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ABSTRACT

So far, multi-objective NK landscapes have been investigated under
the assumption of a homogeneous nature of the involved objec-
tives in terms of difficulty. However, we argue that problems with
heterogeneous objectives, e.g., in terms of multi-modality, can be
challenging for multi-objective evolutionary algorithms, and de-
serve further considerations. In this paper, we propose a model of
multi-objective NK landscapes, where each objective has a different
degree of variable interactions (K), as a benchmark to investigate
heterogeneous multi-objective optimization problems. We show
that the use of a rank-annotated neighborhood network with la-
beled local optimal solutions, together with landscape metrics ex-
tracted from the heterogeneous objectives, thoroughly characterize
bi-objective NK landscapes with a different level of heterogeneity
among the objectives.
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1 INTRODUCTION

Multi-objective optimization problems (MOPs) with heterogeneous
objectives are those where the objective functions differ in one
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or several aspects, such as scaling, landscape, evaluation time, or
theoretical and practical difficulty [19]. Studies on multi-objective
evolutionary algorithms (MOEAs) do not usually pay attention
to the heterogeneity of the objectives, and to the way it might
influence search difficulty. This is particularly the case for multi-
objective benchmark functions where the focus is usually put on
global characteristics of the multi-objective landscape, or on the
shape of the Pareto front (PF). However, real-world problems might
exhibit a significant variability in the objectives’ characteristics,
and recent research has addressed the question of heterogeneous
objectives and proposed multi-objective approaches to deal with
them [6]. Much of this previous research has been, however, focused
on problems where the heterogeneity arises in evaluation times or
latencies, that is, when each objective takes a different amount of
time to be evaluated [3, 5, 9, 11].

In this paper, we investigate multi-objective problems with re-
lated, but heterogeneous landscapes. We are in particular interested
in problems where the multi-modality and the ruggedness signif-
icantly differ among the objectives. As a representative class of
problems, we select multi-objective NK landscapes [1, 2, 23, 36],
and we build on recent results analyzing and characterizing this
problem class [13, 14, 24, 25]. The parameter K of the NK model
critically influences the characteristics of the fitness landscape. As
K increases, the ruggedness and the multi-modality of the land-
scape also increase. Therefore, we investigate multi-objective NK
landscapes where each objective has a different degree of variable
interactions K. Such a model serves as a framework to investigate
the impact of heterogeneous objectives, by allowing us to evaluate
how the difference in the amount of ruggedness among the NK
models translates into the difficulty of the MOP. For example, we
can quantify how the increment in the number of single-objective
local optima for one of the objectives affects the number of multi-
objective local optima for MNK landscapes. Although our analysis
could be extended to an arbitrary number of objectives, in this
paper we focus on bi-objective NK landscapes. Furthermore, we
present the analysis from the perspective of optimization strategies
based on a Pareto dominant approach.

To evaluate the impact of heterogeneity, we propose to construct
a rank-annotated neighborhood network with labeled local opti-
mal solutions. This network is inspired by neighborhood graphs
traditionally applied to fitness landscapes [35], and by Pareto local
optimal solutions networks [25] previously used to extract informa-
tive features from multi-objective NK landscapes. This annotated
neighborhood network comprises both local optimal and non-local
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optimal solutions. Furthermore, local optimal solutions are labeled
to indicate the different classes they belong to: Pareto local optimal
solutions [31], and (single-objective) local optima for each objective.
In addition, the nodes from the network are layered according to the
rank of their corresponding solution with respect to non-dominated
sorting [18], similarly to the strategy followed in Pareto plateau
connection graphs [17].

Finally, we conduct exhaustive experiments on heterogeneous
bi-objective NK landscapes with different degrees of variable inter-
actions per objective, and different degrees of heterogeneity. Using
traditional metrics from landscape analysis, and others extracted
from the labeled rank-annotated neighborhood network, we ana-
lyze the heterogeneous landscapes in terms of multi-modality and
of the Pareto set structure. We further analyze to what extent these
metrics are impacted by the degree of variable interactions and by
the degree of heterogeneity among the objectives.

