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ABSTRACT

Understanding the landscape underlying NK models is of funda-

mental interest. Different representations have been proposed to

better understand how the ruggedness of the landscape is influ-

enced by the model parameters, such as the problem dimension,

the degree of non-linearity and the structure of variable interac-

tions. In this paper, we propose to use neural embedding, that is a

continuous vectorial representation obtained as a result of apply-

ing a neural network to a prediction task, in order to investigate

the characteristics of NK landscapes. The main assumption is that

neural embeddings are able to capture important features that re-

flect the difficulty of the landscape. We propose a method for con-

structing NK embeddings, together with metrics for evaluating to

what extent this embedding space encodes valuable information

from the original NK landscape. Furthermore, we study how the

embedding dimensionality and the parameters of the NK model

influence the characteristics of the NK embedding space. Finally,

we evaluate the performance of optimizers that solve the continu-

ous representations of NKmodels by searching for solutions in the

embedding space.
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1 INTRODUCTION

Neural embeddings [28, 29] have been mostly used as a vectorial
representation of text data, amenable for the application of ma-

chine learning techniques. In this context, a word embedding is

an<-dimensional real-valued vector that represents a word from

a vocabulary. An advantage of word embedding is that it makes

possible to encode semantic relationships between words [4, 9, 12].

That is, the proximity between vectors in the embedding space can

be interpreted as a semantic similarity of the corresponding words

these vectors codify. Word embeddings can also be used to solve

supervised and unsupervised machine learning problems, for in-

stance, as inputs to a model that predicts the class of a given word,

or to estimate a continuous value associated with the word. Re-

cently, neural embeddings have also been applied to other types of

objects such as graphs [15] and biological sequences [8, 26].

The NK model for fitness landscape has been extensively ap-

plied in evolutionary biology and evolutionary optimization [1, 23,

33, 40, 41]. It provides a relevant benchmark to investigate how

the ruggedness of the fitness landscape, and consequently the dif-

ficulty of the optimization process, are governed by the model pa-

rameters.

Themain goal of this paper is to introduce alternative landscape

representations of NK models, namely, by learning neural embed-

ding representations of NK landscapes, and to study whether and

how the features of these embedding spaces provide valuable in-

formation about the characteristics of the original landscape. We

thereby consider neural networks to associate an <-dimensional

continuous representation with each binary solution from an NK

landscape. We evaluate how the properties of this space are related

to the characteristics of the original NK landscape. More particu-

larly, we evaluate how neighbors in the discrete space are located

in the embedding space, and the way in which a path that goes

from a solution to the local optimum of its basin of attraction is

projected into the embedding space. We also explore the way in

which the embedding dimensionality (<) and the degree of non-

linearity of NK landscapes ( ) influence the properties of the so-

obtained NK embedding spaces. Finally, we investigate the appli-

cation of numerical optimization methods in the embedding space,

as a way to asses the difficulty of the original problem. Extensive

experiments are conducted using the CMA-ES algorithm [16].

The remainder of the paper is organized as follows. Section 2

presents some background related to NK landscapes and neural

embeddings. Section 3 gives an overview of related work. Section 4

explains the steps we follow to learn the NK model embedding

representations, and the metrics we consider to evaluate them. Sec-

tion 5 lists the experimental set-up, describes the numerical results

and discusses the results of the experiments. Finally, Section 6 con-

cludes the paper and discusses future work.

2 BACKGROUND

In this section we briefly present the main concepts related to NK

landscapes and neural embeddings.
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2.1 NK Landscapes

Let X = (-1, . . . , -# ) denote a vector of # binary variables. We

will use x = (G1, . . . , G# ) to denote an assignment to the variables.

( will denote a set of indices in {1, . . . , # }, and -( (respectively

G( ) a subset of the variables of X (respectively x) determined by

the indices in ( .

The NK model was originally introduced to study the effect of

different epistatic patterns in the landscape of the function. An NK

landscape [19] is defined by the following components:

• The number of variables,# , that defines the problem dimen-

sion.

