〈k〉−2α

∫ 1

0

|f̂(t, k)|2dt .

As a consequence, we have

‖INf‖2
Hα =

∑
k

〈k〉2α|ÎNf(k)|2 ≤
∑
k

∫ 1

0

|f̂(t, k)|2dt = C

∫ 1

0

‖f(t)‖2
L2dt .

The proof is complete. �

3.2. Necessity of the positivity condition – proof of Proposition 1.12. Sup-
pose V and ρ are such that

m∑
j=2

ājθ
2j−4 < 0

for some θ ∈ R. By continuity, we can assume θ 6= 0. Let u = θN1−α which is
certainly adapted. Write UN := IN(u) ≡ θN1−α. By Proposition 3.2, we have

− logZN ≤ EP
[ ∫

T2

ṼN(WN + UN)dx+
1

2

∫ 1

0

‖u(t)‖2
L2dt

]
.

We will show that for the above drift u, the right hand side above is smaller than
−cN4(1−α) for some c > 0.

For the term ṼN(WN + UN), we have

ṼN(WN + UN) =
m∑
j=2

aj,NN
−(2j−4)(1−α) (WN + UN)�(2j) − 1

2
(WN + UN)�2 .
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Expanding the Wick product for each j and re-organising the sum according to the
power of UN , we get
(3.5)

ṼN(WN+UN) =
2m∑
`=0

m∑
j=2∨ `

2

aj,N
(

2j
`

)
N−(2j−4)(1−α) W

�(2j−`)
N U `

N−
1

2

(
W �2
N +2WNUN+U2

N

)
,

where U `
N is the `-th power of UN = IN(u), and � denotes the Wick product of WN

with respect to its own Gaussian structure.
Note that for the terms in the above sum, the pointwise expectation EP is non-zero

only when ` = 2j. So for this drift u, we have

E

∫
T2

ṼN(WN + θN1−α)dx = 4π2

m∑
j=2

aj,NN
−(2j−4)(1−α)(θN1−α)2j +O(N2(1−α))

< −cN4(1−α)

for some c > 0 (since θ 6= 0). For the other term, we have∫ 1

0

‖u(t)‖2
L2dt = CN2(1−α) .

Hence, by the variational formula, we have the bound

− logZN < −cN4(1−α)

for all N , which implies that the densities

1

ZN
e−

∫
T2 VN (ΠNφ) → 0

in probability with respect to µ. But since their L1(µ) norm are 1, so it cannot
converge in L1. This completes the proof of Proposition 1.12.

3.3. Proof of Theorem 1.10.

3.3.1. The main proposition and upper bound. Recall the renormalised potential VN
and definition of the coefficients aj,N in (1.11) and (1.12). Let

C
(1)
N = a1,NN

2(1−α) , C
(2)
N =

(
a0,N − a1,Nσ

2
N

)
N4(1−α).

Writing φN = ΠNφ for simplicity, we have

VN(φN) =
m∑
j=2

aj,NN
−(2j−4)(1−α)φ

�(2j)
N ,

where the Wick product is with respect to the Gaussian structure induced by µ. In
other words, we remove the 0-th and 2-nd chaos components from the polynomial.
By standard hyper-contractivity arguments, one has

Eµ
∣∣∣ ∫

T2

VN(φN)dx− λ
∫
T2

φ�4dx
∣∣∣p → 0

as N → +∞. The key ingredient to pass the convergence to the level of exponential
is the following uniform bound.
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Proposition 3.4. For every p ≥ 1, we have

sup
N∈N

Eµ
(
e−p

∫
T2 ṼN (φN )dx

)
< +∞ , Eµ

(
e−λp

∫
T2 φ

�4dx+ p
2

∫
T2 φ

�2dx
)
< +∞.

We first show how Theorem 1.10 follows from Proposition 3.4.

Proof of Theorem 1.10. Note that under µ, we have

ṼN(φN) = VN(φN)− 1

2
φ�2N ,

so it suffices to prove the corresponding statement with VN instead of ṼN and with
the φ�2 removed in the limiting measure. Since∫

T2

VN(φN)dx→ λ

∫
T2

φ�4dx

in probability, and since the exponential function is continuous, we have

e−
∫
T2 VN (φN )dx → e−λ

∫
T2 φ

�4dx

in probability as well. Theorem 1.10 then follows from the convergence in probability
together with the uniform bounds in Proposition 3.4 (with a larger p). �

We now turn to proving Proposition 3.4. We only need to prove the first bound,
as the second one is the special case with a2,N = λ > 0 and aj,N = 0 for all other j.
Also, by replacing aj,N with paj,N , the assumption (1.4) is not affected. Hence we
can assume without loss of generality that p = 1.

It suffices to prove a uniform-in-N bound for | logZN |. Jensen’s inequality gives

− logZN = − logEµ
[
e−

∫
T2 ṼN (φN )dx

]
≤ Eµ

[ ∫
T2

ṼN(φN)dx
]

= 0 .

So it remains to prove a lower bound for − logZN . The rest of the section will be
devoted to that.

3.3.2. Expansion. By the variational formula (3.4), it suffices to prove a lower bound
of its right hand side uniform over N and all L2 adapted process u.

Starting from the expansion (3.5) and re-organising the sums, we have
(3.6)

VN(WN + UN) =
2m−1∑
`=0

YN,`U `
N −

1

2
W �2
N −WNUN +

m∑
j=2

aj,NN
−(2j−4)(1−α)U2j

N − U
2
N ,

where

YN,` =
m∑

j=2∨(b `2c+1)

aj,N
(

2j
`

)
N−(2j−4)(1−α) W

�(2j−`)
N ,

and we have separated out the terms with 2j = ` in the sum. Note that the sum in
` (in the first term) is up to 2m− 1 since the last one (` = 2m) is separated into the
second term in (3.6), so the sum defining YN,` is empty when ` = 2m.
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Proposition 3.5. If the positivity condition (1.4) holds, then there exists c, C > 0
such that

m∑
j=2

aj,NN
−(2j−4)(1−α)U2j

N − U
2
N ≥ c

(
U4
N +N−(2m−4)(1−α)U2m

N

)
− C

for all sufficiently large N . As a consequence, we have∫
T2

ṼN(WN + UN)dx+
1

2

∫ 1

0

‖u(t)‖2
L2dt

≥
∫
T2

( 2m−1∑
`=0

YN,`U `
N −

1

2
W �2
N −WNUN

)
dx− C

+ c
(
‖UN‖4

L4 +N−(2m−4)(1−α)‖UN‖2m
L2m + ‖UN‖2

Hα

)
,

(3.7)

where UN = IN(u), and IN is defined in (3.3).

Proof. The first claim follows from the positivity assumption (1.4), the convergence
aj,N → aj for every j, and that

U2
N ≤M +

U4
N

M
for every M ≥ 1. The second claim is a consequence of the first one and Lemma 3.3.

�

Our next aim is to show that for every sufficiently small δ > 0, there exists constant
C = C(δ,m) such that∣∣∣ ∫

T2

W �2
N dx

∣∣∣+
∣∣∣ ∫

T2

WNUNdx
∣∣∣+

2m−1∑
`=0

∣∣∣ ∫
T2

YN,`U `
Ndx

∣∣∣
≤ CQN(WN) + δ

(
‖UN‖4

L4 +N−(2m−4)(1−α)‖UN‖2m
L2m + ‖UN‖2

Hα

)
,

(3.8)

where QN(WN) is some function depending on suitable (negative) Sobolev norm of
WN whose expectation is uniformly bounded in N . If (3.8) is true, then we can
combine it with (3.7) and Proposition 3.2 to conclude the lower bound

− logZN ≥ −CE
(
Q(WN)

)
> −C

for some C independent of N . Also note that it suffices to show that each term on
the left hand side satisfies the bound. The rest of this section is devoted to the proof
of (3.8).

3.3.3. The first two terms. The bounds for the first two terms on the left hand side
of (3.8) are straightforward. For the first one, we have∣∣∣ ∫

T2

W �2
N dx

∣∣∣ ≤ ‖W �2
N ‖H−2(1−α)−ε ,

which is of the form QN(WN). For the second one, we have∣∣∣ ∫
T2

WNUNdx
∣∣∣ ≤ ‖WN‖H−α‖UN‖Hα ≤ 1

δ
‖WN‖2

H−α + δ‖UN‖2
Hα ,
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which is again of the desired form.

3.3.4. The case 0 ≤ ` ≤ 3. We now turn to the terms YN,`U `
N . We first consider the

case when 0 ≤ ` ≤ 3. A typical term in YN,` for 0 ≤ ` ≤ 3 is of the form

N−(2j−4)(1−α)〈W �(2j−`)
N , U `

N〉
for j = 2, . . . ,m, where 〈·, ·〉 denotes the L2(T2) inner product.

The term ` = 0 corresponds to N−(2j−4)(1−α)
∫
W
�(2j)
N . It satisfies the bound

N−(2j−4)(1−α)
∣∣∣ ∫ W

�(2j)
N

∣∣∣ . N−(2j−4)(1−α)‖W �(2j)
N ‖H−β

for every β ≥ 0. By Lemma B.3, since α ∈ (3
4
, 1), its expectation is uniformly bounded

in N as long as β > 1. Hence, we can take QN(WN) = N−(2j−4)(1−α)‖W �(2j)
N ‖H−(1+ε)

which satisfies the requirements for the bound (3.8).
For ` = 1, it follows from duality and Cauchy-Schwarz that

N−(2j−4)(1−α)
∣∣〈W �(2j−1)

N , UN〉
∣∣ ≤ N−(2j−4)(1−α)‖W �(2j−1)

N ‖H−α‖UN‖Hα

≤ δ−1N−(4j−8)(1−α)‖W �(2j−1)
N ‖2

H−α + δ‖UN‖2
Hα .