The paper is organized as follows. Section 2 presents the back-
ground on multi-objective NK landscapes and reviews related work.
Section 3 introduces the heterogeneous MNK model, proposes ways
to quantify heterogeneity, and discusses its usability. Section 4 de-
scribes the rank-annotated neighborhood network with labeled
local optimal solutions. Section 5 gives the experimental setup, and
presents and discusses numerical results. Section 6 concludes the
paper and mentions a number of open research lines.

2 BACKGROUND AND RELATED WORK

2.1 NK and MNK Landscapes

Let X = (Xj,...,XN) denote a vector of binary variables. We use
X = (x1,...,xN) to denote an assignment to the variables. S denotes
a set of indices in {1, ..., N}, and Xs (respectively xg) a subset of
the variables of X (respectively x) determined by the indices in S.

The model for NK landscapes was originally introduced to study
the effect of different patterns of variable interactions in the land-
scape [21]. It allows to explore the way in which the structure and
the strength of interactions among variables determine the rugged-
ness of the landscape. For given parameters, the problem consists
of finding the global maximum of the function.

An NK landscape is defined with the following components:

Number of variables, N.

Number of interactions per variable, K.

A set of K interactions II(X;) € X, for Xj, j € {1,...,N}.
A sub-function f; defining a real value for each combination
of values of Xj and II(Xj), j € {1,...,N}.

The objective function F, to be maximized, is defined as follows:
l n
F(o) = ;mx,-, T(x))). M

Multi-objective NK (MNK) landscapes [1, 2] provide an extension
of the NK model to the multi-objective case. An MNK landscape
is defined as a vector function mapping binary vectors into M real
numbers F(.) = (F1(.), F2(), ..., Fp()) : BN «— RM where N
is the number of variables, M is the number of objectives, F;(.) is
the i-th objective function, and 8 = {0,1}. K= (Kj,...,Kpy) isa
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tuple of integers where K; is the size of the neighborhood in the
i-th landscape!. Each F;(x) is defined similarly to Equation (1).

2.2 Definitions

Let Z denote the mapping of solutions to MNK landscapes in the ob-
jective space. Given two objective vectors z,z’ € Z, z is dominated
by z’ iff forall i € {1,...,M} z{ > 2;, and there isa j € {1,..., M}
such that z} > zj. Similarly, given two solutions x,x” € X, x is
dominated by x” iff F(x) is dominated by F(x”). An objective vector
z* € Z is non-dominated if there does not exist any z € Z such
that z* is dominated by z. A solution x* € X is Pareto optimal, or
non-dominated, if F(x) is non-dominated. The set of Pareto optimal
solutions is the Pareto set (PS); its mapping in the objective space is
the Pareto front (PF). One of the main challenges in multi-objective
optimization is to identify the PS, or a good approximation of it for
large-size and complex problems. A number of MOEAs have been
designed to this end since the late eighties [12, 15].

2.3 Related Work

Among the research lines related to our work are approaches that
study the influence of different factors in MNK landscapes, and
works that propose metrics that serve to characterize MOPs, partic-
ularly metrics that result from a network-based landscape analysis.
In this section, we cover some of the research in these directions.

Aguirre et al. [2] present an exhaustive investigation of how the
parameters of MNK landscapes influence several characteristics of
the landscape, including the size of the Pareto front and the number
of fronts. They extract a number of valuable conclusions related to
the effects that the parameters of the MNK landscape have in the
complexity of the problems. Since both the variable interactions’
structure and the local functions of the NK model influence the
ruggedness of the landscape, the impact of these factors have also
been investigated from different perspectives. In [36, 37], the NK
model has been used to create pMNK landscapes, where the same
variable interactions’ structure is used for each objective and the
local sub-functions are modified to enforce desired correlations
among the objectives. The model has been applied to investigate
MOEAs in different scenarios [16, 27]. Knowles and Corne [23] use
the MNK model to investigate the effect of augmenting the number
of objectives considering different strength of correlation between
them. Another way to extend the NK model to the multi-objective
domain is by using a single and fixed set of local functions for each
objective, and exploring the difficulty of the search by modifying
the variable interactions, as proposed in [34]. It is important to
notice that all previous analyses of MNK landscapes have consid-
ered a fixed K for all the involved objectives. In this paper, we are
interested in MNK models with different values for K.