• The number of interactions per variable,  , that defines the

problem non-linearity.

• A set of interactions,Π(- 9 ) ⊆ X, for every- 9 , 9 ∈ {1, . . . , # }.

• A sub-function 59 defining a real value for each combination

of values of - 9 and Π(- 9 ), 9 ∈ {1, . . . , # }.

The fitness function � , to be maximized, is then defined as follows:

� (x) =
1

#

#∑

9=1

59 (G 9 ,Π(G 9 )) . (1)

By increasing the number of interactions  per variable, NK land-

scapes can be gradually tuned from smooth to rugged.

2.2 Neural Embedding

Neural embedding appeared as a straightforward way to apply ma-

chine learning algorithms to problems with a sparse representa-

tion [29]. In natural language processing, the problem arises from

the issue of how to represent words and sentences so that they

could be processed by machine learning models such as neural net-

works. A natural way to represent a sentence is using a binary vec-

tor where each word 8 from a vocabulary is either present (G8 = 1)

or not (G8 = 0). Since only a very small fraction of the words in a

vocabulary are typically present in a sentence, this bag-of-words

representation is extremely sparse. By contrast, word embeddings

are continuous vector representations of words which in compari-

son with the bag-of-words representation has a lower dimension-

ality, and are denser. In a word embedding vector space, each word

in a vocabulary has an associated real-valued vector.

To learn word embeddings, neural networks are used. First, a

vocabulary of words is defined, and a corpus of sentences that

contains words from this vocabulary is selected. Then, a machine

learning task receives the bag-of-words representation of the sen-

tence as input. Once the network is trained with the corpus, the

set or word embeddings is extracted from the weights of the neu-

ral network.

For instance, in the word2vec approach [28], a feed-forward

neural network languagemodel [7]with a number of added changes

is used to learn two types of embeddingmodels, the Skip-gram, and

the continuous bags-of-words (CBOW) models. Both models use

a bag-of-words representation for each word; i.e., a binary vector

of dimension equal to the vocabulary size and where only one ele-

ment is set to 1. The difference between these twomodels lies in the

prediction task they address: Skip-gram learns to predict the sur-

rounding words of a given word F (C) in a sentence, while CBOW

learns to predict the word that is most likely to be in the center,

Figure 1: Skipgram model used to learn the embeddings.

given the surrounding words. The surrounding words of F (C) are

those from C − : to C + : , where : is an algorithm parameter that

determines the window size (2:).

Figure 1 shows a Skip-gram model for a vocabulary of size 6, an

embedding dimension< = 3, and a window size of 2. Each unit 8 of

the input layer, corresponding to the 8-th word in the vocabulary, is

connected to all units of the (single) hidden layer. The word embed-

ding corresponding to word 8 , extracted after the neural network

training is completed, has in position 9 the 9-th weight associated

to the connection from 8 to the 9-th hidden unit. In the example

shown in Figure 1, the input word is the third word of the vocab-

ulary, and its context in the sentence is formed by the sixth and

second words of the vocabulary, highlighted in the bag-of-words

representations of wordsF (C − 1) andF (C + 1).

Beyond constituting a more compact representation, word em-

beddings have been shown to capture a number of regularities

from the corpus under which they were trained [14, 21, 43]. For in-

stance, words whose vectors are close in the embedding space are

usually related semantically. Furthermore, some algebraic opera-

tions between vectors can be used to infer similarity and semantic

relationships between words. For instance, since the distance be-

tween embeddings for wordsman and woman is similar to the dis-

tance between embeddings for words king and queen, it is possible

to define algebraic equations such as #        »@D44= =
#            »F><0=− #     »<0=+

#     »

:8=6,

where #»F indicates the embedding representation for word w.

3 RELATED WORK

In this section, we review related work in three areas: representa-

tions proposed to study NK landscapes, applications of evolution-

ary algorithms on embedding representations, and proposals of
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methods and algorithms on embedding representations for other

domains.