By Lemma B.3, the quantity N−(4j−8)(1−α)E‖W �(2j−1)
N ‖2

H−α is uniformly bounded in
N as long as 1∧ α > 3(1− α), which is the case for α ∈ (3

4
, 1). So the desired bound

(3.8) is true for ` = 1.
For ` = 2, let β > 0 to be specified later, and p, q, q1, q2 ∈ (1,+∞) be such that

1

p
+

1

q
= 1 and

1

q1

+
1

q2

=
1

q
.

By duality of W−β,p and W β,q and then Lemma 2.1, we have∣∣〈W �(2j−2)
N , U2

N〉
∣∣ ≤ ‖W �(2j−2)

N ‖W−β,p‖U2
N‖Wβ,q

. ‖W �(2j−2)
N ‖W−β,p‖UN‖Wβ,q1‖UN‖Lq2 .

We furthermore choose q sufficiently close to 1 so that q1 ≤ 2 and q2 ≤ 4, and choose
β ∈ (2(1 − α), α). This is possible as long as α > 2

3
, which is in the range of our

assumption.
Then multiplying both sides by N−(2j−4)(1−α) and using Hölder to split the three

terms, we get

N−(2j−4)(1−α)
∣∣〈W �(2j−2)

N U2
N〉
∣∣

. N−(2j−4)(1−α)‖W �(2j−2)
N ‖W−β,p‖UN‖Hα‖UN‖L4

. δ−3N−4(2j−4)(1−α)‖W �(2j−2)
N ‖4

W−β,p + δ
(
‖UN‖2

Hα + ‖UN‖4
L4

)
,

where the proportionality constant does not depend on δ. By Lemma B.3, the first
term above has finite (uniform-in-N) expectation since β > 2(1− α). Hence, it is of
the form of the right hand side of (3.8). The completes the case ` = 2.
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For ` = 3, by duality and Lemma 2.1, we have∣∣〈W �(2j−3)
N , U3

N〉
∣∣ ≤ ‖W �(2j−3)

N ‖
W−β,

1+ε
ε
‖U3

N‖Wβ,1+ε

. ‖W �(2j−3)
N ‖

W−β,
1+ε
ε
‖UN‖

W
β,

2(1+ε)
1−ε
‖UN‖2

L4 ,

where ε, β > 0 are to be specified later. By Proposition 2.2, for β < α, we have

‖UN‖
W
β,

2(1+ε)
1−ε
.ε ‖UN‖

β
α
Wα,p‖UN‖

1− β
α

L4 . ‖UN‖
β
α
Hα‖UN‖

1− β
α

L4 ,

where

p =
4(1 + ε)β

(1− 3ε)α + (1 + ε)β
< 2

if β < α and ε is sufficiently small (depending on α, β), and hence the second
inequality above (relaxing Wα,p to Hα) is valid. Plugging it back into the original
term and applying Hölder, we get

N−(2j−4)(1−α)
∣∣〈W �(2j−3)

N , UN〉
∣∣

.ε Cδ
(
N−(2j−4)(1−α)‖W �(2j−3)

N ‖
W−β,

1+ε
ε

) 4α
α−β

+ δ
(
‖UN‖2

Hα + ‖UN‖4
L4

)
.

Again by Lemma B.3, if we choose β > 1− α, then the expectation of the first term
above will be uniformly bounded in N , and hence satisfies the form of (3.8). Recall
that we have also required β < α when applying Proposition 2.2 in the previous
step. This is possible if 1− α < α, which is true as long as α > 1

2
(which satisfies

our assumption α ∈ (3
4
, 1)).

We have thus established the desired bound for 0 ≤ ` ≤ 3.

3.3.5. The case 4 ≤ ` ≤ 2m− 1. We now turn to the situation when 4 ≤ ` ≤ 2m− 1.
The relevant terms to control here are N−(2j−4)(1−α)〈W �(2j−`)

N , U `
N〉 where 4 ≤ ` ≤

2m− 1 and 2j − ` ≥ 1. We will prove the following proposition.

Proposition 3.6. Fix 4 ≤ ` ≤ 2m − 1 and j ≤ m such that 2j − ` ≥ 1. Let
m0 =

⌊
`
2

⌋
+ 1. Then m0 ≤ m, and for every δ > 0, there exists Cδ such that

N−(2j−4)(1−α)
∣∣〈W �(2j−`)

N , U `
N〉
∣∣

≤ CδQN(WN) + δ
(
‖UN‖2

Hα +N−(2m0−4)(1−α)‖UN‖2m0

L2m0

)
,

where QN (WN ) is a positive function depending on certain negative Sobolev norm of
WN , and its expectation is uniformly bounded in N . The constant Cδ is independent
of N .

Proof. We divide the argument into several steps.

Step 1 :

Let β, ε > 0 be two parameters whose values will be specified later. By duality and
repeated applications of Lemma 2.1, we have∣∣〈W �(2j−`)

N , U `
N〉
∣∣ ≤ ‖W �(2j−`)

N ‖
W−β,

1+ε
ε
‖U `

N‖Wβ,1+ε

.ε ‖W �(2j−`)
N ‖

W−β,
1+ε
ε
‖UN‖Wβ,pε‖UN‖`−1

L2m0
,
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where pε = 2(1+ε)m0

2m0−(1+ε)(`−1)
, and it decreases to 2m0

2m0−`+1
as ε→ 0. If β < α, then by

Proposition 2.2, we can further control the quantity ‖UN‖Wβ,pε by

‖UN‖Wβ,pε . ‖UN‖
β
α
Wα,qε‖UN‖

1− β
α

L2m0
,

where qε = 2m0β
2m0α
pε
−(α−β)

, and qε decreases to 2m0β
(2m0−`)α+β

as ε→ 0. Hence, if we choose

β such that

(3.9)
2m0β

(2m0 − `)α + β
< 2 ,

and choose ε > 0 sufficiently small (depending on β), then qε < 2 and we can relax

‖UN‖Wα,qε to ‖UN‖Hα . Also relaxing ‖W �(2j−`)
N ‖

W−β,
1+ε
ε

to ‖W �(2j−`)
N ‖C−β , we obtain

the bound

(3.10) |〈W �(2j−`)
N , U `

N〉| . ‖W
�(2j−`)
N ‖C−β‖UN‖

β
α
Hα‖UN‖

`− β
α

L2m0
.

The proportionality constant depends on the parameters α and β but is independent
of N . Note that the right hand side as well as the proportionality constant does not
depend on ε.

Note that we have previously chosen β < α. But with the assumption on m0, this
is implied by the constraint (3.9). Hence the only constraint for (3.10) to hold is
(3.9).

Step 2.

We re-write the bound (3.10) as

N−(2j−4)(1−α)|〈W �(2j−`)
N , U `

N〉| .
‖W �(2j−`)

N ‖C−β
N (2j−4)(1−α)−γ · ‖UN‖

β
α
Hα ·

(
N−

γα
`α−β ‖UN‖L2m0

)`− β
α .

Hence, if we choose γ such that

(3.11) γ · 2m0α

`α− β
= (2m0 − 4)(1− α)⇐⇒ γ =

(m0 − 2)(`α− β)(1− α)

m0α
,

we can use Hölder to separate the three terms in the product above so that

N−(2j−4)(1−α)|〈W �(2j−`)
N , U `

N〉|

≤Cδ
∥∥ W

�(2j−`)
N

N (2j−4)(1−α)−γ

∥∥η
C−β + δ

(
‖UN‖2

Hα +N−(2m0−4)(1−α)‖UN‖2m0

L2m0

)
,

where

η =
2m0α

(2m0 − `)α− (m0 − 1)β
.

Note that the use of Hölder and hence the above bound is valid if η > 1, which is
implied by the constraint (3.9).

Step 3.
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It then remains to show that for every α ∈ (3
4
, 1), there exists β satisfying (3.9) such

that for γ given in (3.11) and

QN(WN) =
‖W �(2j−`)

N ‖C−β
N (2j−4)(1−α)−γ ,

one has
sup
N

E|QN(WN)|η < +∞.

This is equivalent to the following two constraints on (β, γ):

(1) (2j − 4)(1− α)− γ ≥ 0;
(2) β ∧ 1 > γ − (`− 4)(1− α).

We first check the second one. Note that (3.9) implies β < α < 1, so the left hand
side β ∧ 1 could be replaced by β. Routine algebraic calculations then show that the
second constraint above is equivalent to

(3.12) β >
2(2m0 − `)α(1− α)

m0 + 2α− 2
.

Combing (3.9) and (3.12), we see that a possible choice of β exists if

2(2m0 − `)α(1− α)

m0 + 2α− 2
<

2m0 − `
m0 − 1

· α ,

which is true as long as α > 1
2
.

It remains to check the first constraint above. This can be reduced to

(3.13) β ≥ (4m0 − 2`)− (2j − `)m0

m0 − 2
· α .

Combing it with (3.9), we see that a possible choice of β exists if

(4m0 − 2`)− (2j − `)m0

m0 − 2
<

2m0 − `
m0 − 1

,

which holds if 2j − ` ≥ 1 and m0 =
⌊
`
2

⌋
+ 1 ≤ `− 1.

