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Finite time extinction for a diffusion

equation with spatially inhomogeneous

strong absorption

Razvan Gabriel Iagar ∗

Philippe Laurençot †

Abstract

The phenomenon of finite time extinction of bounded and non-negative solutions
to the diffusion equation with strong absorption

∂tu−∆um + |x|σuq = 0, (t, x) ∈ (0,∞)× R
N ,

with m ≥ 1, q ∈ (0, 1) and σ > 0, is addressed. Introducing the critical exponent
σ∗ := 2(1 − q)/(m− 1) for m > 1 and σ∗ = ∞ for m = 1, extinction in finite time is
known to take place for σ ∈ [0, σ∗) and an alternative proof is provided therein. When
m > 1 and σ ≥ σ∗, the occurrence of finite time extinction is proved for a specific
class of initial conditions, thereby supplementing results on non-extinction that are
available in that range of σ and showing their sharpness.

AMS Subject Classification 2010: 35B33, 35B40, 35K55, 35K65.

Keywords and phrases: porous medium equation, strong absorption, finite time extinc-
tion, inhomogeneous absorption.

1 Introduction

The aim of this short note is to address the question of finite time extinction of bounded
and non-negative solutions to the following diffusion equation with spatially inhomogeneous
strong absorption

∂tu = ∆um − |x|σuq, (t, x) ∈ (0,∞)× R
N , (1.1)

with initial condition

u(0) = u0 ∈ L∞

+ (RN ) :=
{

z ∈ L∞(RN ) : z(x) ≥ 0 a.e. in R
N
}

, (1.2)
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where
m ≥ 1, 0 < q < 1, σ > 0. (1.3)

The dynamics of Eq. (1.1) features a double competition: on the one hand, the effects of
the diffusion, which spreads the mass of the solutions as time advances, competes with
the absorption term, which triggers a loss of mass, possibly leading to vanishing in finite
time. On the other hand, the weight on the absorption term is likely to bring into play
significant imbalances between the properties of the solutions in a neighborhood of the
origin (where, at least formally, the absorption term is very small) and in outer regions,
at uniform distance from the origin, where the weight |x|σ becomes very strong.

With respect to the first of the two competitions described above, the spatially homoge-
neous counterpart of Eq. (1.1) with σ = 0, that is

∂tu−∆um + uq = 0, m ≥ 1, (1.4)

has a well understood dynamics at least in some ranges of exponents. Indeed, the critical
values for the absorption exponent q are q = m and q = 1, and its solutions have very
different properties according to whether q > m, 1 < q ≤ m or 0 < q < 1. The former
of these three ranges sees the diffusion term being sufficiently strong either to govern the
dynamics, or to balance the effects of the absorption giving rise to profiles known as very
singular solutions. Properties such as decay estimates for the solutions, construction of
singular (or very singular) self-similar solutions and large time behavior of solutions in the
sense of convergence to such self-similar profiles as t → ∞ are established in a number
of works, see for example [16–19, 21, 22, 24] and references therein. While for q > m all
compactly supported solutions have an algebraic time decay as t → ∞ and their supports
expand reaching the whole space in the limit, a different situation occurs for m > 1 and
q ∈ (1,m). In the latter range, the effect of the absorption is dominant and the expansion
of the positivity region of the compactly supported solutions is limited, leading to the
localization of supports, that is, there exists a large radius R > 0 not depending on time
such that suppu(t) ⊆ B(0, R) for any t > 0. Solutions still present an algebraic decay as
t → ∞, but self-similar solutions might become unbounded, presenting a specific growth at
infinity [9, 23] and delicate descriptions of the large time behavior in the form of matched
asymptotics between “flat” solutions of the form K∗t

−1/(q−1) for some explicit constant
K∗ > 0, and boundary layers appearing near the boundary of the localization ball B(0, R),
have been established, see [8]. Working with spatially inhomogeneous absorption with
general weights, Peletier and Tesei established in dimension N = 1 in [25,26] positivity of
supports for q > m, conditions for localization of supports of the solutions for 1 < q < m
and the existence of stationary compactly supported solutions also for 1 < q < m.