3.1 Representation for NK Landscapes

Buzas andDinitz [10] proposed a characterization of NK landscapes

using parametric linearmodels comprised ofmain effects and inter-

action effects. Based on this “analytical” representation, they com-

puted the statistical distribution of the model effect coefficients,

and showed that the model coefficients have meaningful interpre-

tations.

In their seminal work, Ochoa et al. [31] introduced a network

characterization of NK landscapes. In this network representation,

each vertex corresponds to a local optimum, and edges represent

basin adjacency between two local optima. The representation is

compact since non-optimal solutions are discarded. The analysis of

local optima networks (LONs) shows the existence of small-world

characteristics. The network representation additionally allows for

the extraction of general network metrics that serve to compare

how different characteristics of the fitness landscapes change ac-

cording to the parameters of the NK model. A number of exten-

sions and variations of LONs have been proposed in the litera-

ture [32, 39, 41]. Most relevantly, these models have been instru-

mental in the identification of features inferring on problem diffi-

culty and on algorithm performance prediction [11, 17].

Such a network representation approach has been later extended

to study multi-objective NK landscapes. The Pareto local optimal

solutions network (PLOS-net) is introduced in [22]. Similarly to

LONs, sub-optimal solutions are not represented in the network,

vertices correspond to PLOs and edges are constructed between

mutually non-dominated neighbors. Networkmetrics are extracted

from PLOS-nets and used to explain the performance of different

types of multi-objective algorithms.

The work presented in this paper have a number of similari-

ties and differences from network-based approaches. Similarly to

LONs, and as it will be discussed in Section 4, local optima play

an important role in the construction of the embedding representa-

tions. Exhaustive search or sampling are required to construct a set

of paths that, in each case, lead to a local optimum. In contrast with

LONs, the representation of solutions lies in a real-valued space.

3.2 Evolutionary Algorithms and Embedding
Representations

A number of works have investigated the combination of evolu-

tionary computation and embedding representations. In [25, 37,

38], word embedding representations learned bymeans of word2vec

are used as inputs to evolve genetic programs which are able to

solve different natural language processing tasks. The dimension

of the embeddings and the choice of the genetic programming fit-

ness function were shown to play an important role in algorithm

performance. Roman et al. [35] applied genetic programming to

sentence embeddings to evolveGaussian kernels for sentiment clas-

sification. Similarly to the case when word embeddings are used,

genetic programming shows its ability to efficiently evolve pro-

grams that process the sentence embedding representation to solve

the prediction tasks.

Also related to our research are proposals that apply embed-

dings for a better visualization and understanding of evolutionary

search spaces. Michalak [27] proposes to use a different class of

embeddings, known as the t-Distributed Stochastic Neighbor Em-

bedding (t-SNE). At last, Fyvie et al. [13] apply principal compo-

nents analysis for trajectory mining of estimation of distribution

algorithms. They used this approach to identify new methods of

population diversity. To our knowledge, neural embeddings have

not been previously used as an analytical or visualization tool of

search spaces in evolutionary computation.

3.3 Embedding Representations for Other
Domains

While neural embeddings have been mainly proposed for text rep-

resentation, an increasing number of works report representations

learned for other domains, including biological sequences [5, 8, 42],

program source codes [3] and graphs [34]. Particularly relevant for

our work is research on learning graph embeddings. Some of these

approaches construct the graph node descriptions by first conduct-

ing a random walk on the graph [15, 34]. In this paper, we take

inspiration from these previous approaches to create sequences of

search trajectories from which we construct the corpora required

to learn the embeddings.

4 INTRODUCING NEURAL EMBEDDING
REPRESENTATIONS OF NK LANDSCAPES

As discussed in Section 2.2, word embeddings are learned from a

corpus of sentences comprising words from a vocabulary. The em-

bedding captures the semantic relationships between the words as

expressed in the sequences. In our approach, we want to represent

the relationship between solutions from an NK landscape (either

local optima or not), in terms of their fitness values. Therefore, our

vocabulary will be integrated by NK solutions; i.e., each word from

our vocabulary is a binary solution from the search space.