We have thus shown that for α ∈ (3
4
, 1), there exists choice of β and γ as specified

above so that all the bounds hold. This completes the proof of the proposition. �

4. The wave dynamics

Consider the wave dynamics:

(4.1)

{
∂2
t uN + |∇|2αuN + ΠNV

′
N(ΠNuN) = 0 ,

(uN , ∂tuN)|t=0 = ΠN
~φ,

where

ΠN
~φ :=

1

2π

( ∑
|k|≤N

gk(ω)√
1 + |k|2α

eik·x,
∑
|k|≤N

hk(ω)eik·x
)
.

Denote by

VN(ϕ) := a1,NN
2βH2(ϕ; σ̃2

N) +WN(ϕ), WN(ϕ) :=
m∑
j=2

aj,NN
−(2j−4)βH2j(ϕ; σ̃2

N),
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where κN := 2a1,NN
2β − 1. We rewrite the equation (4.1) as

(4.2)

{
∂2
t uN + (Dα)2uN + κNΠNuN + ΠNW

′
N(ΠNuN) = 0 ,

(uN , ∂tuN)|t=0 = ΠN
~φ .

Note that for each fixed N , (4.2) is globally well-posed. Indeed, when writing in
Fourier variables, the equation (4.2) is a finite-dimensional system and its local
well-posedness is ensured by the Cauchy-Lipschitz Theorem. Moreover, the conserved
energy

E(uN(t)) :=

∫
T2

(1

2
(|∂tuN |2 + ||∇|αuN |2) + VN(ΠNuN)

)
dx

is a Lyapunov functional that controls the quantity

‖∂tuN(t)‖2
L2(T2) + ‖uN‖2

Hα(T2) +N−(2m−4)β‖uN‖2m
L2m(T2) − CN,m‖uN‖2

L2(T2).

Since

‖uN‖2
L2(T2) ≤ C‖uN‖2

L2m(T2) ≤
1

2CN,m
N−(2m−4)β‖uN‖2m

L2m(T2) + C ′N,m,

we deduce that uN cannot blowup in finite time. We denote by ~ΦN(t) the flow of

(4.2), and we recall that ~νN is invariant under ~ΦN(t).
In this section, we will prove Theorem 1.5 with more precise statements: the

well-posedness of the renormalized and the convergence of (4.1). Heuristically, recall
from Proposition 1.4 that κN → κ ∈ R and

|κN − κ| ≤ CN−(2α−1).

Then formal analysis suggests that as N →∞, (4.2) should converge to the renor-
malized cubic wave equation

∂2
t u+ (Dα)2u+ κu+ 4a2u

�3 = 0, (u, ∂tu)|t=0 = ~φ(4.3)

where
u�3 := lim

N→∞
ΠNH4(ΠNu; σ̃2

N)

is a well-defined object on the support of µ. The goal of this section is to rigorously
justify the above convergence.

4.1. More notations. Before presenting the main propositions, we need more
notations. Define the linear propagators S(t) and S ′(t) by

S(t)~f = cos(tDα)f +
sin(tDα)

Dα
f ′ , S ′(t)~f = −〈D〉α sin(tDα)f + cos(tDα)f ′ ,

and let ~S(t) =
(
S(t),S ′(t)

)
, where we again write ~f = (f, f ′). For every ~φ ∈

D′(T2)×D′(T2), denote

(t, ·) = (~φ)(t, ·) := S(t)~φ and ~ := ~S(t)~φ.

Sometimes we will omit the dependence on ~φ in the notation for simplicity. For an

integer N ∈ N, denote N := ΠN and ~N := ΠN
~.
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We will frequently use two mall parameters ε, θ0 such that

θ0 � ε� 1.

Throughout this section, the symbol ε� 1 always means that

ε < 2−100m × β100.

Recall that β = 1−α, s0 = 4α−3. Since the flow of the wave equation is vector-valued,
we denote by

Hs := Hs ×Hs−α, Ws,r := W s,r ×W s−α,r.

For given functions f, ~f = (f, f ′) and I ⊂ R, we define for σ ∈ R the norms

‖f‖Y σ(I) := ‖f‖L∞t Hσ(I) + ‖f‖
L
2+θ0
t L

2+ 4
θ0

x (I)

and
‖~f‖Yσ(I) := ‖~f‖L∞t Hσ(I) + ‖f‖

L
2+θ0
t L

2+ 4
θ0

x (I)
.

Note that the norm
(
2 + θ0, 2 + 4

θ0

)
is Strichartz admissible. For the solution u of

∂2
t u+ (Dα)2u = F, (t, x) ∈ I ×T2,

we will use in particular the following inequality

‖(u(t), ∂tu(t))‖Y s1 (I) . ‖(u(t0), ∂tu(t0))‖Hs1 + ‖F‖L1
tH

s1−α(I),(4.4)

provided that s1 >
2−α
2+θ0

and t0 ∈ I.

4.2. Well-posedness for the cubic equation. We sketch the almost sure global
well-posedness of (4.3) whenever α > 8

9
. The local well-posedness follows the

recentering scheme of Bourgain [4], while the global well-posedness follows the
invariant argument of Bourgain [4].

Consider the truncated equation

∂2
t vN + (Dα)2vN + ΠN(κuN + 4a2u

�3
N ) = 0, (uN , ∂tuN)|t=0 = ΠN

~φ.(4.5)

Denote by

Jt0 :=

∫ t

t0

sin((t− t′)Dα)

Dα
dt′,

the Duhamel operator starting at time t0, and we decompose the solution vN(t) of
(4.5) as vN(t) = N(t) + wN(t), then wN(t) solves the integral equation

wN(t) = ΠNJ0(κ( N + wN) + 4a2( N + wN)�3).

The remainder w(t) is pretended to be in a more regular space L∞t H
s
x with s = s0− ε.

For q ∈ [2,∞), by the large deviation estimate, R-certainly, i.e. outside a set of

µ-measure < e−cR
c′

, we have

‖ �lN‖LqtW−(3−l)β−ε,∞
x ([0,1])

≤ R, l = 1, 2, 3.

by Lemma A.1, for τ � R−
4
3 � 1,∥∥ΠNJ0(κ( N + wN) + 4a2( N + wN)�3)

∥∥
L∞t H

s
x([0,τ ]×T2)

≤ CRτ
3
4 � 1.
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Therefore, R-certainly we have local well-posedness on [0, τ ], with a reminder wN ∈
Y s([0, τ ]) as well as the convergence wN → w in Y s([0, τ ]) for s = 4α − 3 − ε. To
iterate the local well-posedness (convergence) to a long time interval, we make use of
the invariance of the Gibbs measure

ν̃N(dφ) := exp
(
−
∫
T2

κ(ΠNφ)�2 + 4a2(ΠNφ)�4
)
µα(dφ).

Though the sign of κ may not be positive, due to the defocusing nature a2 > 0,
ν̃N → ν, the Gibbs measure associated to (4.3). The rest globalization argument is
standard (see for example [25]) and we omit the detail. Furthermore, we have the

invariance of ~ν := ν ⊗ µ′ along the flow ~Φ(t) of (4.3). To summarize, the version of
well-posedness for the cubic equation is as follows:

Proposition 4.1. Let T > 0, α ∈
(

8
9
, 1
)
, 0 < ε � 1, be given. Assume that and

s = s0 − ε. Then there exists a measurable set Σ0 ⊂ H−β−ε with ~µ(Σ0) = 1 and a
flow map

~Φ(t) =
(
Φ(t),Φ′(t)

)
defined on Σ0 with the following properties:

(1) u(t) := Φ(t)~φ is the unique limit in C([0, T ];H−β−ε(T2)) of the sequence of
smooth solutions vN of (4.5).

(2) ~Φ(t)(Σ0) = Σ0 for every t ∈ R and the flow property holds for ~Φ(t).

(3) The measure ~ν is invariant under the flow ~Φ(t).

(4) For every ~φ ∈ Σ0 the function

(w(t), ∂tw(t)) := ~Φ(t)~φ−~(φ)

solves the equation{
∂2
tw + (Dα)2w + κw + 4a2

( �3 + 3 �2w + 3 w2 + w3
)

= 0 ,(
w(0), ∂tw(0)

)
= (0, 0) .

in C([0, T ];Hs(T2)) ∩ L2+θ0
t L

2(θ0+2)
θ0

x ([0, T ] × T2) in the sense that the cor-
responding Duhamel formula holds. Furthermore, the random object (φ)
verifies

‖ (φ)�l‖L10m
t W−lβ−ε,∞x ([0,T ]) <∞, l = 1, 2, 3.

4.3. Convergence of higher order systems. Now we study the dynamical weak
universality problem by proving the following result which leads to Theorem 1.5:

Proposition 4.2. Let T > 0, α ∈
(

8
9
, 1
)
, 0 < ε� 1. Let s = s0 − ε and s1 = s− 2ε.

Then there exists a full ~µ measure set Σ ⊂ H−β−ε, such that for any ~φ ∈ Σ, the

solutions ~uN (t) = ~ΦN (t)~φ of (4.1) admit a decomposition ~uN (t) = ~
N (t) + ~wN (t) and

converge in C([0, T ];H−β−ε) to the solution ~Φ(t)~φ of the cubic equation constructed
in Proposition 4.1. Moreover, the nonlinear remainders wN (t) converge in a smoother
space:

lim
N→∞

‖wN(t)− w(t)‖L∞t Hs1
x ([0,T ]) = 0.
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The main ingredient to prove the almost sure convergence of (4.2) to (4.5) in
C([0, T ];H−β−ε(T2)) is a variant of the Bourgain-Bulut type argument ([5]). Briefly,
we will use two global information, the first one is the invariance of measures ~νN
along the truncated flow ~ΦN(t). This will allow us to essentially control the L∞x
norm of the solution ~ΦN(t)~φ by Nβ+. The second one is the solution of the cubic
equation, thanks to Proposition 4.1. Technically, since we deal with solutions in the
space of negative regularity, it would be more convenient to work with the nonlinear
part of the flow that leaves in the spaces of positive regularity.

