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ABSTRACT
The design of effective features enabling the development of auto-
mated landscape-aware techniques requires to address a number of
inter-dependent issues. In this paper, we are interested in contrast-
ing the amount of budget devoted to the computation of features
with respect to: (i) the effectiveness of the features in grasping
the characteristics of the landscape, and (ii) the gain in accuracy
when solving an unknown problem instance by means of a feature-
informed automated algorithm selection approach. We consider
multi-objective combinatorial landscapes where, to the best of our
knowledge, no in depth investigations have been conducted so far.
We study simple cost-adjustable sampling strategies for extracting
different state-of-the-art features. Based on extensive experiments,
we report a comprehensive analysis on the impact of sampling on
landscape feature values, and the subsequent automated algorithm
selection task. In particular, we identify different global trends of
feature values leading to non-trivial cost-vs-accuracy trade-off(s).
Besides, we provide evidence that the sampling strategy can im-
prove the prediction accuracy of automated algorithm selection.
Interestingly, this holds independently of whether the sampling
cost is taken into account or not in the overall solving budget.

CCS CONCEPTS
• Applied computing→Multi-criterion optimization and decision-
making; • Theory of computation → Evolutionary algorithms.
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1 INTRODUCTION
Context and motivations. Since the seminal work of Rice [24],

the design of high-level automated algorithm selection (AAS) ap-
proaches has received a growing attention. In the last decade, ex-
ploratory landscape analysis (ELA) [8, 10, 18] has emerged as a
state-of-the-art methodology supporting the combination of land-
scape feature extraction with the development of automated recom-
mendation systems integrating the so-considered features on the
basis of statistical or machine learning (ML) models. Such a method-
ology is especially sound in the context of blackbox optimization
problems, having unknown characteristics, and for which different
algorithms can expose different performance profiles as a func-
tion of the problem instance being solved. In this context, fitness
landscape analysis [7] allows one to compute meaningful features
characterizing the search difficulty of the (blackbox) landscape un-
derlying a given instance; e.g., in terms of difficulty, ruggedness, or
multi-modality. Following a standard supervised ML methodology,
a model can then be trained on the basis of extensive experiments
on a set of known instances. The training phase leads to a mapping
of (pre-computed) landscape feature values to the performance of
(pre-executed) algorithms. Given a new unseen instance, features
can thus be computed and provided as input to the trained model
in order to obtain a prediction about the most suitable algorithm
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for solving the instance. A key ingredient for the success of such an
ELA approach relies on the ability to design cheap and meaningful
features. In this paper, we are interested in studying the impact of
feature extraction for multi-objective combinatorial optimization.

Independently of the nature of the optimization domain (i.e., con-
tinuous or discrete, single- or multi-objective), extracting blackbox
features requires a particular sampling of solutions from the search
space. This consists in evaluating the objective values of a carefully-
chosen set of solutions, on the basis of which a numerical statistic,
constituting the feature value, is computed. The sampling has two
main critical implications. First, the feature value can be different
depending on the type and the size of the sampling. This has a di-
rect consequence on the quality of the ML model, and hence on the
accuracy of an AAS approach. Second, one has to accommodate the
cost of sampling, since the sample size impacts the overall budget,
in terms of the number of evaluations affordable to solve a new
unseen instance. Consequently, computing features that are both
as informative as possible, and as cheap as possible, is a critically
important issue. Our work aims at pushing a step towards a better
understanding of the impact of the sampling type and cost on the
design of a successful multi-objective combinatorial ELA approach.

Related work. In the continuous domain, eliciting the impact of
sampling is relatively well studied. On the one hand, different sam-
pling techniques such as uniform sampling, latin hypercube, or
Sobol sequence were studied in the past [10, 16, 19]. Very recently,
it was shown that, quoting the authors in [22, 23], “feature val-
ues are not absolute . . . [and] cannot be interpreted as stand-alone
measures” independently of the method being used for sampling.
Such a statement was supported by an analysis of the high-level
properties of features, such as their expressiveness and their ro-
bustness, with respect to sampling. On the other hand, the compu-
tational effort needed for feature computation was studied in the
past [9, 14, 22, 23, 26]. For instance, recommendations for comput-
ing cheap features are given in [9]. Reviewing all the literature is
out of the scope of this paper, since our focus is on multi-objective
combinatorial optimization, but let us however remark that very
few features can be interchangeably considered for continuous and
discrete domains. In fact, sampling in discrete domains is funda-
mentally different from sampling in continuous domains, and so
are the existing features.