We define a sentence as a sequence of NK model solutions that

are related according to some predefined semantics. In this paper,

the chosen semantics establishes that each solution in the sequence,

except the first one, is the best improving neighbor for the previ-

ous solution in the sequence. The neighborhood structure N can

be defined in different ways, we here consider the usual 1-bit flip

neighborhood structure; i.e., two solutions are neighbors if their

Hamming distance is 1. Sequences of solutions can be constructed

by means of adaptive walks [19, 20, 30]. For small search spaces,

an alternative is to conduct an exhaustive enumeration and to run

an adaptive walk from each possible solution of the search space,

as done for constructing LONs in [31]. For the purpose of our anal-

ysis, we follow this exhaustive approach in the paper.

For each solution from the binary search space G0 ∈ - , we gen-

erate the sequence (G0, G1, . . . , G ℓ ) such that GC ∈ N(GC−1) and

� (GC ) > � (GC−1) for all C ∈ {1, . . . , ℓ}. We follow a best improve-

ment adaptive walk such that GC = argmaxG ∈N(GC−1) � (G), C ∈

{1, . . . , ℓ}, until no further improvement is possible. The adaptive

walk determines the local optimum G ℓ , and therefore the basins of

attraction of G0, required for constructing the sequences for infer-

ring the embedding space. Notice that, when there is no equiva-

lent solution in the neighborhood, there is one single local optima
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C GC � (GC ) � (GC ) C GC � (GC ) � (GC )

0 010011 19 0.25 0 100100 36 0.73

1 110011 51 0.43 1 110100 52 0.76

2 110001 49 0.54 2 110100 52 0.76

3 110101 53 0.70 3 110100 52 0.76

4 110100 52 0.76 4 110100 52 0.76

5 110100 52 0.76 5 110100 52 0.76

Figure 2: Construction process for sentences

(19, 51, 49, 53, 52, 52) and (36, 52, 52, 52, 52, 52) computed for

a toy NK landscape with 6 variables.

per starting solution for such an adaptive walk. Figure 2 shows an

example of the way two sentences are constructed for a toy NK

landscape with 6 variables. In Figure 2, C is the order of the words

in the sentence, GC the binary representation of the solution, � (GC )

the index of the binary solution in the vocabulary, and � (GC ) the

NK model fitness value.

The embedding representation is learned from the set of sequences

by means of gradient optimization of the neural network loss func-

tion. Since the neural network is shallow, e.g., the network in Fig-

ure 1 has only one hidden layer, the learning process is extremely

fast and is scalable to datasets comprising of millions of sentences.

In this paper, we rely on the word2vec algorithm [28], that repre-

sents sentences as a sequence of indices of the words in the vocab-

ulary. This means that the model does not actually use the partic-

ular encoding associated with each index, being a word for word

embeddings or a binary vector for NK embeddings. What is rele-

vant for the algorithm is the way in which these components are

organized in the sequence.

Once the neural network is trained, the learned embeddings are

extracted as explained in Section 2.2 and will serve as a basis to

scrutinize the characteristics of the considered NK landscape, as

captured by the embeddings.More details on themethods for learn-

ing word embeddings using the word2vec method can be found in

[28, 29].

4.1 Parameters for Learning NK Embeddings

An important parameter to be specified before using the word2vec

algorithm is the size of the embedding representation. In this pa-

per we consider to study the impact of using different embedding

dimensions. Furthermore, the word2vec algorithm assumes that

for a word to be represented as an embedding, it has to appear a

minimum number of times in the corpus (5 times is the default pa-

rameter). This represents an issue in our case since some NKmodel

solutions might only appear in a single sequence. To sort out this

obstacle, we simply include five copies of the complete set of se-

quences in the input dataset. This guarantees that each solution

is represented by one embedding, without biasing the embedding

representation. The incurred computational cost can be neglected

since the embedding space is only learned once.