Writing
uN = N + wN ,

we expand the nonlinearity κNΠNuN + ΠNW
′
N(ΠNuN) as

κN( N + wN) + 4
3∑
l=0

(
3

l

)
a2,Nw

l
N
�3−l
N +

2m−1∑
l=0

RN,lw
l
N ,(4.6)

where

RN,l =
m∑

j=2∨(b `2c+1)

(2j)!

l!(2j − l − 1)!
aj,NN

−(2j−4)β �(2j−l−1)
N .(4.7)

4.3.1. Large deviation estimates. First, we prove the following lemma that allows us
to pass from νN measure to µ:

Lemma 4.3. For any R > 0 and N ∈ N,

µ
{
φ :
∣∣∣ ∫

T2

VN(ΠNφ)dx
∣∣∣ > R

}
≤ e−cR

1
2m .

Proof. Since
∫
T2 VN(ΠNφ)dx is a linear combination of multi-linear Gaussians of

degree smaller than or equal to 2m, by the Wiener-chaos estimate(
Eµ
[∣∣∣ ∫

T2

VN(ΠNφ)dx
∣∣∣p]) 1

p ≤ Cpm
(
Eµ
[∣∣∣ ∫

T2

VN(ΠNφ)dx
∣∣∣2]) 1

2
(4.8)

for any p ≥ 2. Using the identity (see (2.7))

Eµ[(ΠNφ)�k(x) · (ΠNφ)�j(y)] = k!δkj

( ∑
|k|≤N

1

〈k〉2α
eik·(x−y)

)4

,

we deduce that

Eµ
[∣∣∣ ∫

T2

VN(ΠNφ)dx
∣∣∣2] =

m∑
l=1

|al,N |2N−4(l−2)βl! ·
∑

k1+k2+k3+k4=0
|kj |≤N

4∏
j=1

1

〈kj〉2α
.

By Lemma A.2 and the fact that α > 3
4
, the quantity∑

k1+k2+k3+k4=0
|kj |≤N

4∏
j=1

1

〈kj〉2α
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is uniformly bounded in N . This implies that the right hand side of (4.8) is bounded
by Cpm. The desired estimate then follows from the Chebyshev’s inequality. �

The following Lemma crucially uses the invariance of the measure ~νN , in the spirit
of Bourgain-Bulut:

Lemma 4.4. Let T > 0, γ > β = 1− α and 2 ≤ q, r <∞. There exist two positive
constants CT,γ,q,r, cT,γ,q,r such that for all λ > 1, M < N ,

~µ
(
{~φ : ‖π⊥M~ΦN(t)~φ‖LqtW−γ,rx ([0,T ]) > λ}

)
≤ CT,γ,q,r exp

(
− (T−

1
qMγ−βλ)cT,γ,q,r

)
.

Here π⊥M = Id− πM and πM is some smooth cutoff2.

Proof. In the proof, we denote by 〈~∇〉−γ := 〈∇〉−γ ⊗ 〈∇〉−γ−α. The notation LqtXx
will stand for LqtXx([0, T ]).

Take a parameter λ1 > 0 to be fixed later, we have

~µ
{
~φ : ‖π⊥M~ΦN(t)~φ‖LqtW−γ,rx

> λ
}
≤ ~µ
{
~φ : ‖π⊥M~ΦN(t)~φ‖LqtW−γ,rx

> λ,

∫
T2

VN(ΠNφ)dx ≤ λ1

}
︸ ︷︷ ︸

I

+ ~µ
{
~φ : ‖π⊥M~ΦN(t)~φ‖LqtW−γ,rx

> λ,

∫
T2

VN(ΠNφ)dx > λ1

}
︸ ︷︷ ︸

II

.

By Lemma 4.3,

II ≤ e−cλ
1

2m
1 .(4.9)

To estimate I, we recall that

~νN(d~φ) =
1

ZN
e−

∫
T2 VN (ΠNφ)~µ(d~φ),

then

I ≤ ZNeλ1~νN
{
~φ : ‖π⊥M~ΦN(t)~φ‖LqtW−γ,rx

> λ
}
.

Take q1 ≥ max{q, r} to be specified, by Chebyshev’s inequality and Minkowski’s
inequality, we have

I ≤ ZNe
λ1

λq1

∥∥∥(∫
H−βε

|〈~∇〉−γπ⊥M(~ΦN(t)~φ)|q1~νN(d~φ)
) 1
q1

∥∥∥q1
LqtL

r
x

.

By the invariance of ~νN along ~ΦN(t), we deduce that, for a.e.x ∈ T and t ∈ [0, T ]
(see Lemma 7.1 of [25] for a rigorous proof)∫

H−βε
|〈~∇〉−γπ⊥M(~ΦN(t)~φ)|q1(x)~νN(d~φ) =

∫
H−βε

|〈~∇〉−γπ⊥M(~φ)|q1(x)~νN(d~φ).

Hence

I ≤ ZNe
λ1T

q1
q

λq1

∥∥∥∫
H−βε

|〈~∇〉−γπ⊥M ~φ|q1~νN(d~φ)
∥∥∥
L
r
q1
x

.

2The same statement holds if we replace the smooth cutoff πM by ΠM . Here we state the lemma
with πM since ΠM is not bounded in Lp(T2), 1 < p <∞.
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By Cauchy-Schwarz, the boundedness of ZN ,Z−1
N and Proposition 3.4, the above

quantity can be controlled by

Ceλ1T
q1
q

λq1

∥∥∥(∫
H−βε

|〈~∇〉−γπ⊥M ~φ|2q1~µ(d~φ)
) 1

2
∥∥∥
L
r
q1
x

≤ Cq1T
q1
q eλ1

q
q1
2

1 M−(γ−β)q1

λq1
.

So for any q1 ≥ q, r, λ1 ≤ λ, we have

I + II ≤ eλ1
(CT 1

q
√
qM−(γ−β)

λ

)q1
+ e−λ

1
2m .

By optimizing the choice of λ1, q1, we complete the proof of Lemma 4.4. �

The following Lemma consists of key arguments of the proof of Proposition 4.2.

Lemma 4.5. Let T ≥ 1, ε � 1. Let R � 1, N � 1 be large parameters. Assume

that ~φ ∈ H−β−ε satisfies

‖~ΦN(t)~φ‖L10m
t W−β−ε,∞x

≤ R, ‖~N‖L10m
t W−β−ε,∞x

≤ R,(4.10)

and

‖ �kN ‖L10m
t L∞x

≤ Nkβ+ε, ‖ �lN‖
L10m
t W

−lβ−2ε, 1ε
x

≤ R,

‖ �(n−l−1)
N ‖

L10m
t W

−(3−l)β−2ε, 1ε
x

≤ N (n−4)β−ε, ‖ �lN −
�l‖

L10m
t W−lβ−2ε, 1ε

x

≤ N−
ε
2 ,

for all 1 ≤ k ≤ 2m − 1, 4 ≤ n ≤ 2m − 1 and l ∈ {1, 2, 3}, where LqtX stands for
Lq([0, T ];X ). Moreover, assume that on [0, T ], for all 1 ≤ l ≤ 3,

3∑
l=1

‖ �l‖L10m
t W−lβ−ε,∞x ([0,T ]) + ‖~Φ(t)~φ−~‖Ys([0,T ]) ≤ R.(4.11)

Then for any 2−α
2+θ0

< s1 = s0 − 2ε3, there exist constants C = Cm,ε,β,s1 > 0 and
K0 > 0, such that if the parameters R,N satisfy the constraint

(K0)TR
100m

< N
ε
2 , or equivalently, R <

( ε logN

2T logK0

) 1
100m

,

then
‖(~ΦN(t)~φ−~N)− (~Φ(t)~φ−~)‖Ys1 ([0,T ]) ≤ CεN

− ε
4 .

Proof. We write

uN(t) = ΦN(t)~φ = N + wN(t), u(t) = Φ(t)~φ = + w(t).

By (4.10), (4.11) and Bernstein, we deduce that

‖wN(t)‖L10m
t L∞x ([0,T ]) ≤ CNβ+2εR, ‖~w(t)‖Ys([0,T ]) ≤ R.(4.12)

•Step 1: Recursive inequality
Fix t0 ∈ [0, T − τ0] and It0,τ0 := [t0, t0 + τ0], where τ0 is a small parameter to be

chosen later. Throughout the proof, the symbol A . B stands for A ≤ CB for some
constant C that is independent of parameters R,N, τ0, t0.

3Under the constraint α ∈ ( 8
9 , 1), for 0 < θ0 � ε� 1, s1 >

2−α
2+θ0

.
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By the Strichartz inequality (4.4), we have

‖~wN(t)− ~w(t)‖Ys1 (It0,τ0 ) .‖wN(t0)− w(t0)‖Hs1
x

(4.13)

+
[
AN(It0,τ0) +

2m−1∑
l=4

BN,l(It0,τ0) +
3∑
l=0

m∑
j=3

CN,j,l(It0,τ0)
]
,(4.14)

where

AN(It0,τ0) := |λ− a2,N |‖ �3 + 3 �2w + 3 w2 + w3‖
L1
tH

s1−α
x (It0,τ0 )

+ ‖ �3N −
�3‖

L1
tH

s1−α
x (It0,τ0 )

+ ‖ �2N · wN −
�2w
∥∥
L1
tH

s1−α
x (It0,τ0 )

+ ‖ Nw
2
N − · w2‖

L1
tH

s1−α
x (It0,τ0 )

+ ‖w3
N − w3‖

L1
It
H
s1−α
x (It0,τ0 )

+ ‖Π⊥N ~w‖L∞t Hs1x (It0,τ0 ) + τR|κN − κ|‖~w‖L1
tH

s1
x (It0,τ0 )

+ τR|κN |‖~wN − ~w‖L∞t Hs1x (It0,τ0 ),

BN,l := ‖Rl,N · wlN‖L1
tH

s1−α
x (It0,τ0 )

, 4 ≤ l ≤ 2m− 1

CN,j,l := N−(2j−4)β‖ �(2j−1−l)
N · wlN‖L1

tH
s1−α
x (It0,τ0 )

, 0 ≤ l ≤ 3 and 3 ≤ j ≤ m.