There has been an increasing number of works that propose
features which inform about the characteristics or the difficulty
of combinatorial MOPs [13, 14, 24, 25]. In addition to providing
tools for a better understanding of MOPs, these features have been
applied to explain algorithm performance or implement criteria for
algorithm selection [13, 24]. We show in this paper how several
of these metrics can describe particular aspects of heterogeneous

! Although in previous work on MNK landscapes, all K;’s were assumed to be the same,
we use this notation to emphasize that this does not always have to be the case.
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MOPs. We complement the information provided by traditional
features with other metrics extracted from a network representation
of the proposed heterogeneous problem.

In landscape analysis, the landscape is often defined by means of
a neighborhood graph, where there is a vertex for each solution and
edges connect neighbors. Local optima networks (LONSs) [29] serve
as a network characterization of fitness landscapes. Each vertex cor-
responds to a local optimum, and edges represent basin adjacency
between two local optima. They were originally applied to the NK
model, and have been later extended to multi-objective NK land-
scapes in [25]. In the Pareto local optimal solutions network (PLOS-
net), vertices correspond to Pareto local optima solutions [30], and
edges are constructed between mutually non-dominated neigh-
bors. By definition, a PLOS-net is a sub-graph of the neighborhood
graph. Network metrics have been proposed for both LONs and
PLOS-nets [10, 20].

There are other approaches that represent the multi-objective
landscape as graphs. This is the case of Pareto plateau connection
graphs [17], where the nodes from the network are layered accord-
ing to the rank of their corresponding solution with respect to
non-dominated sorting [18]. Also, methods that extract informative
network features from the analysis of the interactions between
the decision variables have been proposed for characterizing the
behavior of multi-objective estimation of distribution algorithms
[32] and other MOEAs [28, 33].

3 MULTI-OBJECTIVE NK LANDSCAPES WITH
HETEROGENEOUS OBJECTIVES

The parameter K of an NK model critically influences the charac-
teristics of the landscape: the ruggedness and the number of local
optima typically increase with K. Therefore, we propose to use
MNK models, where each objective is defined using a different
parameter K, as a framework to investigate heterogeneous objec-
tives. Such a model allows us to evaluate how the difference in
the amount of ruggedness among the single-objective NK models
translates into the difficulty of the MOP. We remark that previous
research on MNK landscapes has focused on problems where all
the objectives share the same parameter K.

Although our analysis could be extended to an arbitrary number
of objectives, in this paper we focus on bi-objective MNK land-
scapes. Furthermore, we present the analysis from the perspective
of optimization strategies based on a Pareto dominant approach.

3.1 Constructing Heterogeneous MNK
Landscapes

Using K as a way to define the amount of heterogeneity is a simple
way to control the characteristics of the problem. However, another
important question is the way in which the objectives are related.
In this section, we present the way individual objectives have been
generated for the heterogeneous MNK model.

We focus on an exhaustive exploration of a small, enumerable,
heterogeneous MNK landscape. To reduce the effect that the vari-
ability of the variable interactions’ structure may have in the char-
acteristics of the landscape, we start from an initial instance with
K = Kinir and progressively construct instances with lower K
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values. This process is called NK model reduction and can be imple-
mented in different ways. For the experiments shown in this paper,
we select, for the interactions of variable x;, the interacting variable
with the smallest mean squared distance between each possible
configuration of the other variables, that is:

xj=arg minxjen(xi) chexiun(xi)/Xj (f, (x,xUx;=1)—f; (xl-,)?ijz()))Z (2)

where % € X; UTI(X;)/X represents a configuration of the inter-
actions of i excluding j, and f;(%¥ € X; UTI(X;)/X}) is the value of
function f; for a particular configuration of the interacting vari-
ables.

Once the interacting variable to be removed is selected, a new
function f; with 2K~ values is randomly generated from a uniform
distribution. This process guarantees that, for any pair of NK models
(NKj, NK3) generated from a common initial instance and such
that K; < K, the IIyk, (X|) variable interactions of a variable X;
are a subset of IIng, (Xj).