In combinatorial domains, a fitness landscape is generally defined
by specifying a neighborhood relation among solutions; e.g., bit-
flip for bit-strings or swap for permutations. One can find different
features defined by assuming a full enumeration of the search space.
Although this allows for a more fundamental understanding of com-
binatorial landscapes, it can only be performed for small landscapes,
and it is not a realistic option for AAS. Hence, relying on a sampling
method is mandatory. The most common sampling technique is to
perform some particular walk over the landscape. That is, starting
from an initial solution, some neighbors are evaluated, a new cur-
rent solution is chosen, and so on until some condition is satisfied.
The solutions collected during a walk, and their neighbors, are
used to define the landscape features. State-of-the-art features are
typically based on solutions sampled by either random or adaptive
walks [7, 25, 31]. Roughly speaking, this is intended to inform about
the challenges that search algorithms have to face when exploring

the landscape underlying a blackbox optimization problems, such
as the landscape ruggedness or the distribution of local optima.

Although we can find a number of analyses [27–29] with respect
to feature sampling in single-objective combinatorial optimization,
very few lessons can be learnt when it comes to integrate those
features in an effective AAS approach. In multi-objective combina-
torial optimization, which is our main focus, few studies can be
reported. In a state-of-the-art feature-based approach [12], the cost
of sampling is shown to represent a relatively low proportion of
the overall budget dedicated to running the automatically-selected
algorithm. In [13], a similar observation is also reported. Despite
such observations, the question of how the sampling influences the
accuracy of a feature-based ELA approach remains open.

Contribution and methodology. In this paper, we provide the
first in-depth investigations on the impact of sampling in multi-
objective combinatorial landscape analysis. We rely on the fact that
the computation of multi-objective landscape features are mainly
influenced by: the type of the walk, the length of the walk, and
the explored portion of the neighborhood. We hence propose to
conduct a systematic empirical analysis of the impact of each factor,
with a particular focus on the sampling cost issues. More precisely,
our contribution can be summarized as follows:

• Considering two conventional sampling methods from the
literature, we adjust the amount of budget devoted to the fea-
ture computation by: (i) constraining the number of neigh-
bors to be evaluated along the walk, and (ii) controlling
the length of the walk when the sampling method allows
us to do so. Such settings are then analyzed using an ex-
tensive number of features taken from two state-of-the-
art sets: dominance- and indicator-based features [12], and
decomposition-based features [3].

• These cost-adjustable features are analyzed in a fine-grained
manner by eliciting their correlation with global problem
characteristics, and in a coarse-grained manner when inte-
grated within an AAS approach. This allows us to contrast
the amount of budget used for feature computation with re-
spect to: (i) the ability of feature values to grasp the problem
characteristics, and (ii) the gain in approximation quality
when solving an unknown problem instance.

• We report a comprehensive study using a broad range of
𝜌mnk-landscapes and a portfolio of three variants of the
Moea/d algorithm. We show that different global trends of
feature values and non-trivial cost-vs-accuracy trade-off(s)
can be distinguished. Depending on the feature under consid-
eration, increasing the walk length or increasing the number
of visited neighbors do not always lead to more informa-
tive feature values. Besides, controlling the cost of features
computation can improve the accuracy of the AAS task. Inter-
estingly, this holds independently of whether the sampling
cost is taken into account in the available budget, or not.