In addition to the number of times each sentence is included

in the corpus, the way we generate sequences of NK solutions

determine that they may have a different length. For instance, a

sequence that starts from a local optimum has a single element.

Since this sort of short sequences does not allow the algorithm to

learn any pattern from the sequence, we simply complete short se-

quences to a minimum length of 5 elements. Completion is done

by repeating the last element from the original sequence (i.e., the

local optimum) until reaching the required minimum length.

Another relevant parameter for the word2vec algorithm is the

window size. We set this parameter to : = 1, and we use the skip-

gram variant of word2vec; i.e., the task to be solved by the neural

network is to predict the two words that surround every single

word in a sequence.

4.2 Evaluating the Information Content of NK
Embeddings

The usability of an embedding space lies in its capacity to encode

the particular characteristics of the NK landscape. We propose to

compute a number of metrics in order to evaluate the information

from the NK model that the embedding encodes. In this section,

we introduce the metrics and the rationale behind using them.

All the metrics are based on the information about the distance

between solutions in the embedding space, given that this distance

provides an idea of the “landscape” of the NK model in this space.

Commonly, in the analysis of embedding spaces, the cosine dis-

tance between embeddings is used. We computed both the Eucli-

dean and the cosine distances in our analysis. However, due to

space restriction, we focus on the cosine distance below, as em-

phasized by the use of 2>B in the metrics described below.

The considered metrics are as follows:

(1) nsteps_vs_cos_last: Correlation between the number of steps

(from G0 to G ℓ ) performed by adaptive walks to reach the lo-

cal optimum (i.e.; the value of ℓ) and the (cosine) distance

between G0 and G ℓ in the embedding space.

(2) fitness_diff_vs_cos_last: Correlation between the fitness dif-

ference among each starting and ending points of the se-

quence (i.e.; � (G ℓ ) −� (G0)) and the cosine distance between

them in the embedding space.

(3) max_fitness_diff_vs_cos_last: Correlation between the fit-

ness difference (� (G★)−� (G0)) of each starting pointG0with

the global optimumG★ and the cosine distance between them

in the embedding space.

(4) basin_size_vs_cos_last: Correlation between the size of the

basin of the attraction of G0 and the cosine distance between

them in the embedding space.

For all considered metrics, we use the Spearman correlation coef-

ficient.

The nsteps_vs_cos_last metric serves to determine whether lo-

cal optima that require more steps to be reached from the starting

point are similarly more distant from the starting solution in the

embedding space. The same rationale is behind the fitness_diff_vs

_cos_last metric, but in this case we consider the actual difference

between the fitness values. Themax_fitness_diff_vs_cos_lastmet-

ric is more related to the original fitness-distance correlation mea-

sure of problem difficulty [18]. A high correlation would indicate

that, as we move closer to the global optimum in the embedding

space, the fitness value also increases. At last, the basin_size_vs_cos

_last metric serves to determine whether there is any relationship

between the size of a local optimum’s basin of the attraction and

the distance of each point to its local optimum. It addresses the
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following question: Is a point closer to its corresponding local op-

timum if the latter has a larger basin of attraction?

5 EXPERIMENTAL ANALYSIS

In this section, we report experimental results addressing the fol-

lowing research questions:

• How is the landscape of solutions in the embedding space?

Are solutions with similar fitness clustered together, or is

the distance among solutions in the embedding space deter-

mined by their corresponding Hamming distance?

• What is the distribution of local optima in the embedding

space?

• Is the landscape in the embedding space smoother than in

the original binary representation?

• Which is the influence of  in the characteristics of the em-

bedding space?

• Can optimization be conducted in the space of the embed-

ding representation by mapping the continuous representa-

tion to the fitness values of encoded solutions?

We start by introducing the considered benchmark. Thus, a visual

exploration of the learned embedding spaces is presented. Subse-

quently, we provide an analysis of the metrics introduced in Sec-

tion 4.2. Finally, we report results on the application of a numerical

optimizer in the (continuous) embedding space.