3.2 Characterizing Heterogeneity

Considering bi-objective MNK landscapes, benchmark parame-
ters K1 and K configure the heterogeneity of the instance. Using
K; = K3 to construct a homogeneous instance. We define the to-
tal degree of variable interaction as T = Kj + K3, and the degree
of heterogeneity as D = |Kz — K|. It is important to notice that,
given T and D, the sum T + D = max(Kj, K2) - 2 must be even in
order to ensure feasibility, resulting in only two possible symmet-
rical pairs (Ki, K3). Fixing K; < K3 reduce the number of possible
configurations to one, therefore the total degree of variable inter-
actions T and the degree of heterogeneity D are two alternative
parameters to characterize MNK landscapes. To observe the impact
of heterogeneity on MNK landscapes, we consider the following
scenarios:

o Fixed total degree of variable interactions (T),
e Fixed degree of heterogeneity (D),
e Increasing heterogeneity without fixing T nor D.

4 RANK-ANNOTATED NEIGHBORHOOD
NETWORK WITH LABELED LOCAL
OPTIMAL SOLUTION

In order to evaluate how heterogeneous objectives influence the
properties of the landscape, we focus on metrics that capture the
composition of the search space according to the rank of solutions
with respect to non-dominated sorting. These metrics attempt to
capture the way in which solutions are ranked, and the likelihood
for solutions of one rank to have neighbors with a better rank.

4.1 Constructing the Network

We define the neighborhood structure N as the usual 1-bit flip
neighborhood structure; i.e. two solutions are neighbors if their
Hamming distance is 1. A Pareto local optimal (PLO) solution is
a solution x € X for which there does not exist any neighboring
solution x” € N (x) such that x is dominated by x” [30]. Similarly,
we use SLO; to refer to a single-objective local optima with respect
to objective F;.
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Solutions in a given rank can be classified into two groups: PLO
solutions and solutions that are not locally Pareto optimal. Further-
more, we propose to further classify PLO solutions according to
their local optimality for each separate objective. For bi-objective
problems, we consider the following five types of solutions:

(t1) PLO solutions that are SLO1,

(t2) PLO solutions that are SLO>,

(t3) PLO solutions that are both SLO; and SLO,

(t4) PLO solutions that are not local optima of any objective,
(t5) Solutions that are not PLO.

By construction of MNK landscapes, we assume there is no equiva-
lent neighboring solutions, and therefore a SLO; for any objective
is always a PLO, whereas the opposite is not true. Furthermore,
in the previous classification, groups t; and t; exclude elements
from t3. The rationale behind this classification is to analyze the
relationship between SLO and PLO, and to investigate what is the
distribution of PLO and non-PLO solutions among solutions with
the best ranks. Computing the SLO of a single-objective problem
requires the evaluation of only one fitness function. Therefore, it is
worth investigating whether the knowledge about the SLO of the
objectives that comprise a MOP can be exploited to design more ef-
ficient strategies for MOPs. Similarly, an important question is how
non-PLO solutions are distributed among the different ranks. While
PLO have received most of the attention in the analysis of MOPs,
non-PLO solutions can contribute to promising PF approximations.

Since our focus is on Pareto dominant approaches, solutions are
further analyzed by organizing them according to non-dominated
sorting, as in [17]. As such, non-dominated solutions are ranked 1.
For this analysis, we assume that the complete landscape of the MOP
is known. This is equivalent to an exhaustive enumeration of the
solution space that allows us to associate each solution with its rank.
The introduced classification of solutions is used to annotate all the
solutions for each rank. As a convenient graphical representation of
the search space, we use neighborhood networks augmented with
labels that identify the type of solutions in terms of local optimality.
The neighborhood network is stratified in layers where all solutions
that belong to the same rank are located in the same layer.

Fig. 1 shows an example of a rank-annotated neighborhood net-
work with labeled solutions. In the figure, PLO solutions are repre-
sented as circles and non-PLO solutions as squares. The different
types of PLO solutions are represented with different colors. To
ease the visualization, the example displays only some of the con-
nections between the vertices. Notice that edges indicating the
neighborhood relationships have the same interpretation than in
the neighborhood network, but they can also be read in terms of
rank improvement (or deterioration) when visiting the neighbors
of a solution.