From Lemma A.1, we have for sufficiently small ε > 0 and q > 1 large enough,

‖ �2NwN −
�2w‖

L1
tH

s1−α
x (It0,τ0 )

.ε‖ �2N −
�2‖

L1
tW
−2β−2ε, 1ε
x (It0,τ0 )

‖w‖L∞t Hs1
x (It0,τ0 )

+τ
1
2

0 ‖
�2
N ‖

L2
tW
−2β−2ε, 1ε
x (It0,τ0 )

‖wN − w‖L∞t Hs1
x (It0,τ0 ).(4.15)

‖ Nw
2
N − w2‖

L1
tH

s1−α
x (It0,τ0 )

.ε‖ N − ‖
L1
1W
−β−2ε, 1ε
x (It0,τ0 )

‖w‖2
L∞t H

s1
x (It0,τ0 )

+τ
1
2

0 ‖ N‖
L4
tW
−β−2ε, 1ε
x (It0,τ0 )

‖wN + w‖L4
tH

s1
x (It0,τ0 )‖wN − w‖L∞t Hs1

x (It0,τ0 )(4.16)

and

‖w3
N − w3‖

L1
tH

s1−α
x (It0,τ0 )

.τ
1
2

0 ‖wN − w‖L∞t Hs1
x (It0,τ0 )

(
‖wN‖2

L4
tH

s1
x (It0,τ0 )

+ ‖w‖2
L4
tH

s1
x (It0,τ0 )

)
,

(4.17)

where all the implicit constants are independent of N,R, τ0, t0, but can depend on m
and ε. Therefore,

AN(It0,τ0) . DN(It0,τ0) + τ
1
2

0 FN(It0,τ0)‖wN − w‖L∞t Hs1
x (It0,τ0 ) + τ0|κN − κ|‖~w‖L∞t Hs1x (It0,τ0 ),

(4.18)
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where

DN(It0,τ0) :=|λ− a2,N |‖ �3 + 3 �2w + 3 w2 + w3‖
L1
tH

s1−α
x (It0,τ0 )

+ ‖ �3N −
�3‖

L1
tH

s1−α
x (It0,τ0 )

+‖ �2N −
�2‖

L1
tW
−2β−ε, 1ε
x (It0,τ0 )

‖w‖L∞t Hs1
x (It0,τ0 ) + ‖ N − ‖

L1
tW
−β−ε, 1ε
x (It0,τ0 )

‖w‖2
L∞t H

s1
x (It0,τ0 )

+‖Π⊥Nw‖L∞t Hs1
x (It0,τ0 ),

FN(It0,τ0) =:‖ �2N ‖
L1
tW
−2β−ε, 1ε
x (It0,τ0 )

+ ‖ N‖
L1
tW
−β−ε, 1ε
x (It0,τ0 )

(
‖wN‖L∞t Hs1

x (It0,τ0 ) + ‖w‖L∞t Hs1
x (It0,τ0 )

)
+‖wN‖2

L∞t H
s1
x (It0,τ0 )

+ ‖w‖2
L∞t H

s1
x (It0,τ0 )

+ 1.

Applying Lemma A.1, Cauchy-Schwarz and the fact that 1
ε
≤ 2 + 4

θ0
, we have (here

it is important that l ≥ 4)

BN,l(It0,τ0)

(4.19)

.ε
∑

l+1
2
≤j≤m

N−(2j−4)β‖ �(2j−1−l)
N wl−3

N ‖
L1
tL

2+ 4
θ0

x (It0,τ0 )
‖wN‖3

L∞t H
s1
x (It0,τ0 )

.ε,mτ
1
4

0 N
−β‖wN‖3

L∞t H
s1
x (It0,τ0 )

‖wN‖
L2
tL

2+ 4
θ0

x (It0,τ0 )
sup

l+1
2
≤j≤m

N−(2j−5)β‖ �(2j−l−1)
N wl−4

N ‖L4
tL
∞
x (It0,τ0 )

.τ
1
4

0 N
−β‖wN‖4

Y s1 (It0,τ0 ) sup
2≤j≤m

N−(2j−5)β‖ �(2j−l−1)
N ‖L10m

t L∞x (It0,τ0 )‖wN‖l−4
L10m
t L∞x

.τ
1
4

0 N
−β+2mε‖wN‖4

Y s1 (It0,τ0 ),

where to the last step, we have used (4.12) and the L10m
t L∞x bound for

�(k)
N . Note

that here it is crucial to put one wN in the space L2+θ0
t L

2+ 4
θ0

x in order to gain some
negative power of N , as putting (4.12) on all wN will lead to a bound N lε that does
not converge to zero as N →∞.

Similarly,

CN,j,l(It0,τ0) .ε,m N−(2j−4)βτ
1
2

0 ‖
�(2j−l−1)
N ‖

L2
tW
−(3−l)β−2ε, 1ε
x (It0,τ0 )

‖wN‖lL∞t Hs1
x (It0,τ0 )

.

(4.20)

•Step 2: Bootstrap argument
We first claim that if for some T1 ∈ (0, T ),

‖wN‖Y s1 ([0,T1]) ≤ 2R10,(4.21)

then for R,N large enough, there exist Cε > 0 and absolute constant K0 > 0, such
that

‖~wN − ~w‖Ys1 ([0,T1]) ≤ CεK
TR50m

0 N−
ε
2 .(4.22)

Indeed, we decompose [0, T1] into k0 intervals of size τ0 = τ0(R) = R−100m, and
denote by

xk := ‖~wN − ~w‖Ys1 (Jk),
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where Jk = (kτ0, (k + 1)τ0]. By (4.13), (4.18),(4.19),(4.20), (4.12), we deduce that

xk ≤ Cετ
1
4

0 R
20mxk + C0xk−1 + CεR

3τ0N
− ε

2 + Cετ
1
2

0 R
50mN−β+2mε.

For R large enough, τ0 small enough such that

Cετ
1
4

0 R
20m <

1

2
,

we deduce that (provided that ε < β/2m)

xk ≤ 2C0xk−1 + Cετ
1
2

0 R
50mN−

ε
2 .

This yields

xk ≤ (2C0)
T1
τ0 x0 + (2C0)

T1
τ0 CεT1τ

1
2

0 R
50mN−

ε
2 ≤ Cε(2C0)

T
τ0 Tτ

1
2

0 R
50mN−

ε
2 .

Hence (4.22) follows.
To finish the proof, it suffices to prove the bootstrap assumption (4.21) up to time

T1 = T , with slightly smaller upper bound R10 instead of 2R10. More precisely, Let
T∗ ≤ T1 be the largest number such that

‖wN‖Y s1 ([0,T∗]) ≤ R10.

Since for fixed N , wN solves an ODE in the finite-dimensional space, we deduce that
the function

t 7→ ‖wN‖Y s1 ([0,t])

is continuous, thus T∗ > 0. On the other hand, if T∗ < T1, again by continuity, there
exists δ∗ ∈ (0, T1 − T∗), such that

‖wN‖Y s1 ([0,T∗+δ∗]) < R10 + 1 < 2R10.

Therefore, we deduce that (4.22) holds with T1 = [0, T∗ + δ∗]. In particular,

‖wN‖Y s1 ([0,T∗+δ∗]) ≤ R + Cε(K0)T0R
100m

N−
ε
2 < R(1 + CεN

− ε
4 ) < 2R,

provided that N is large enough such that CεN
− ε

4 < 1. This contradicts to the
definition of T∗. So we must have T∗ = T . The proof of Lemma 4.5 is complete. �

• Proof of Proposition 4.2:
First we note that by choosing RN = (logN)θ for θ � 1, Lemma 4.5 allows to

prove the almost sure convergence of the dyadic sequence. To prove the convergence
of the full sequence, we first define properly the good data set. For each dyadic
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number N , let RN = (logN)θ, MN = (logN)A0 for A0 � 1, 0 < θ � 1. Define

Σ1,N :=
3⋂
l=0

2m−1⋂
k=4

2N1⋂
N1=N

{
‖ �lN −

�l
N1
‖
L10m
t W

−lβ−ε, 1ε
x

≤ N−
ε
2

}
∩
{
‖ �kN1
‖L10m

t L∞x
≤ Nkβ+ε, ‖ �(k−l)N ‖

L10m
t W

−(3−l)β−2ε, 1ε
x

≤ N (k−3)β−ε},
Σ2,N :=

{
‖~ΦN(t)~φ‖L10m

t W−β−ε,∞x
≤ RN , ‖~N‖L10m

t W−β−ε,∞x
≤ RN

}
,

Σ3,N :=
3⋂
l=0

{
‖ �l‖

L10m
t W

−lβ−ε, 1ε
x

+ ‖~Φ(t)~φ−~‖Ys([0,T ]) ≤ RN

}
,

Σ4,N :=
3⋂
l=0

2m−1⋂
k=4

{
‖ �lN‖

L10m
t W

−lβ−ε, 1ε
x

≤ RN , ‖ �(k−l)N ‖
L10m
t W

−(3−l)β−2ε, 1ε
x

≤ N (k−3)β−ε}
∩
{
‖ �lN −

�l‖
L10m
t W

−lβ−ε, 1ε
x

≤ N−
ε
2

}
,

Σ5,N :={ sup
N≤N1≤2N1

‖π⊥MN
~ΦN(t)~φ‖L10m

t W−β−ε,∞x
≤ 1}.