Outline. In Section 2, we provide the necessary background. In
Section 3, we discuss the sampling type and cost. In Section 4, we
provide a descriptive analysis of feature values. In Section 5, we
report the impact of sampling on high-level ELA tasks. In Section 6,
we conclude the paper.
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2 MULTI-OBJECTIVE LANDSCAPE ANALYSIS
2.1 Multi-objective Optimization
A multi-objective combinatorial optimization problem (MCOP)
can be defined by a set of m objective functions 𝑓 = (𝑓1, . . . , 𝑓m),
and a discrete set 𝑋 of feasible solutions in the decision space. Let
𝑍 = 𝑓 (𝑋 ) ⊆ Rm be the set of feasible outcome vectors in the objec-
tive space. To each solution 𝑥 ∈ 𝑋 is assigned an objective vector
𝑧 ∈ 𝑍 , on the basis of the vector function 𝑓 : 𝑋 → 𝑍 . When maxi-
mizing, an objective vector 𝑧 ∈ 𝑍 is dominated by a vector 𝑧′ ∈ 𝑍 iff
∀𝑚 ∈ {1, . . . , m}, 𝑧𝑚 ⩽ 𝑧′𝑚 and ∃𝑚 ∈ {1, . . . , m} s.t. 𝑧𝑚 < 𝑧′𝑚 . A solu-
tion 𝑥 ∈ 𝑋 is dominated by a solution 𝑥 ′ ∈ 𝑋 iff 𝑓 (𝑥) is dominated
by 𝑓 (𝑥 ′). A solution 𝑥★ ∈ 𝑋 is Pareto optimal if there does not exist
any other solution 𝑥 ∈ 𝑋 such that 𝑥★ is dominated by 𝑥 . The set
of all Pareto optimal solutions is the Pareto set. Its mapping in the
objective space is the Pareto front. Computing a Pareto set approx-
imation is a difficult task, for which multi-objective evolutionary
algorithms (MOEAs) constitute an effective option [4].

2.2 Multi-objective Landscape Features
Characterizing the landscape of a MCOP and its impact on the per-
formance of MOEAs is a well-established research area since several
decades; see, e.g., [1, 6, 11, 20]. One can distinguish three general
categories of landscape features: (i) features based on problem-
specific knowledge, (ii) blackbox global feature requiring the full
enumeration of the search space, and (iii) blackbox local features
relying on sampling the search space. We are specifically interested
in the latter, since it enables the effective development of high-level
feature-based ELA approaches.

We consider an extensive number of blackbox local features
taken from two recent state-of-the-art studies [3, 12]. These features
are based on the specification of a neighborhood relation N : 𝑋 →
2𝑋 among solutions. Features are defined on the basis of a walk
on the landscape. More formally, a walk is an ordered sequence of
neighboring solutions denoted W|ℓ | := (𝑥0, 𝑥1, · · · , 𝑥 ℓ ), such that
𝑥0 ∈ 𝑋 , and 𝑥𝑡 ∈ N (𝑥𝑡−1) for every 𝑡 ∈ {1, · · · , ℓ} [7, 25, 31]. For
the sake of clarity, the description of the different methods that we
consider to perform a walk is delayed to Section 4. We first provide
an overview of the considered features, as summarized in Table 1.

2.3 Decomposition-based Features
Decomposition-based landscape features [3] are defined by ag-
gregating single-objective features obtained using objective space
decomposition [32]. Given 𝜇 weight vectors in the objective space
and a scalarizing function, such as the Chebychev function [5], 𝜇
scalarizing (single-objective) sub-problems are defined. For each
sub-problem, a single-objective feature is first computed on the
basis of some walk W|ℓ | . For each single-objective feature, the
so-obtained 𝜇 values are then aggregated to compute a statistic
constituting the multi-objective feature value. Hence, one needs
to specify how the single-objective features are defined and how
their values are aggregated over sub-problems [3]. For aggregating,
four simple statistics are considered: the mean (avg), the standard
deviation (sd), the first (p1) and second (p2) coefficients of a second
order polynomial regression to fit the single-objective features as

Table 1: Summary of the 121 considered multi-objective land-
scape features (𝑠 ∈ {avg, sd, r1, kr, sk}, 𝑎 ∈ {avg, sd, p1, p2}).

de
co
m
p.
[3
] fv.𝑠 .𝑎 scalar fitness values

fd.𝑠 .𝑎
fitness difference between a solution and its
neighbors

in.𝑠 .𝑎 proportion of improving neighbors

spd.𝑠 .𝑎
maximum distance between improving sub-
problems

do
m
in
an
ce

[1
2]

inf.𝑠 proportion of dominated neighbors
sup.𝑠 proportion of dominating neighbors
inc.𝑠 proportion of incomparable neighbors

lnd.𝑠
proportion of locally non-dominated neigh-
bors

lsupp.𝑠
proportion of supported locally non-
dominated neighbors

in
di
c.
[1
2] hv.𝑠 solution’s hypervolume

hvd.𝑠 neighborhood’s hypervolume

nhv.𝑠
difference of hypervolume between a solution
and its neighbors

[3, 12] law length of adaptive walk

a function of the ordered indices of sub-problem weight vectors.
This is indicated using the letter 𝑎 in the notation of Table 1.