4.2 Landscape Characteristics

As previously discussed in Section 2.3, in multi-objective optimiza-
tion, much research effort has been put to quantify the impact of
the number of objectives, their degree of non-linearity, and the
correlation among them on general-properties from the landscape.
We summarize in Table 1 some existing metrics and introduce
additional ones derived from the analysis of the rank-annotated
neighborhood network. From the rank-annotated neighborhood
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Figure 1: Rank-annotated neighborhood network with la-
beled local optimal solutions.

network, we have computed features that are further specified by
each type of solution ¢ and each rank r. The following features are
considered:

e Q;r: Number of solutions of type t and of rank r,

e L;,: Proportion of neighbors from solutions of type t that
are connected to solutions with a better rank, whatever its
type.

o Number of ranks.

The proportions are computed by first inspecting the ranks of all the
neighbors for all solutions of type ¢, and then dividing by the total
number of neighbors. For example, if there are 5 solutions of type
t; and of rank r, then the total number of neighbors is 30 and this
value is used to normalize the number of connections to solutions
with lower, equal, and higher ranks. The same value is used at
the time of computing the average rank difference D;, which is
also divided by the highest rank in order to scale the average rank
change to values in [-1, 1].

The metrics provide information about the composition of the
ranks and allow us to identify which type of PLO solutions are
more “promising” in terms of improving the quality of the current
solutions. For instance, we can evaluate how likely for solutions
with sub-optimal ranks is to move to solutions with better ranks,
and whether is is better to try first PLO solutions that are SLO for
a single objective or, by contrast, whether PLO solutions that are
not SLO should be given priority. Our final goal is to determine
how the characteristics of the landscape change with heterogeneity,
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Table 1: General landscape characteristics extracted from
MNK landscapes.

name description
PF_size proportion of solutions in Ry (best rank) [2, 22]
supp  proportion of supported solutions in Ry [22]
hv  hypervolume covered by solution from Ry [2]
cc  proportion of connected components in Ry [31]
sing  proportion of isolated solutions (singletons) in Ry [31]
lcc  prop. size of the largest connected component (lcc) in Ry [36]
lcc_hv  proportion of hypervolume covered by the lcc in Ry [26]
plo  proportion of Pareto local optimal solutions (PLO) [30]
mean_slo  prop. single-objective local optima (SLO) per objective [26]

slo_i

p_slo_i
plo_not_slo
p_plo_not_slo
slo_dev
p_slo_dev

proportion of SLO for objective f;

same as above, proportional to the number of PLO
proportion of PLO that are not SLO for any objective

same as above, proportional to the number of PLO
deviation of the number of SLO per objective: | slo_1 —slo_2 |

same as above, proportional to the number of PLO

and to what extent these metrics can provide information about
which search strategy is more promising for different degrees of
heterogeneity.

5 EXPERIMENTAL ANALYSIS

In this section, we evaluate the effect of the objectives’ heterogene-
ity in the characteristics of MNK landscapes. We first present the
experimental framework, including a description of the instance
generation process. Then, we present an initial assessment of tra-
ditional metrics used to investigate MNK landscapes. Finally, an
analysis of the landscapes based on the augmented neighborhood
networks is presented.

5.1 Benchmark Problems

The benchmark used for our experiments have been generated
using the reduction method explained in Section 3.1 with N = 14
and K € {1,...,12}, such that Kj,j; = 12. For each K value, we
generate 50 random instances, and apply the reduction for each of
them obtaining 50 X 12 = 600 (single-objective) NK models.

Finally, in order to create bi-objective MNK landscapes, we pair
each possible combination of K values for each of the original
instances, ending up with 50 instances of the % = 66 bi-objective
problems. For each bi-objective problem, we report average values
among the 50 folds.

5.2 Intrinsic Characteristics of Heterogeneous
MNK Landscapes

5.2.1  Visual Inspection of the Objective Space. We start by analyz-
ing the impact of heterogeneity on the structure of the objective
space. Given a fixed value of T = K + Ky = 13, we show in Fig. 2
three exemplary heterogeneous MNK landscapes in which the level
of heterogeneity varies, from slightly heterogeneous objectives (left)
to highly heterogeneous objectives (right).