Lemma 4.6. There exist C > 0 and δ(ε) > 0 such that for i ∈ {1, 2, 3, 4, 5}, there
holds

~µ(Σc
i,N) ≤ CN−δ(ε).

Proof. In order not to perturb the main line of argument, we set aside the proof of
this lemma in Appendix B �

Next, we define

ΣN =
5⋂
j=1

Σj,N .

Then by Lemma 4.6, we have ∑
N∈2N

~µ(Σc
N) <∞.

Therefore, by Borel-Cantelli, the set

Σ := lim sup
j→∞

Σ2j

has full ~µ measure, i.e. µ(Σ) = 1. To finish the proof, we need to show that for any
~φ ∈ Σ, ~ΦN(t)~φ converges to ~Φ(t)~φ in C([0, T ];H−β−εx ).

By definition, there exists N0 such that ~φ ∈ ΣN for all dyadic number N ≥ N0.
Pick N1 ∈ [N, 2N ], not necessarily a dyadic number, our goal is to compare ~wN1 and
~w in L∞t Hs1

x . We will essentially follow the argument of the proof of Lemma 4.5,
with an additional care that we do not have the bound

‖wN1‖L10m
t L∞x ([0,T ]) ≤ Nβ+2εRN

in a priori. Nevertheless, the choice of ΣN provides a control

‖π⊥MN
wN1‖L∞t W−β−ε,∞x ([0,T ]) ≤ 1.
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Thus by the Sobolev embedding and Bernstein’s inequality,

‖wN1‖L∞t W−β−ε,∞x
≤‖πMN

wN1‖L∞t W−β−ε,∞x
+ 1

≤‖πMN
wN‖L∞t W−β−ε,∞x

+MN‖wN1 − wN‖L∞t Hs1
x

+ 1.

By Bernstein again,

‖wN1‖L∞t L∞x .ε ‖π2N1wN1‖
L∞t W

2ε, 1ε
x

.Nβ+3ε
1 ‖wN1‖L∞t W−β−ε,∞x

.Nβ+4εRN + (logN)A0Nβ+ε‖wN1 − w‖L∞t Hs1
x
,(4.23)

for N large enough.
Now we argue as in the Step 2 in the proof of Lemma 4.5. Assuming first that for

some T1 ∈ (0, T ),

‖wN1‖Y s1 ([0,T1]) ≤ 2R10
N(4.24)

holds. Consequently, we have very roughly estimate

‖~wN1 − ~w‖Ys1 ([0,T1]) ≤ 3R10
N .

Thanks to (4.23) and the choice RN = (logN)θ, we deduce that

‖wN1‖L∞t L∞x ([0,T1]) ≤ Nβ+10ε.

The same iterative argument yields(by choosing τ0 = R−50m
N )

‖~wN1 − ~w‖Ys1 ([0,T1]) ≤ Cε(K0)TR
100m
N N−

ε
2 ≤ CεN

− ε
4 ,(4.25)

provided that θ � 1 such that R(N)100m = (logN)100mθ � ε(logN).
Following the same bootstrap argument as in Step 2, we deduce that (4.25) is

indeed true up to time T . This completes the proof of Proposition 4.2.

Appendix A. Nonlinear estimates and convolution inequalities

Lemma A.1. Let α ∈ (8
9
, 1) and s ∈ (1− α

2
, 4α− 3). Let ε be sufficiently small such

that

(A.1) 1− α

2
+ 2ε < s < 4α− 3− 2ε, 3α− 2 > 4ε.

Then we have the following bounds:

‖F0‖H−(α−s) . ‖F0‖H−3(1−α)−2ε , ‖Flul‖H−(α−s) . ‖F1‖W−(3−l)(1−α)−2ε, 1ε
‖u‖lHs

for l = 1, 2, 3.

Proof. The first inequality is trivial. To prove the second, by duality, it suffices to
show that, for any G ∈ Hα−s such that ‖G‖Hα−s ≤ 1 and H ∈ L 1

ε , we have∣∣∣ ∫
T2

H · 〈∇〉(3−l)(1−α)+2ε(ulG)dx
∣∣∣ . ‖H‖

L
1
ε
‖u‖lHs .(A.2)

By Hölder and Lemma 2.1, the left hand side of (A.2) is bounded by

‖H‖
L

1
ε

(
‖〈∇〉γ(ul)‖

L
2

1+α−s−2ε
‖G‖

L
2

1−α+s
+ ‖ul‖

L
2

1+α−s−2ε−γ
‖∇γG‖

L
2

1−α+s+γ

)
,
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where γ = (3− l)(1− α) + 2ε. Using the Sobolev embedding

Hα−s(T2) ↪→ L
2

1−α+s (T2), Hα−s(T2) ↪→ W γ, 2
1−α+s+γ (T2),

the two norms of G are controlled by ‖G‖Hα−s ≤ 1. Thanks to the conditions
s > 1− α

2
+ 2ε and 3α− 2 > 4ε, we have 2l

1+α−s−γ−2ε
≤ 2

1−s , for l = 1, 2, 3, thus by

Hölder,
‖ul‖

L
2

1+α−s−2ε−γ
. ‖u‖lHs .

When l = 1, γ = 2(1−α)+2ε, since 3α−2 ≥ 4ε, by Hölder and Sobolev’s embedding
we have

‖〈∇〉2(1−α)+2εu‖
L

2
1+α−s−2ε

. ‖〈∇〉2(1−α)+2εu‖
L

2
1+2(1−α)+2ε−s

. ‖u‖Hs .

For l = 2, 3, using Lemma 2.1, Hölder’s inequality and the constraint (A.1), we get

‖〈∇〉γ(ul)‖
L

2
1+α−s−2ε

. ‖u‖
W
γ, 2
α−2ε−(l−2)(1−s)

‖ul−1‖
L

2
(l−1)(1−s)

. ‖u‖lHs .

This completes the proof of Lemma A.1. �

Lemma A.2. Let 0 ≤ η1 ≤ η2 and η1 + η2 > d. Then there exists C0 > 0, such that
for every k0 ∈ Zd:

(i) If η2 < d, we have∑
k∈Zd

1

〈k〉η1〈k − k0〉η2
≤ C0

〈k0〉η1+η2−d
.

(ii) If η2 = d, then ∑
k∈Zd

1

〈k〉η1〈k − k0〉η2
≤ C0 log(k0)

〈k0〉η1
.

(iii) If η2 > d, then ∑
k∈Zd

1

〈k〉η1〈k − k0〉η2
≤ C0

〈k0〉η1
.

(iv) If (n−1)d
n

< η < d, then we have the bound∑
(k1,··· ,kn)∈(Zd)n

k1+···+kn=k

1

〈k1〉η
· · · 1

〈kn〉η
.

1

〈k〉nη−(n−1)d
,

Proof. The proof follows from elementary calculus. �

Remark A.3. For (iv), we only need η > (n−1)d
n

for the left hand side above to be
summable, while η < d is needed in order for the exponent of 〈k〉 to be −nη+(n−1)d.

Corollary A.4. Let l ∈ N and 1 ≤ j ≤ l. Then for all α ∈ (0, 1), 0 < ε � 1 and
γ = l(1− α) + ε, there exists Cα,ε > 0, such that for any N < M , we have∑

N<|k1|,··· ,|kj |≤M
|kj+1|,··· ,|kl|≤M

1

〈k1 + · · ·+ kl〉2γ
l∏

i=1

1

〈ki〉2α
≤ Cα,εN

−2ε.
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Proof. Thanks to the assumption on α and γ, we repeatedly applied (i) in Lemma
A.2 l − 1 times, we control the desired summation by∑

N<|k1|≤M

〈k1〉−2(α+γ−(l−1)(1−α)) =
∑

N<|k1|≤M

〈k1〉−2(1+ε) . N−2ε.

This completes the proof. �

Appendix B. Large deviation estimates

Lemma B.1. Let ξ be a random process of the form such that for any s, t ∈ R,
ξ(s, ·) and ξ(t, ·) have the same law that is stationary in x ∈ T2. Assume that for
some γ ∈ R, (〈∇〉γξ)(t, x) belongs to H≤l, the space of Wiener chaos of degree less
than l, and moreover

sup
t∈R

E[‖ξ(t, x)‖2
Hγ(T2)] ≤ A2

for some A > 0. Then for any γ1 < γ, there exist Cγ,q,r, cγ,q,r > 0, such that for all
λ > 1, T > 1 and q ≥ 2, r ≥ 2,

P
[
‖ξ‖LqtW γ,r

x ([0,T ]×T2)) > λ
]
≤ Cγ,q,r exp

(
− cγ,q,rT−

2
qlA−

2
l λ

2
l

)
.(B.1)

Proof. For any p ≥ q, r, by Chebyshev,

P
[
‖ξ‖LqtW γ,r

x ([0,T ]×T2)) > λ
]
≤
Cp
γ,γ1

λp
E[‖ξ‖p

LqtW
γ,r
x ([0,T ]×T2)

].