The dynamics of both Eq. (1.4) and Eq. (1.1) seem to be by far more involved in the range
m ≥ 1 and 0 < q < 1, also known as the strong absorption range due to the fact that the
absorption term prevails. This dominance gives rise to two new mathematical phenomena
not present for q ≥ 1. On the one hand, finite time extinction of (non-negative bounded)
solutions occurs. This means that there exists a time Te ∈ (0,∞) such that u(t) 6≡ 0 for
t ∈ (0, Te) but u(Te) ≡ 0, Te being thus called the extinction time of u. The finite time
extinction stems from the ordinary differential equation ∂tu = uq obtained by neglecting
the diffusion, emphasizing thus the strength of the absorption, see [14, 15]. On the other
hand, instantaneous shrinking of supports of solutions to Eq. (1.4) with bounded initial
condition u0 such that u0(x) → 0 as |x| → ∞ takes place, that is, for any non-negative
initial condition u0 ∈ L∞(RN ) such that u0(x) → 0 as |x| → ∞ and τ > 0, there is
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R(τ) > 0 such that suppu(t) ⊆ B(0, R(τ)) for all t ≥ τ . This is once more due to the
strength of the absorption term, which involves a very quick loss of mass, and has been
proved in [10, 15] in the semilinear case m = 1 and in [1] for m > 1. Finer properties
of the dynamics of Eq. (1.4) in this range are still lacking in general. For example, a
description of the extinction rates and behavior near the extinction time of the solutions
to Eq. (1.4) seems to be only available whenm+q = 2 in [11], revealing a case of asymptotic
simplification, and appears to be a complicated problem if m+ q 6= 2.

Let us now turn our attention to Eq. (1.1) with exponents as in (1.3) and introduce the
critical exponent

σ∗ :=















2(1− q)

m− 1
> 0, if m > 1,

∞, if m = 1.

(1.5)

It is established in [4,20] (m = 1) and in [2,5] (m > 1) that any solution to Eq. (1.1) posed
in a bounded domain Ω ⊂ R

N with homogeneous Neumann boundary condition vanishes in
finite time provided 0 < σ < σ∗ (the analysis performed in the above mentioned references
actually deals with more general weights instead of |x|σ). A similar result is shown in [3,4]
(m = 1) and in [6] (m > 1) for homogeneous Dirichlet boundary conditions. A direct
consequence of the latter and the localization of supports established in [12, Theorem 1.1]
is that bounded and non-negative weak solutions to (1.1)-(1.2) vanish identically after a
finite time when σ ∈ [0, σ∗). We shall recall this result in Theorem 1.2 below and provide an
alternative proof, relying on integral inequalities and the well-known L1−L∞-regularizing
effect of the heat equation or the porous medium equation in R

N . In the complementary
range m > 1 and σ ≥ σ∗, fewer results seem to be available but finite time extinction is
not a generic feature. Indeed, we recently proved in [12] that, when m > 1, σ > σ∗, and
the initial condition u0 is positive in a neighborhood of the origin, the positivity set

P(t) := {x ∈ R
N : u(t, x) > 0}

of the solution u to (1.1)-(1.2) is non-empty and contains the origin for all t ≥ 0. Moreover,
P(t) shrinks to {0} as t → ∞. We also identify in [12] a class of initial conditions u0 for
which 0 6∈ P(t) for all t ≥ 0; that is, u(t) vanishes at the origin where the absorption is
the weakest. It is then tempting to figure out whether finite time extinction could occur
and the purpose of this note is to answer this question by the affirmative.

Main results. We deal in this note with the Cauchy problem (1.1) -(1.2) and first make
precise the notion of solution we are using in the present work.

Definition 1.1. A non-negative weak solution to the Cauchy problem (1.1)-(1.2) is a

function

u ∈ L∞

+ ((0,∞) × R
N ) (1.6a)

such that, for all T > 0,
um ∈ L2

(

(0, T ),H1
loc(R

N )
)

(1.6b)

and
∫ T

0

∫

RN

[

(u0 − u)∂tζ +∇um · ∇ζ + |x|σuqζ
]

dxds = 0 (1.6c)

for all ζ ∈ C1
c ([0, T ) × R

N ).
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Basic results of well-posedness of the Cauchy problem and of instantaneous shrinking
and localization of supports of solutions in the framework of Definition 1.1 are established
in [12, Theorem 1.1], the latter being restated as a preliminary fact at the beginning
of Section 2. Let us next recall that finite time extinction always occurs if σ < σ∗,
see [4, Theorem 3.1] and [3, Theorem 3.16] (m = 1) and [6, Theorem 2.1] (m > 1).