Four categories of single-objective features with respect to each
sub-problem are considered. The first one, denoted by fv. ★ .★ in
Table 1, informs about the distribution of the scalarized single-
objective fitness values along the walk W|ℓ | . More precisely, the
mean (avg), the standard deviation (sd), the first auto-correlation
coefficient (r1) [7], the kurtosis (kr) and the skewness (sk) of the fit-
ness values of solutions collected during the walkW|ℓ | is computed.
This is indicated using the letter 𝑠 in Table 1. For example, the fea-
ture fv.r1.avg refers to the average (over the sub-problems) of the
first auto-correlation coefficient (over the sequence of solutions of
the walk). The second category, denoted fd.★.★, computes for every
solution 𝑥𝑖 ∈ W|ℓ | , the mean fitness difference with its neighbors
N(𝑥𝑖 ). The mean fitness difference values are then combined using
the same 𝑠 ∈ {avg, sd, r1, kr, sk} statistics. Similarly, in the third cat-
egory, denoted in.★ .★ for improving neighbors, for every solution
in the walk, the proportion of neighbors that improve the solu-
tion’s scalarized fitness value (w.r.t. the considered single-objective
sub-problem) is computed. The last category, denoted spd. ★ .★,
computes the maximum distance (normalized by 𝜇) between ev-
ery two sub-problems improved by a solution in the neighborhood
N(𝑥𝑖 ) of every 𝑥𝑖 ∈ W|ℓ | . The interested reader is referred to [3]
for more details. In total, we consider 4(categories) × 5(𝑠) × 4(𝑎) = 80
decomposition-based landscape features.

2.4 Dominance- and Indicator-based Features
The second considered set contains landscape features based on the
dominance relation or on the hypervolume indicator [12]. They are
organized in 8 categories in Table 1. For each category, a measure
is computed with respect to the solutions collected by means of
a walk W|ℓ | . Akin to decomposition-based features, the similar
𝑠 ∈ {avg, sd, r1, kr, sk} statistic is then applied to this measure in
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order to obtain the feature value. The categories from [12] are as
follows: the proportion of dominated (inf.★), dominating (sup.★),
and incomparable (inc.★) neighbors with respect to the current solu-
tion, the proportion of locally non-dominated neighboring solutions
(lnd.★), the proportion of supported locally non-dominated neigh-
boring solutions (lsupp.★), the hypervolume of a solution (hv.★), the
solution’s neighborhood hypervolume (nhv.★), and the difference of
hypervolume between a solution and its neighbors (hvd.★). The
interested reader can refer [12] for a detailed description. All these
features are based on computing the corresponding measure with
respect to every solution in the input walk W|ℓ | , and then com-
bining the so-obtained measures using the 𝑠 statistic, exactly as
described previously. In total, we consider 8(categories) × 5(𝑠) = 40
dominance- and indicator-based landscape features.

Finally, let us notice that we include one feature which depends
explicitly on the type of the walk, namely the length of an adaptive
walk (law in Table 1) as will be discussed later. This feature is known
to inform about the multi-modality of the landscape [12, 30].

3 COST-ADJUSTABLE FEATURES
3.1 Random and Adaptive Walks
Two methods are generally used in the literature [3, 12] in order to
compute the input walkW|ℓ | , namely random walk and adaptive
walk. In a random walk, there is no particular criterion to pick the
next neighboring solution. Starting with a first (randomly chosen)
solution 𝑥𝑡=0, at each iteration 𝑡 ∈ {0, · · · , ℓ − 1}, the next solution
𝑥𝑡+1 is chosen uniformly at random among the neighbors N(𝑥𝑡 )
of solution 𝑥𝑡 . The walk length ℓ is a user-defined parameter.

In an adaptive walk, the next solution is selected among the
improving neighbors in N(𝑥𝑡 ). In a multi-objective setting, im-
proving neighbors are considered with respect to the dominance
relation [12, 30]. At each step 𝑡 of the walk, 𝑥𝑡+1 is picked among
neighbors that dominate 𝑥𝑡 . If no such a solution exists, then the
walk ends. Besides, an adaptive walk requires to pick one dominat-
ing solution. A common strategy is to pick the first neighbor that
dominates the current solution. Unlike a random walk, the length
ℓ of an adaptive walk is determined by the number of steps re-
quired to fall into a Pareto local optimal solution 𝑥 ℓ . As commented
previously, the actual value of ℓ is known to depend on landscape
characteristics, and is considered as a feature on its own (law).