By Minkowski, [
E‖ξ(t)‖p

LqtW
γ,r
x ([0,T ]×T2)

] 1
p ≤ ‖〈∇〉γξ(t, x)‖LqtLrxLpω

Since for fixed t, x (〈∇〉γξ)(t, x) ∈ H≤l and ξ(t) is stationary in space and time, by
Proposition 2.4, we deduce that

‖〈∇〉γξ(t, x)‖LqtLrxLpω ≤ Cp
l
2T

1
q sup
t∈R

E
[
‖ξ(t)‖2

Hγ
x
]
1
2 ≤ Cp

l
2T

1
qA.

Therefore,

P
[
‖ξ‖LqtW γ,r

x ([0,T ]×T2)) > λ
]
≤
Cp
γ,γ1

p
lp
2 T

p
qAp

λp
.

By optimizing the choice of p, the proof of Lemma B.1 is now complete. �

Lemma B.2. If Ξ be a stationary random distribution on Td and belongs to Wiener

chaos of order n. Let {Ξ̂(k)}k∈Zd denote its Fourier coefficients. If there exists γ ∈ R
and C0 > 0 such that

E|Ξ̂(k)|2 ≤ Co〈k〉−d+2γ

for every k ∈ Zd, then for every σ > γ and every q ∈ [1,+∞), we have

E‖Ξ‖2
H−σ(Td) + E‖Ξ‖qC−σ(Td)

≤ C ,

where C depends on q, n, γ, σ, d and C0 only. In particular, the bound is uniform in
the class of stationary processes in order n that satisfies the above bound for Fourier
coefficients.
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Lemma B.3. Recall that

WN
law
=

∑
k∈Z2, |k|≤N

gk
〈k〉α

eik·x

is the fractional Gaussian field on T2, where ρ ∈ S(R). If σ > 0, θ ≥ 0 and n ∈ N
satisfy

σ ∧ 1 > n(1− α)− θ > 0 ,

then for every q ∈ [1,+∞), there exists C = C(q, n, α, σ, θ) such that

sup
N

(
N−2θE‖W �n

N ‖2
H−σ

)
+ sup

N

(
N−qθE‖W �n

N ‖
q
C−σ

)
< C .

As a consequence, the same is true when C−σ is replaced by W−σ,p for every p ≥ 1.

Proof. Without loss of generality, we can restrict to the situation where n(1−α)−θ >
0. Also, since W �n

N belongs to Wiener chaos of order n, it suffices to prove for q = 2.
By explicit computation, we have

E|Ŵ �n
N (k)|2 = E

( ∑
k1+···+kn

=k

ŴN(k1) � · · · � ŴN(kn)
)
·
( ∑
`1+···+`n

=k

ŴN(`1) � · · · � ŴN(`n)
)

= n!
∑

k1+···+kn
=k

E|ŴN(k1)|2 · · ·E|ŴN(kn)|2

.
∑

k1+···+kn
=k

1

〈k1〉2α · · · 〈kn〉2α
1|k1|≤N · · ·1|kn|≤N .

We have

N−2θE|Ŵ �n
N (k)|2 .n

∑
k1+···+kn

=k

n∏
j=1

1

N
2θ
n

(
1 + |kj|2α

)1|kj |≤N ,

Hence, we get

N−2θE|Ŵ �n
N (k)|2 .

∑
k1+···+kn

=k

1

〈k1〉2α+ 2θ
n

· · · 1

〈kn〉2α+ 2θ
n

.

By (iv) of Lemma A.2, if 2(n−1)
n

< 2α + 2θ
n
< 2, we have the bound

N−2θE|Ŵ �n
N (k)|2 . 〈k〉−2(θ+1−n(1−α)) = 〈k〉−2+2(n(1−α)−θ .

Note that the above requirement is equivalently to our assumption

0 < n(1− α)− θ < 1 .

Now by Lemma B.2, if
σ > n(1− α)− θ ,

the desired bound follows. We have thus completed the proof of the Lemma B.3. �

Now we provide the proof of Lemma 4.6:
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Proof of Lemma 4.6. From the Sobolev embedding W−β− ε
2
, 8
ε ↪→ W−β−ε,∞ and Lem-

ma 4.4, we deduce that there exist C > 0 and δ = δ(ε) > 0, such that

µ(Σc
2,N) + µ(Σc

5,N) < Ce−δ(ε).

To estimate µ(Σc
i,N) for i = 1, 3, 4, by Lemma B.1, it suffices to show that for all

k ≥ 4, 0 ≤ l ≤ 3, and N ≤ N1 ≤ N , we have the following estimates:

E[‖ �lN −
�l‖2

H−lβ−ε ] + E[‖ �lN −
�l
N1
‖2
H−lβ−ε ] .ε N

−2ε,(B.2)

E[‖ �lN‖2
H−lβ−ε ] .ε 1,(B.3)

E[‖ �kN ‖2

H
ε
2
] .ε N

2kβ+ 3ε
2 ,(B.4)

E[‖ �(k−l)N ‖2
H−(3−l)β−2ε ] .ε N

2(k−3)β−ε.(B.5)

Note that (B.3),(B.4),(B.5) are consequences of Lemma B.3, hence it remains to
prove (B.2).

Let M > N and denote by γ = lβ + ε. Note that under the law µ, �l
N −

�l
M is the

same as φ�lN − φ�lM . Denote by

φN,M :=
∑

N<|k|≤M

gk(ω)√
1 + |k|α

eik·x, σ̃2
N,M := σ̃M

2 − σ̃2
N .

Using the white noise functional representation as in Section 2,

φN(x) = σ̃NWηN (x,·), φN,M(x) = σ̃NWηN,M (x,·),

where

ηN(x, ·) =
∑
|k|≤N

1√
1 + |k|2α

eik·(x+·), ηN(x, ·) =
∑

N<|k|≤M

1√
1 + |k|2α

eik·(x+·).

Combining (2.6), we can write

φ�lN − φ�lM =
l∑

j=1

(
l

j

)
σ̃jN,M σ̃

l−j
N Hj

(
WηN (x,·)

)
Hl−j

(
WηN,M (x,·)

)
.

Using (2.7) and the independence of WηN (x,·),WηN,M (x,·), for j ∈ {1, · · · , l}, we have

σ̃2j
N,M σ̃

2(l−j)
N E

[∥∥Hj(WηN (x,·))Hl−j(WηN,M (x,·))
∥∥2

H−γ

]
∼

∑
N<

|k1|,··· ,|kj |≤M,
|kj+1|,··· ,|kl|,|k|≤M
k1+···+kl+k=0

1

〈k〉2γ
l∏

j=1

1

〈kj〉2α
. N−2ε,

thanks to Corollary A.4. The proof of Lemma 4.6 is now complete. �
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Appendix C. Proof of the Strichartz estimate on Td

Lemma C.1. Let K±j (t, x − y) be the Schwartz kernel of the operator e±itD
α
Pj,

j ≥ 0. Then for any t 6= 0,

sup
z∈Td
|K±j (t, z)| . 2jd

(
1−α

2

)
|t| d2

.(C.1)

Consequently, for t ≥ 0 and 2 ≤ r ≤ ∞,

‖e±itDαPjf‖Lr(Td) .
2jd
(

1−α
2

)(
1− 2

r

)
|t|

d
2

(
1− 2

4

) ‖Pjf‖Lr′ (Td),(C.2)

where r′ is such that 1
r

+ 1
r′

= 1.

Proof. The kernel K±j (t, z) takes the form

K±j (t, z) =
∑
k∈Zd

ϕj(k)eit
√

1+|k|2α+ik·z.

From the Poisson summation formula, we have

K±j (t, z) =(2π)d
∑
m∈Zd

F−1
Rd (ϕj(·)e±it

√
1+|·|2α)(z +m)

=2jd
∑
m∈Zd

κ±j,m(t, z).(C.3)

where

κ±j,m(t, z) :=

∫
Rd

ϕ(ξ)e±it
√

1+|2jξ|2α+iξ·2j(z+m)dξ.

Consider the phase function

Φ±t,z,m(ξ) := ±
√

2−2jα + |ξ|2α + 2j(1−α)(z +m) · ξ,

then κ±j,m(t, z) = Iz,m(2jαt), where

Iz,m(λt) :=

∫
Rd

ϕ(ξ)eiλtΦ
±
t,z,m(ξ)dξ.

Note that

∇ξΦ
±
t,z,m(ξ) = ±α|ξ|2α−2 ξ√

2−2jα + |ξ|2α
+ 2j(1−α)(z +m)

and on supp(ϕ),
|∇ξΦ

±
t,z,m| & 1 + 2j(1−α)|m|, ∀|m| ≥ 2.

Moreover, on supp(ϕ), | det(∇2
ξΦ
±
t,z,m(ξ))| & 1. By the stationary phase lemma, we

have

|Iz,m(λt)| . 1

|λt| d2
, |m| ≤ 2

and

|Iz,m(λt)| . CN
|λt|N(1 + 2j(1−α)|m|)N

, |m| ≥ 2
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for all N ∈ N. Plugging into (C.3), we obtain (C.1).

Replacing e±itD
α
Pj by e±itD

α
P̃j, where P̃j is a similar Littlewood-Paley projector

such that P̃jPj = Pj, the same kernel estimate holds for e±itD
α
P̃j. Consequently,

we have

‖e±itDαPjf‖L∞(Td) .
2jd
(

1−α
2

)
|t| d2

‖Pjf‖L1(Td).