Theorem 1.2. If m and q are as in (1.3), u0 is as in (1.2) and σ < σ∗, then the solution

u to the Cauchy problem (1.1)-(1.2) vanishes in finite time.

As already pointed out, Theorem 1.2 follows from the above mentioned references and
the property of localization of supports of any solution to the Cauchy problem (1.1)-(1.2).
Nevertheless, we give a short and much simpler proof based on estimates on the L1 norm
of the solution at different positive times, which also works for the spatially homogeneous
equation (1.4). Let us also stress here that, in the semilinear case m = 1, σ∗ = ∞ and all
bounded and non-negative solutions vanish in finite time.

However, things are a bit more complex in the range m > 1 and σ ≥ σ∗. Indeed, for
σ > σ∗, it is proved in [12, Theorem 1.3] that solutions to the Cauchy problem (1.1)-(1.2)
with an initial condition u0 which is positive in a small ball B(0, r) converge as t → ∞ to
a unique non-zero self-similar solution and in particular do no longer vanish in finite time.
We thus infer that we need to restrict the class of initial conditions u0 for the finite time
extinction to hold true. This is made precise in the following statement, which is the main
result of this note.

Theorem 1.3. Let m > 1, 0 < q < 1 and σ ≥ σ∗. Consider a, A and R > 0 such that

a > σ/(1 − q) and

Am−qRa(m−q)−σ−2 ≤
1

am(am+N − 2)
. (1.7)

Let u0 ∈ L∞

+ (RN ) be such that

u0(x) ≤ A|x|a, for any x ∈ B(0, R), (1.8a)

and

‖u0‖∞ ≤ ARa. (1.8b)

Then the solution u to (1.1)-(1.2) vanishes in finite time.

According to our previous results in [12], the flatness condition (1.8a) as |x| → 0 is
required in order to have finite time extinction. Moreover, in a forthcoming work [13] we
will show that a limitation on ‖u0‖∞ such as the one in (1.8b) is also needed, as a self-
similar solution with exponential time decay as t → ∞ and a dead core (that is, support
located in an annulus far away from the origin) can be constructed for σ = σ∗. We may
thus conclude that our results are qualitatively sharp. A corollary of Theorem 1.3 which
provides examples of initial conditions u0 to which it applies is given in Section 3 after its
proof.

2 Proof of Theorem 1.2

This section is dedicated to the proof of Theorem 1.2. Before the beginning of the proof,
we recall here as a preliminary the precise statement of the well-posedness theorem for
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Eq. (1.1), which can be found in [12, Theorem 1.1]. It includes properties such as in-
stantaneous shrinking, localization of supports of bounded solutions and the comparison
principle, that will be used in the sequel.

Theorem 2.1. For any m > 1, q ∈ (0, 1) and σ > 0, there is a unique non-negative weak

solution to the Cauchy problem (1.1), (1.2) which satisfies

‖u(t)‖∞ ≤ ‖u0‖∞ , t ≥ 0. (2.1)

In addition, it enjoys the properties of instantaneous shrinking and localization of the

support; that is, for any t > 0, u(t) has compact support and, given τ > 0, there exists

R = R(τ) > 0, depending on u0 and τ but not on t ∈ [τ,∞), such that

suppu(t) ⊆ B(0, R(τ)), for any t ≥ τ.

Also, the following comparison principle holds true: given u0,i ∈ L∞

+ (RN ), i = 1, 2, such
that u0,1 ≤ u0,2 in R

N , the corresponding non-negative weak solutions u1 and u2 to (1.1),
(1.2) satisfy u1 ≤ u2 in (0,∞)× R

N .

For a proof, we refer the reader to [12, Sections 2 and 3], while similar results for the
semilinear casem = 1 follow by a simple adaptation of the proofs. With these preparations,
we are ready to prove our first main result. This is done by adapting an argument from [7].