First of all, we observe that the distribution of objective values
is different for different levels of heterogeneity. For nearly homoge-
neous objectives (left), the ellipse surrounding the objective space
looks like a circle, where the range of objective values is the same
for both objectives, similar to what we observe for homogeneous
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MNK landscapes [36]. However, as the degree of heterogeneity
increases, the position of solutions in the objective space seems
to squeeze for the objective with a smaller K. We attribute this to
the underlying distribution of objective values for NK models, for
which the range is known to increase with K.

Fig. 2 additionally highlights Pareto optimal solutions, SLO for
each objective and remaining PLO in different colors. We observe
that the PF size and the number of PLO solutions do not seem to
significantly fluctuate with the level of heterogeneity. However, the
more homogeneous the objectives, the better distributed the SLO
among both objectives (left). By contrast, for highly heterogeneous
objectives (right), almost all local optima are with respect to the
second objective (f2), resulting in a proportional increase of PLO
solutions on top of the objective space.

5.2.2  Structure of the Pareto set. Fig. 3 (top right and center) sum-
marizes some metrics related to the structure of the Pareto set for
all considered heterogeneous bi-objective problems: the number of
solutions with the best rank (solutions from Ry), and the number
of connected components. The analysis of the figure reveals that
the number of Pareto optimal solutions does not vary significantly
among the considered problems. For a fixed K7, it seems to slightly
decrease with Kz > Kj, which corroborates results from homoge-
neous MNK landscapes [2, 36]. However, this observation does not
hold when fixing K> and varying K; < Kj. This suggests that the
“most-difficult” objective has more impact on the cardinality of the
Pareto set than the “easier” objective for MNK landscapes. We also
observe that there are slightly fewer Pareto optimal solutions as the
degree of heterogeneity among the objectives increases. Similarly,
the proportion of supported solutions (supp) and the global hyper-
volume (hv) do not reveal any significant variations (not reported
here due to space restriction). They mostly relate to the shape of
the PF, which do not reveal significant changes in the benchmark.
We can however notice that hv seems to increase with the number
of variable interactions, as for homogeneous MNK landscapes [2].

In terms of connectedness of the Pareto set, it is reported to
decrease with the number of variable interactions for homogeneous
MNK landscapes in [36]. This is what we observe in Fig. 3, where
the number of connected components (cc) increases with Kj and K».
Although not reported due to space restriction, we observe that
related metrics, such as the proportion of isolated Pareto-optimal
solutions, and the size and hypervolume of the largest connected
component, vary accordingly. Interestingly, we do not observe any
significant change with respect to the difference between K; and
K3, suggesting that the connectedness is not impacted by the level
of heterogeneity among the objectives.

Finally, we remark that the number of ranks does not seem to
be affected by K; and Kp, since it exhibits only very minor vari-
ations (not reported here due to space restriction). These initial
observations show that, as far as the structure of the Pareto set is
concerned, the information that can be extracted from the way in
which heterogeneity influences problem difficulty is limited.

5.2.3  Multi-modality. Let us now analyze how the non-linearity
of objectives, and their level of heterogeneity influences the multi-
modality of the landscape. In Fig. 3 (top left, and bottom), we report
additional metric values related to the number of local optimal
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Figure 3: Statistics computed from heterogeneous MNK landscapes.

solutions for the 50 folds of each pair of (Kj, K3) values. Due to
space restriction, only a subset of metrics are reported.

For single-objective NK landscapes, it is expected that higher
K values result in more local optima [21]. For homogeneous MNK
landscapes, the number of PLO solutions is also known to increase
with K [36]. Overall, all metrics related to the multi-modality show
a regular variation according to both K values : the larger K, the
rugger the landscape. The number of PLO solutions (plo, top right)
varies significantly and, as expected, it clearly depends on the value

of K for both objectives. However, the number of PLO solutions
remains constant whatever the level of heterogeneity among the
objectives. Similarly, the mean proportion of SLO per objective
(mean_slo, bottom left) significantly increases along K; and K3. Our
results reveal that the variation can be significant. As already illus-
trated in Fig. 2, the number of SLO; for objective F; increases with
K;, and so does its proportion among PLO solutions. Interestingly,
we also observe that the latter increases a bit more significantly as
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objectives get more heterogeneous, that is when there is a large
difference between K; and K3 (see, e.g., p_slo_2, bottom center).