5.1 Benchmark

In terms of benchmark problems, we generate NK landscapes with

# = 14,  ∈ {1, . . . , 12}, and random variables interactions. Fit-

ness tables are generated following a uniform distribution in [0, 1].

For each parameter setting, 50 instances are independently gen-

erated. For each of the 214 solutions in a given NK landscape, we

construct the path from each solution to its corresponding local op-

timum using a best-improvement adaptive walk. To evaluate the

effect of the embedding dimension, embedding spaces are gener-

ated for each set of sequences for embeddings of dimension < ∈

{2, 3, 5, 10, 25, 50, 100}. Therefore, the total number of embedding

spaces considered in our experiments is 12 × 50 × 7 = 420.

5.2 Visual Inspections of the Embedding Spaces

Figure 3 gives a representation of the obtained embedding space

for different  values and an embedding dimension of < = 2 for

selected NK landscapes. Local optima are represented as circles,

and other solutions as squares. The color of each solution renders

its fitness values. We observe that solutions are distributed in a

boomerang-shaped area, where local optima are concentrated to

the extremes of the boomerang arms. As the number of local op-

tima increases with  , their location gets closer to the base of the

boomerang. The shapes also display different orientations for dif-

ferent NK models. However, for a specific instance, the shapes are

similar under multiple repetitions of the embedding learning algo-

rithm (data not shown due to space constraints). Another impor-

tant characteristic of the embedding space is that solutions are not

uniformly distributed, and there are large areas where no solution

is represented.

Using the embedded representations of the complete space of

2# solutions, we can map the NK fitness function to the continu-

ous space. However, there are large areas of the continuous space

that are empty. In order to “fill the gaps”, we propose to simply

assign any<-dimensional vector for which a pre-image in the (bi-

nary) domain does not exist with the fitness of the closest point in

the embedding space for which a pre-image exists. This amounts to

a reconstruction or estimation of the NK model in the continuous

space. We use an efficient implementation of the nearest neighbor

searching procedure based on KDtrees [24] to determine the fit-

ness value of any point within the boundaries of the embedding

space. Figure 4 shows such reconstructions for the same embed-

ding spaces displayed in Figure 3. For the reconstructions, a grid

of 120 × 120 points in the continuous space is used. Displayed in

the figure as a black dot is the location of the global optimum. Re-

markably, for the three different  values, the global optimum is

located in the yellow area that covers most local optima.

5.3 Metric-based Analysis

In the next set of experiments, we evaluate the metrics defined in

Section 4.2 for increasing  values and embeddings of different

dimensions. Figure 5 reports the correlation between the cosine

distance, in the embedding space, from an initial point to its local

optimum and: (left) the number of steps performed by the adap-

tive walk to reach the local optimum, (center) the fitness differ-

ence between the starting point and its corresponding local opti-

mum, (right) the fitness difference between the starting point and

the global optimum.

We remark that the strongest correlation arises between the

number of steps and the distance. The more the intermediate so-

lutions visited by the adaptive walk to reach the local optimum

in the original space, the higher the distance from the initial solu-

tion to the local optimum in the embedding space. This correlation

increases with  but it does differently depending on the dimen-

sionality of the embeddings. The fitness difference between a so-

lution and its local optimum is, for any  and < values, always

positively correlated with the distance between the two solutions

in the embedding space. However, the strength of the correlation

depends on  , and there is an important gap in the strength of

these correlations for embeddings of dimension< = 2 and those

of higher dimensions. These results indicate that the distribution

of solutions according to the fitness, as reported in Figure 3, signif-

icantly changes in higher dimensions.