Proof of Theorem 1.2. According to Theorem 2.1, we may assume without loss of gener-
ality that u0 is compactly supported and that there exists R > 0 such that

suppu(t) ⊂ B(0, R), for any t > 0. (2.2)

Owing to the non-negativity of u, it follows from Eq. (1.1) that for any T > 0 and t ∈ (0, T )
we have

∫ T

t

∫

RN

|x|σuq(s, x) dx ds ≤ ‖u(T )‖1 +

∫ T

t

∫

RN

|x|σuq(s, x) dx ds ≤ ‖u(t)‖1. (2.3)

Pick now b ∈ R such that
σ

N
+ 1− q < b <

σ∗

N
+ 1− q. (2.4)

We then infer from (2.3) that

‖u(t)‖1 ≥

∫ T

t
‖u(s)‖−b

∞

∫

RN

|x|σ‖u(s)‖b
∞
uq(s, x) dx ds

≥

∫ T

t
‖u(s)‖−b

∞

∫

RN

|x|σub+q(s, x) dx ds.

(2.5)

Next, on the one hand we deduce from (2.2), Hölder’s inequality and the non-negativity
of u that, for any s ∈ (t, T )

‖u(s)‖1 =

∫

B(0,R)
|x|σ/(b+q)u(s, x)|x|−σ/(b+q) dx

≤

(

∫

B(0,R)
|x|σub+q(s, x) dx

)1/(b+q)(
∫

B(0,R)
|x|−σ/(b+q−1) dx

)(b+q−1)/(b+q)

≤ C

(
∫

RN

|x|σub+q(s, x) dx

)1/(b+q)

,
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since (2.4) guarantees that σ/(b + q − 1) < N . We thus find that

‖u(s)‖b+q
1 ≤ C

(
∫

RN

|x|σub+q(s, x) dx

)

. (2.6)

On the other hand, since u is a subsolution to the porous medium equation if m > 1 or
to the heat equation if m = 1, it follows from the well-known regularizing effect of the
porous medium equation (see for example [28, Theorem 2.1]) if m > 1 or from the standard
representation formula for the heat equation if m = 1 that

‖u(s)‖∞ ≤ C(s− t)−θ‖u(t)‖
2θ/N
1 , s ≥ t,

where θ = N/(N(m− 1) + 2). Consequently, taking into account that b > 0, we have

‖u(s)‖−b
∞

≥ C(s− t)bθ‖u(t)‖
−2bθ/N
1 . (2.7)

Combining the estimates (2.5), (2.6) and (2.7) gives, for any s ∈ (t, T ), that

‖u(t)‖1 ≥ C

∫ T

t
(s− t)bθ‖u(t)‖

−2bθ/N
1 ‖u(s)‖b+q

1 ds,

or equivalently
∫ T

t
(s− t)bθ‖u(s)‖b+q

1 ds ≤ C‖u(t)‖
(N+2bθ)/N
1 . (2.8)

Since ‖u(s)‖1 ≥ ‖u(T )‖1 for s ∈ (t, T ) by (1.1), we further infer from (2.8) that

C‖u(t)‖
(N+2bθ)/N
1 ≥ ‖u(T )‖b+q

1

∫ T

t
(s− t)bθ ds =

1

bθ + 1
(T − t)bθ+1‖u(T )‖b+q

1 ,

which can be written in an equivalent form as

‖u(T )‖1 ≤ C(T − t)−(bθ+1)/(b+q)‖u(t)‖
(N+2bθ)/N(b+q)
1 , (2.9)

which holds true for any t ∈ (0, T ). Let us notice that, when m > 1,

N + 2bθ −N(b+ q) = N(1− q)−
N2(m− 1)

N(m− 1) + 2
b

=
N

N(m− 1) + 2
[(1− q)(N(m− 1) + 2)−N(m− 1)b] > 0,

since we deduce from (2.4) that

b < 1− q +
σ∗

N
=

(1− q)(N(m− 1) + 2)

N(m− 1)
.