The metrics discussed above, such as plo or mean_slo but also
cc, mostly capture this general characteristic of the landscape. Sim-
ilar to the number of PLO solutions, the number of PLO solutions
that are not SLO for any objective plo_not_slo increases with
the total degree of interactions T. However, its normalized variant
p_plo_not_slo decreases with T. This can be interpreted as fol-
lows: for smoother landscapes with (K3 = 1, K = 2), 5% of PLO
solutions are also an SLO with respect to one objective, whereas
for highly rugged landscapes with (K; = 11, K = 12), more than
90% of PLO solutions come from SLO solutions with respect to F;
or Fy.

The total degree of variables interactions T captures the general
trend of the ruggedness, but fails to grasp the disparity among the
objectives. For a low degree of heterogeneity, we already observed
in Fig. 2 that SLO are well-balanced between the objectives. To go
further, we compute the deviation between the number of SLO for
each objective slo_dev, together with its normalized variant, as a
proportion among PLO solutions, p_slo_dev. The latter is reported
in Fig. 3 (bottom right) for different K7 and K values. Increasing the
heterogeneity D such as K1 < K3 result in a strong concentration
of SLO on the second objective. In other words, slo_dev increases
with the objectives’ heterogeneity. Contrary to the proportion of
PLO which are not SLO, that decreases with the total degree of
interactions T = Kj + K», the proportional variant p_slo_dev is
mostly impacted by the degree of heterogeneity D = |K; — Ka|.

5.2.4 Correlation Analysis. To push our analysis further, we re-
port in Fig. 4 the correlation between the 17 considered metrics
and (1) the number of variable interactions for the first objec-
tive K3, (2) the number of variable interactions for the second ob-
jective Ky, (3) the total number of variable interactions for both
objectives T = K7 + K3, and (4) the degree of heterogeneity among
the objectives D = |K; — K3|. The correlations reveal five categories
of observations. Firstly, as expected, the number of SLO (slo_i)
and their proportion within PLO (p_slo_i) are highly correlated
with Kj, forming two small clusters in the center. The latter is
normalized by the number of PLO solutions, which results in an
anti-correlated relationship between p_slo_i and the cluster with
K of the other objective. The number of PLO (plo), the average
number of SLO per objective (mean_slo) and the number of PLO
which are not SLO (plo_not_slo) are all strongly correlated with
T = Kj + K3. So are the proportion of isolated solutions (sing)
and the proportion of connected components (cc) among Pareto
optimal solutions, forming all together a large cluster in the bottom
right of the figure. This cluster is related to both previous clus-
ters, where K; and K3 appear. Two metrics are in conflict with the
ones above : as expected, the proportion of PLO which are not SLO
(p_plo_not_slo) decreases with T = Kj + Kj. Similarly, the size of
the largest connected component (1cc) follows an opposite trend
to the number of singletons (sing) and the proportion of connected
component (cc). In a fourth cluster, we observe that the deviation
of SLO (slo_dev) and its proportion (p_slo_dev) are strongly im-
pacted by the degree of heterogeneity D = |Kj — K3|, when slo_dev
also reveals a medium correlation with other benchmark param-
eters (K1, K2, and T = Kj + K3). As such, for the same degree of
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Figure 4: Spearman correlation between landscape metrics,
Kj, Ky, the total degree of interactions Kj + K3, and the degree
of heterogeneity |K; — K|.

heterogeneity, the range of the deviation of SLO for each objective
is impacted by the total degree of variable interactions. Finally, as
previously mentioned, the proportion of Pareto-optimal solutions
and of supported solutions (supp), together with the hypervolume
of the largest connected component (1cc_hv) do not change much
with benchmark parameters.

5.3 Differential Analysis of PLO and non-PLO
Solutions

The analysis presented in the previous sections shows that a reper-
toire of traditional metrics sheds light on how the choice of the
parameters K; and K3 shapes the characteristics of heterogeneous
MNK landscapes. In this section, we approach the analysis of het-
erogeneous MNK landscapes using metrics derived from the rank-
annotated neighborhood network. These metrics simultaneously
provide two perspectives of heterogeneity: the differential role
played by the rank, and the distribution of solutions across ranks.