The fitness-distance correlation was one of the first metrics pro-

posed for fitness landscape analysis [18]. We report the fitness-

distance correlation using the distance in the embedding space in

Figure 5 (right). It can be seen in the figure that the correlation is al-

ways negative but the strength of the correlation depends both on

 and<. For a high dimensionality the embedding space is highly

deceptive, being closer to the global optimum does not implies an

improvement in the fitness. It is important to notice that the corre-

lations are computed considering all solutions. Another approach

could consider solutions that are within a certain distance to the

global optimum

The correlation between the distance and the size of local op-

tima’s basins of attraction is reported in Figure 6. It is weaker than
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Figure 3: Embedding spaces for exemplary NK landscapes with different  values. The size of the local optima is proportional

to their basin size.

Figure 4: Estimation of the fitness landscape in the continuous domain from the NK embeddings. The location of the optimal

solution is indicated with a black circle.
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Figure 5: Correlation between the distance, in the embedding space, from an initial point to its local optimum and: (left)

the number of steps performed by the adaptive walk to reach the local optimum, (center) the fitness difference between the

starting point and the local optimum, (right) the fitness difference between the starting point annd the global optimum.

the previously-discussed correlations. Similarly, it increases with  , although it does not seem to depend on the embedding dimen-

sionality. Regardless of the dimension of the embeddings, the dis-

tances of the points to their corresponding local optima is ranked

in a similar way with respect to the size of the basin of attraction.
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Figure 6: Correlation between the distance, in the embed-

ding space, from an initial point to the size of the local opti-

mum’s basin of attraction.

Weanalyze below the relationship between the average distance

of each solution to its (14) neighbors 2>B_=486ℎ1>AB , and the aver-

age distance of each solution to its local optimum 2>B_14BC . Figure 7

shows this information for different  values and< ∈ {2, 10, 100}.

Analyzing in detail the distance to the neighbors is important since

neighboring solutions are the set of candidates for the local search

algorithm. While in the original domain the distance to neighbors

is fixed to 1, it is not clear how this distance is in the embedding

space. It can be seen in Figure 7 that, for small  values, a solution

gets closer to its neighbors in the embedding space as it is further

away from the local optima. As  increases, and the number of lo-

cal optima also increases, the average distance of a solution to its

neighbors increases relatively to the distance to its local optimum.

This effect is visible for all the embedding dimensions. However,

the transition is smoother for < = 2 and much more abrupt for

< = 100.

5.4 Optimizing in the Embedding Space

An open question is how the difficulty of optimizing the NKmodel

in the original binary space translates to a search in the embedding

space, and whether this difficulty is also associated to the rugged-

ness of the original landscape, as defined by  . To look into this

issue, we consider the surrogate function �̃ (G) that assigns to each

possible continuous solutionG , the fitness value of the closest point

in the embedding space with a pre-image in the corresponding NK

landscape. To optimize this continuous function, we use a variant

of the covariance matrix adaptation evolution strategy (CMA-ES)

[16], with an increasing population size restart [6] (with an increas-

ing factor of 8?>? = 2), and the covariancematrix constrained to be

diagonal [36]. This configuration was selected for efficiency and af-

ter preliminary experiments. The stopping condition for CMA-ES

was to reach a maximum number of 500 function evaluations.

We evaluate the relative fitness deviation of the solution returned

by CMA-ES to the global optimum; i.e.,
�̃ (G★)−� (Ĝ)

� (G★)
where Ĝ and

G★ are the optimum, and the best solution found by CMA-ES, re-

spectively. As a second measure of performance, we compute the

average rank of the solution found by CMA-ES (in terms of its fit-

ness value), where the optimum has a rank of 0 and the solution

with the lowest fitness has rank of 214 − 1. CMA-ES was executed

30 times for each of the 50 instances corresponding to models with

 ∈ {1, . . . , 12}, and for embedding dimension< ∈ {2, 3, 5, 10}. In

total, 30 × 50 × 12 × 4 = 72 000 runs of CMA-ES were performed.

For the experiments, we used the Optuna library [2].

Figure 8 reports that, as  increases, the relative deviation to

the optimum of the solution found by CMA-ES also increases. This

effect is more noticeable for< = 2 and less clear for higher dimen-

sions < ≥ 5. This result suggests that embedding spaces indeed

capture the increase of difficulty induced by higher  values, al-

though this effect also depends on the embedding dimensionality.