The adaptation for m = 1 is immediate as then θ = N/2 and the terms involving b just
cancel in the previous calculation. We thus have N + 2bθ > N(b + q) and it follows
from [27, Lemme 4.1] that u vanishes in finite time.
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3 Proof of Theorem 1.3

Throughout this section, we fix m > 1, q ∈ (0, 1) and σ ≥ σ∗. Before starting the proof
of Theorem 1.3, we need a preparatory result on the availability of suitable stationary
supersolutions to Eq. (1.1).

Lemma 3.1. Given a ≥ (σ + 2)/(m − q) and A > 0, R > 0 satisfying (1.7), the function

Sa,A(x) := A|x|a, x ∈ R
N ,

is a supersolution to Eq. (1.1) on (0,∞)×B(0, R).

Proof. Setting l := a(m− q)−σ− 2 ≥ 0, and fixing some x ∈ B(0, R), we obtain by direct
calculation that

∂tSa,A(x)−∆Sm
a,A(x) + |x|σSq

a,A(x) = −am(am+N − 2)Am|x|am−2 +Aq|x|σ+aq

= Aq|x|σ+aq
[

1− am(am+N − 2)Am−q |x|l
]

≥ Aq|x|σ+aq
[

1− am(am+N − 2)Am−qRl
]

≥ 0,

where the last inequality follows from (1.7).

We are now in a position to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. It follows from (1.8a) that

u0(x) ≤ Sa,A(x) = A|x|a, for any x ∈ B(0, R),

and from (1.8b) and (2.1) that

u(t, x) ≤ ‖u0‖∞ ≤ Sa,A(x), (t, x) ∈ (0,∞)× ∂B(0, R).

Noticing that
σ

1− q
≥

σ + 2

m− q
, for σ ≥ σ∗

and recalling that A and R satisfy (1.7), Lemma 3.1 and the comparison principle in
Theorem 2.1 entail that

u(t, x) ≤ Sa,A = A|x|a, (t, x) ∈ (0,∞)×B(0, R).

On the one hand, the previous inequality implies that, for (t, x) ∈ (0,∞) ×B(0, R),

|x|σuq(t, x) ≥

(

u(t, x)

A

)σ/a

uq(t, x) = A−σ/au(aq+σ)/a(t, x). (3.1)

On the other hand, for (t, x) ∈ (0,∞) × (RN \ B(0, R)), we have |x| ≥ R, which gives,
along with (2.1),

|x|σuq(t, x) = |x|σ
‖u0‖

σ/a
∞

‖u0‖
σ/a
∞

uq(t, x) ≥
Rσ

‖u0‖
σ/a
∞

u(aq+σ)/a(t, x). (3.2)
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Introducing
B := min{A−σ/a, Rσ‖u0‖

−σ/a
∞

},

we obtain from (3.1) and (3.2) that

|x|σuq(t, x) ≥ Bu(aq+σ)/a(t, x), (t, x) ∈ (0,∞) × R
N .

Therefore, the comparison principle gives that u ≤ v in (0,∞)×R
N , where v is the solution

to
∂tv −∆vm +Bv(aq+σ)/a = 0, in (0,∞)× R

N

with the same initial condition v(0) = u0 in R
N . Since (aq + σ)/a < 1 by the choice of a,

v vanishes in finite time and so does u.

We provide more precise examples of initial data for which finite time extinction holds
true when σ ≥ σ∗ in the following consequence of Theorem 1.3.

Corollary 3.2. Let m > 1, 0 < q < 1, σ ≥ σ∗ and consider a > σ/(1 − q) and u0 ∈
L∞

+ (RN ) such that

u0(x) ≤ A0|x|
a, x ∈ R

N , (3.3)

for some A0 > 0. Then there exists M > 0 depending only on m, a, N , q, σ and A0 such

that, if ‖u0‖∞ ≤ M , then the solution u to the Cauchy problem (1.1)-(1.2) vanishes in

finite time.

Proof. We set

K := [am(am+N − 2)]1/(m−q) , l := a(m− q)− σ − 2 > 0,

and choose
A = A0, R = (KA0)

−(m−q)/l, M = A0R
a.

Pick u0 ∈ L∞

+ (RN ) satisfying (3.3) and ‖u0‖∞ ≤ M . Then A and R satisfy (1.7) and u0
satisfies (1.8), so that we are in the hypothesis of Theorem 1.3. An application of this
theorem ends the proof.
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