Note that e±itD
α

is an isometry on L2(Td), applying the Riesz-Thorin interpolation
theorem, we deduce that for all 2 ≤ r ≤ ∞,

‖e±itDαPjf‖Lr(Td) .
2jd
(

1−α
2

)(
1− 2

r

)
|t|

d
2

(
1− 2

4

) ‖Pjf‖Lr′ (Td),

and this completes the proof. �

Now we are able to prove Proposition 2.2. The solution u

∂2
t u+ (Dα)2u = F, (u, ∂tu)|t=0 = (u0, u1)(C.4)

can be written as

u(t) = cos(tDα)u0 +
sin(tDα)

Dα
u1 +

∫ t

0

sin((t− t′)Dα)

Dα
F (t′)dt′.

It suffices to prove the homogeneous estimate

‖e±itDαf‖LqtLrx(R×Td) . ‖f‖Hγq,r (Td)(C.5)

and the following inhomogeneous estimate∥∥∥∫
R

e±i(t−t
′)DαG(t′)dt′

∥∥∥
LqtL

r
x(R×Td)

. ‖G‖L1
tH

γq,r (R×Td),(C.6)

thanks to the Christ-Kiselev Lemma ([8]).
We perform a standard TT ∗ argument. Fix a sharp admissible pair (q, r), i.e.

2

q
= d
(1

2
− 1

r

)
, (q, r, d) 6= (2,∞, 2),

define

Tj : L2
x → LqtL

r
x, Tj(f) := e±it〈∇〉

α

Pjf,(C.7)

T ∗j : Lq
′

t L
r′

x → L2
x, T ∗j G :=

∫
R

e∓it〈∇〉
α

PjG(t)dt.(C.8)

Using (C.1) and the Hardy-Littlewood-Sobolev inequality, we deduce that∥∥∥∫
R

e±i(t−t
′)DαPjG(t′)dt′

∥∥∥
LqtL

r
x

. 2jd
(

1−α
2

)(
1− 2

r

)
‖PjG‖Lq′t Lr′x ,

Since
‖Tj‖L2

x→L
q
tL

r
x

= ‖T ∗j ‖Lq′t Lr′x →L2 = ‖TjT ∗j ‖
1/2

Lq
′
t L

r′
x →L

q
tL

r
x

,

we deduce further that for any admissible pairs (q1, r1), (q, r),

‖Tj‖L2
x→L

q
tL

r
x
. 2jd

(
1−α

2

)(
1
2
− 1
r

)
.
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Therefore, for any admissible pairs (q1, r1), (q, r),

‖TjT ∗j ‖
L
q′1
t L

r′1
x →LqtLrx

. 2
jd
(

1−α
2

)(
1− 1

r
− 1
r1

)
.

In particular, for q1 =∞, r1 = 2, we have

‖e±itDαPjf‖LqtLrx+
∥∥∥∫

R

e±i(t−t
′)DαPjG(t′)dt′

∥∥∥
LqtL

r
x

. 2jγq,r‖Pjf‖L2
x
+2jγq,r‖PjG‖L1

tL
2
x
.

Taking the l2 norm in j, we obtain that

‖e±itDαPjf‖l2jLqtLrx +
∥∥∥∫

R

e±i(t−t
′)DαPjG(t′)dt′

∥∥∥
l2jL

q
tL

r
x

. ‖f‖Hγq,r
x

+ ‖G‖L1
tH

γq,r
x

Since 2 ≤ r < ∞, q ≥ 2, by the Minkowski inequality and the Littlewood-Paley
square function theorem,

‖F‖LqtLrx ∼ ‖PjF‖LqtLrxl2j ≤ ‖F‖l2jLqtLrx ,

thus we have proved (C.5) and (C.6). This completes the proof of Proposition 2.2.

Appendix D. Convergence of the linear coefficient

In this section, we prove Proposition 1.4. Recall that σ̃2
N = N2(1−α)σ2

N .

σ̃2
N −N2(1−α)σ2 =

1

4π2

∑
|k|≤N

1

1 + |k|2α
− 1

4π2

∫
|ξ|≤N

1

|ξ|2α
dξ.

In order to prove the convergence of N2(1−α)(a1,N − a1), the key is to show that:

Lemma D.1. Assume that α ∈ (1
2
, 1), Then

σ2
N = σ2 + b1N

−2(1−α) +O(N−1).

where

b1 =
1

4π2
+

1

4π2

∑
k∈Z2

∫
Ck

(
1k 6=0

1

1 + |k|2α
− 1

|ξ|2α
)
dξ,

where (Ck)k∈Z2 are unit cubes [k(1), k(1) + 1]× [k(2), k(2) + 1].

Proof. We denote

N2(1−α)
(
σ2
N − σ2

)
=

1

4π2

(
1 + IN

)
,

where

IN :=
∑

0<|k|≤N

1

1 + |k|2α
−
∫
|ξ|≤N

1

|ξ|2α
dξ.(D.1)

We decompose

ZN := Z2 ∩ {k : 0 < |k| ≤ N} =
8⋃
j=1

Λj, BN := {ξ : |ξ| ≤ N} =
4⋃
j=1

U j



40 CHENMIN SUN, NIKOLAY TZVETKOV, AND WEIJUN XU

where

Λ1 := {k = (k(1), k(2)) ∈ ZN : k(1) ≥ 0, k(2) ≥ 0}, U1 := {ξ = (ξ(1), ξ(2)) ∈ BN , ξ
(1) > 0, ξ(2) > 0},

Λ2 := {k = (k(1), k(2)) ∈ ZN : k(1) ≤ 0, k(2) ≥ 0}, U2 := {ξ = (ξ(1), ξ(2)) ∈ BN : ξ(1) < 0, ξ(2) > 0},

Λ3 := {k = (k(1), k(2)) ∈ ZN : k(1) ≤ 0, k(2) ≤ 0}, U3 := {ξ = (ξ(1), ξ(2)) ∈ BN : ξ(1) < 0, ξ(2) < 0},

Λ4 := {k = (k(1), k(2)) ∈ ZN : k(1) ≥ 0, k(2) ≤ 0}, U4 := {ξ = (ξ(1), ξ(2)) ∈ BN : ξ(1) > 0, ξ(2) < 0}.
For j = 1, 2, 3, 4, we define

IN,j :=
∑
Λj

1

1 + |k|2α
−
∫
Uj

1

|ξ|2α
dξ.

Then by inclusion and exclusion,

IN =
4∑
j=1

IN,j −
∑

k(1)k(2)=0
0<|k|≤N

1

1 + |k|2α
.(D.2)

By symmetry, it suffices to derive a formula for IN,1. Fix k = (k(1), k(2)) ∈ Λ1, we
denote

Ck := {ξ = (ξ(1), ξ(2)) : k(j) ≤ ξ(j) ≤ k(j) + 1, j = 1, 2},
and

C
(1)
0 := {k = (k(1), k(2)) : 0 ≤ k(1), k(2) ≤ 1}

the cubic with bottom left vertex k and top right vertex θ(k) := (k(1) + 1, k(2) + 1).
We have ∫

U1

dξ

|ξ|2α
=

∫
C

(1)
0

dξ

|ξ|2α
+
∑
k∈Λ1

∫
Ck∩BN

dξ

|ξ|2α
.

Let
Ũ1 := U1 ∪

⋃
k∈Λ1

Ck

Since the number of cubes Ck intersecting with |k| = N is O(N), we have∫
Ũ1\U1

dξ

|ξ|2α
= O(N−(2α−1)).

Thus

IN,1 := −
∫
C

(1)
0

dξ

|ξ|2α
+
∑
k∈Λ1

∫
Ck

( 1

1 + |k|2α
− 1

|ξ|2α
)
dξ +O(N−(2α−1)).

We have similar formulas for IN,2, IN,3, IN,3. Adding them together and noticing that
the lattices on two axes have been added twice, we have

4∑
j=1

IN,j =−
∫
C

(1)
0 ∪C

(2)
0 ∪C

(3)
0 ∪C

(4)
0

dξ

|ξ|2α
+
∑
k∈ZN

∫
Ck

( 1

1 + |k|2α
− 1

|ξ|2α
)
dξ +

∑
k(1)k(2)=0
0<|k|≤N

1

1 + |k|2α

+O(N−(2α−1)).
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Since α > 1
2
, we have∑

k∈ZN

∫
Ck

( 1

1 + |k|2α
− 1

|ξ|2α
)
dξ =

∑
k 6=0

∫
Ck

( 1

1 + |k|2α
− 1

|ξ|2α
)
dξ +O(N1−2α),

and ∑
k(1)k(2)=0
0<|k|≤N

1

1 + |k|2α
= 2

∑
m6=0,m∈N

1

1 + |m|2α
+O(N1−2α).

We have
4∑
j=1

IN,j =
∑
k∈Z2

∫
Ck

(
1k 6=0

1

1 + |k|2α
− 1

|ξ|2α
)
dξ + 2

∑
06=m∈Z

1

1 + |m|2α
+O(N1−2α).

Therefore,

IN =
∑
k∈Z2

∫
Ck

(
1k 6=0

1

1 + |k|2α
− 1

|ξ|2α
)
dξ +O(N1−2α).

This completes the proof. �

Proof of Proposition 1.4. By definition,

a1,N − a1 =
1

2

∫ ∞
−∞

V ′′(z)
( 1√

2πσN
e
− z2

2σN − 1√
2πσ

e−
z2

2σ

)
dz.

By Lemma D.1 and the fact that α > 3
4
, we get

N2(1−α)(σN − σ) =
b1

2σ
+ εN ,

where
εN = O(N−(2α−1)) +O(N−2(1−α)).

we finally obtain that

N2(1−α)(a1,N − a1) =
b1

4σ

∫ ∞
−∞

∂σ

( 1√
2πσ

e−
z2

2σ

)
V ′′(z)dz + εN .(D.3)

This completes the proof of Proposition 1.4. �
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