Another relevant finding from Figure 8 is that, as the embedding

dimensionality increases, so does the approximation quality of the

solution found by the optimizer. We speculate this could be due to

the fact that, in higher dimensions, it is more likely that the basin

of attractions of two different solutions are communicating. In two

dimensions, the optimal solution could be isolated in a region com-

pletely surrounded by lower-quality solutions.

Figure 9 reports the average rank of the solution found by CMA-

ES as  increases. This figure provides a different perspective of

the algorithm behavior. Instead of increasing, the average rank of

the solution decreases with until it reaches a plateau, at different

values for different <. This indicates that, even if CMA-ES is not

able reach the optimal solution, it often identifies high-quality local

optima.

5.5 Discussion

We summarize the findings from our experimental analysis by re-

vising the questions addressed at the beginning of this section.

Firstly, in embedding landscapes, the neighborhood relationship

determined by 1-bit flip does not hold. The solutions that are clos-

est to a solution G in the embedded representation do not necessar-

ily include the neighbors in the original binary domain. The loca-

tion of solutions in the embedding space is more related to whether

solutions are local optima, or not. This organization is consistent

with the intuition behind the construction of word embeddings,

where words with a similar “semantics” are grouped closer in the

embedding space. In our model, the primary semantics relates to

local optimality.

Secondly, for two dimensions, we corroborated that solutions

are distributed in a boomerang-shaped form where local optima

are more likely to be located in the arms. This distribution changes

as the proportion of local optima increases with  . Although it is

difficult to determinewhether the embedding landscape is smoother

than in the original domain, we have seen that the fitness-distance

correlation is strongly negative, and that it achieves the highest

values for embeddings of high dimensionality.We have also shown

that it is indeed possible to conduct the optimization process in the

embedding space and observed that, for medium and large  val-

ues, the average rank of the best-found solutions is not affected by

the ruggedness of the original landscape.
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Figure 7: Relationship between the average distance of a point to its neighbors and the distance of a point to its local optimum

for different values of  and< ∈ {2, 10, 100}.

Figure 8: Relative distance to the optimal fitness value for

the different embedding sizes as  increases.

Figure 9: Rank, in terms of the fitness value, of the best

found solution for the different embedding sizes as  in-

creases. Rank 0 corresponds to the optimum. Ranks are nor-

malized by the search space size (214).

6 CONCLUSIONS

In this paper, we proposed to approachNK landscapes from the per-

spective of neural embeddings. We addressed the question of how

to create embeddings for NK models, and showed that these repre-

sentations have as a characteristic feature that non-local solutions

and local optima are located in different areas of the embedding

space. We also corroborated that the distance between solutions

in the embedding space is well correlated with the fitness differ-

ence between any two solutions and with the number of steps to

reach local optima.

The transformation of the original search space to the continu-

ous domain opens new perspectives that are worth being explored.

We showed that it is possible to transform the search for the opti-

mal solution from a binary to a continuous search space. This con-

tinuous space could be used to learn a model on the continuous

representation that serves as a surrogate, or to infer properties of

some NK solutions based on the proximity they have in the embed-

ding space. One important direction for future research is to evalu-

ate embedding spaces constructed using only a subset of solutions.

In principle, it would be possible to apply similar methods for creat-

ing a set of paths fromwhich learning the embedding spaces. How-

ever, a requirement would be to have a good covering of solutions

from different areas of the search space. Another direction that de-

serves consideration is how to learn an inverse mapping from the

continuous representation to the binary domain (e.g., using a neu-

ral network or a simple regression approach). Such inverse map-

ping would allow us to evaluate if perturbations to high-fitness

solutions in the embedding representation can be mapped back to

other high-fitness solutions in the binary representation. Finally,

the strategies for the construction of the embedding spaces could

be applied to other discrete optimization problems.
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