We focus on the three scenarios described in Section 3.2. For
each scenario, we select three heterogeneous MNK instances and
compute the metrics. Fig. 5 shows, for the 9 instances, and for
the set of the first 100 ranks, the proportion of neighbors from
solutions in each rank that belong to better ranks. This metric
provides a measure of how likely it is to find better solutions by
locally exploring solutions of a given rank. In Fig. 5, the first three
rows represent the scenario of increasing heterogeneity without
fixed T and D, the three rows in the middle correspond to a fixed
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Figure 5: Proportion of neighbors with better rank for different PLO solutions in three different scenarios.

total degree of variable interactions, and the bottom three rows
correspond to a fixed degree of heterogeneity.

The analysis of the first scenario in Fig. 5 (left) reveals that, as
the total amount of interactions increases, it becomes less likely to
improve (jump to a better rank) from a PLO with the best ranks.
For the first 50 ranks, the probability of finding better neighbors
for (K1 = 1, Kz = 12) is higher than for (K = 11, K2 = 12). It is not
only that there are more local optima for the second objective, but
also that they are distributed in a different way along the ranks. The
analysis of the proportion of better neighbors for SLO; and SLO;
show that, in the first ranks, it seems easier to improve solutions
from SLO, than those for SLO;. Notice, that while the second
objective is fixed (K2 = 12), the probability of improving a SLO3 of
the different ranks change as both the heterogeneity and the total
degree of variable interactions increase.

When the total amount of interactions T = K + K> is fixed, the
proportion of PLO neighbors with a better rank show significant
differences for the three MNK instances considered. So does the
proportion of SLO;. For (K; = 5Kz = 8), it is very difficult to
find, in the first ranks, better neighbors for SLO;. However, as
D = |K; — K| increases, the probability also increases.

When the degree of heterogeneity D = |K; — K3| is fixed, the
proportion of neighbors in the first ranks also shows differences
among the instances. The increase is related to the increase of the
total amount of variable interactions T. A common characteristic
for both the second and third scenarios is that the probability to
improve SLO; solutions is limited to a relatively short range of rank
values.

6 CONCLUSIONS

In multi-objective optimization, the heterogeneity among the ob-
jectives can be manifested in a variety of ways. One of these ways
is the different amount of ruggedness of the landscape induced by
each objective. Most previous research on combinatorial MOPs, and
in particular on MNK landscapes, have focused on homogeneous
objectives. Furthermore, the landscape analysis from the literature
of combinatorial MOPs have neither been conceived taking into
consideration heterogeneity nor tested on this type of problems.
The work presented in this paper aims at providing a better under-
standing of the impact of heterogeneity on combinatorial MOPs.
Our main contribution consists in introducing heterogeneous MNK

landscapes with different values of K as a benchmark to investigate
this question. We further investigated the impact of heterogeneity
by means of existing multi-objective landscape metrics and of new
metrics that integrate information about the dominance relation
among solutions and their type in terms of local optimality. We
also introduced a rank-annotated neighborhood network with la-
beled local optimal solutions, which allows us to extract a finer
description of how heterogeneity influences the dominance rela-
tions among solutions. Our detailed analysis about local optima
for each objective reveals their impact on heterogeneity in the
characteristics of the landscape.

An important direction for future research is how to incorporate
information about the heterogeneity, as provided by the problem pa-
rameters and metrics, into more efficient optimization methods. In
the context of local search algorithms, estimating the heterogeneity
of the distribution of local optima could help to take proper deci-
sions on the trade-off of exploration and intensification between all
objectives. Different strategies could be followed, such as distribut-
ing the search effort with respect to the proportion of local optima
per objective. Another way to take the impact of heterogeneity into
account is by exploiting the fact that, in different ranks, some types
of local optima are more likely to be improved than others.

For the analysis included in this paper, we have considered the
case of relatively small K values. It is possible to extend the analysis
to large values of K but in this case, it is not feasible to store the
fitness values for all sub-functions. Fitness components could be
computed as they are called and combined with a caching approach
that store partial configurations already. Similar approaches have
been previously applied in evolutionary computation [7, 8]. Sim-
ilarly, an aspect that is kept for future work is the investigation
of heterogeneous MNK landscapes with more than two objectives.
Addressing many-objective problems constitutes a formidable chal-
lenge [4] and heterogeneous MOPs do not seem to be an exception
in this respect.
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