All features, with the exception of fv.★.★ and hv.★.★, depend not
only on the sequence of solutions visited during the walkW|ℓ | , but
their computation also requires to evaluate the whole neighborhood
N(𝑥𝑖 ) for every 𝑥𝑖 ∈ W|ℓ | . Hence, the feature computation requires
Θ(ℓ · |N |) calls to the evaluation function, where |N | denotes the
size of the neighborhood, and ℓ depends on the type of the walk as
discussed previously.

3.2 Truncated Neighborhood-based Features
We are interested in studying the impact of the amount of budget
devoted to feature computation. We apply simple modifications to
the previous mechanisms in order to control more finely the feature
cost. We consider two options: (i) to control the walk length ℓ , and
(ii) to control the number of neighbors that need to be evaluated.

The first option is only possible when using a random walk,
since the termination step of an adaptive walk cannot be controlled

explicitly. This is however a natural option in order to adjust the
overall budget which was not studied in a systematic manner. The
second option applies for both random and adaptive walks. More
specifically, for any integer value 𝑟 ≤ |N |, let us call a truncated
neighborhood, denoted Ñ𝑟 , a neighborhood obtained from the orig-
inal neighborhoodN by considering solely 𝑟 neighbors, i.e.,∀𝑥 ∈ 𝑋 ,
Ñ𝑟 (𝑥) = {𝑦1, 𝑦2, · · · , 𝑦𝑟 | ∀𝑗 ∈ [1..𝑟 ], 𝑦 𝑗 ∈ N (𝑥)}. As such, we use
a truncated neighborhood having 𝑟 solutions sampled uniformly at
random from N . Then, we compute the different features on the
basis of the so-defined truncated neighborhood.

On the one hand, these modifications do not affect the sequence
of solutions of a random walk. By contrast, an adaptive walk using
Ñ𝑟 can stop earlier at any step 𝑡 , if the 𝑟 randomly-selected neigh-
bors do not include any locally dominating solution, and even if
there exist some solutions inN(𝑥𝑡 ) \ Ñ𝑟 (𝑥𝑡 ) that dominate 𝑥𝑡 . On
the other hand, independently of the type of the walk (i.e., random
or adaptive), for every solution 𝑥𝑡 in the so-computed walk, solely
the 𝑟 solutions of Ñ𝑟 (𝑥𝑡 ) are evaluated when computing the statis-
tic required for the final feature value. In other words, although
we follow exactly the same feature specification as discussed pre-
viously, by replacing the (full) neighborhood by its 𝑟 -truncated
variant, the so-computed feature values can be different.

Additionally, the previous simple modification reduces the fea-
ture budget to Θ(ℓ · 𝑟 ). However, it is not clear how this impacts
the feature values, nor it is clear how much the so-extracted values
are still meaningful. Besides, one may wonder whether a specific
choice of the budget is to be preferred to accurately characterize
the underlying landscapes. In fact, different combinations of 𝑟 and
ℓ values could be considered, while still constraining the overall
budget to the same pre-fixed value.

4 A DESCRIPTIVE PER-FEATURE ANALYSIS
4.1 Experimental Setup
4.1.1 Benchmarks. Following previous works [3, 12], we use 𝜌mnk-
landscapes [30] as a problem-independent model for constructing
diverse multi-objective multi-modal benchmarks with objective
correlation. The function vector 𝑓 = (𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓m) is defined as
𝑓 : {0, 1}n ↦→ [0, 1]m such that each objective 𝑓𝑖 is to be maximized.
The objective value 𝑓𝑖 (𝑥) of a solution 𝑥 = (𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥n) is
an average value of the contributions associated with each vari-
able 𝑥 𝑗 . Given objective 𝑓𝑖 , and variable 𝑥 𝑗 , a contribution function
𝑓𝑖 𝑗 : {0, 1}k+1 ↦→ [0, 1] assigns a real value for every combination
of 𝑥 𝑗 and its k epistatic interactions

{
𝑥 𝑗1 , . . . , 𝑥 𝑗k

}
. The functions are

defined by:

𝑓𝑖 (𝑥) =
1
n

n∑︁
𝑗=1

𝑓𝑖 𝑗 (𝑥 𝑗 , 𝑥 𝑗1 , . . . , 𝑥 𝑗k ),∀𝑖 ∈ {1, . . . , m}

The k interactions are set uniformly at random among the (n −
1) variables other than 𝑥 𝑗 . By increasing the value of k, problem
instances can be tuned from smooth to rugged. The 𝑓𝑖 𝑗 -values
follow a multivariate uniform distribution of dimension m, defined
by an m × m positive-definite symmetric covariance matrix (𝑐𝑝𝑞)
s.t. 𝑐𝑝𝑝 = 1 and 𝑐𝑝𝑞 = 𝜌 for all 𝑝 ≠ 𝑞 where 𝜌 > −1

m−1 defines the
correlation among the objectives.
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4.1.2 Parameter setting. We use standard latin hypercube sam-
pling to generate a set of 1 000 bi-objective instances spanning
the following ranges: n ∈ {50, 51, . . . , 200}, k ∈ {0, 1, 2, . . . , 8} and
𝜌 ∈] − 1, 1]. A standard bit-flip neighborhood N is considered, i.e.,
two solutions are neighbors if their Hamming distance is 1. We
consider a truncated neighborhood Ñ𝑟 of size 𝑟 = 𝛼 · n, where
𝛼 ∈ {0.05, 0.1, 0.25, 0.5, 1}. Notice that 𝛼 = 1 corresponds to the
full original neighborhood, whereas for 𝛼 = 0.05 a sample of 5% of
the original neighborhood is explored. The two types of walks
are experimented. For a random walk, the length is set in the
range ℓ ∈ {5, 10, 25, 50, 100}. For each instance, we thus obtain
1(rnd. walk) × 5(𝑟 ) × 5(ℓ) + 1(adapt. walk) × 5(𝑟 ) = 30 possible values
for each of the 121 features.

4.2 RandomWalk Analysis
We start by studying the impact of the different sampling configu-
rations when a random walk is considered. We use two measures
to elicit the relationship between the setting of ℓ and 𝑟 , and the
behavior of the so-computed feature values. Firstly, we compute
the deviation of feature values with respect to the highest budget-
demanding setting of the sampling. More precisely, for every in-
stance, we compute the value 𝑉max for every feature f, obtained
when 𝛼 = 1 and ℓ = 100. Then, we compute for every other value
𝑉𝑟,ℓ (f) of feature f, obtained with other settings of 𝑟 and ℓ , the
relative deviation to 𝑉max (f), that is, |𝑉max (f) − 𝑉𝑟,ℓ (f) |/𝑉max (f).
Secondly, for each feature (in each sampling setting), we compute
the Spearman correlation between the feature value and the value
of 𝜌 and k over the considered 𝜌mnk-landscapes .

4.2.1 Preliminaries. Before going into further details, we found
that 30% of features are neither correlated to 𝜌 nor 𝑘 , hence being of
limited interest in the following analysis, given the extensive num-
ber of considered configurations. They mostly consist of features
relating to the first auto-correlation coefficient ★.r1 or the kurtosis
statistic ★.kr. Among the remaining features, we are able to elicit 4
classes where we observe specific trends of feature values and cor-
relation as a function of the setting of ℓ and 𝑟 . In the first and second
classes, containing respectively 20% and 15% of the overall features,
feature values depend exclusively on either ℓ or 𝑟 . In the third and
fourth classes, containing respectively 15% and 20% of the features,
they expose a more complex dependency on the values of ℓ and 𝑟 .
These four classes are illustrated in Fig. 1, reporting the average
values of the relative deviation over the different instances (top),
and the evolution of the Spearman correlation coefficients (bot-
tom), as a function of the sampling cost. Due to space restrictions,
only one selected feature from each class is shown in Fig. 1. Two
features are taken from the decomposition-based set [3], namely
the average maximal distance between improving sub-problems
spd.avg.avg and the average proportion of improving neighbors for
each sub-problem in.avg.p2. The two other features are taken from
the dominance- and indicator-based set [12], namely the average
number of incomparable solutions inc.avg and the standard devia-
tion of the neighborhood hypervolume nhv.sd. This is discussed in
more details below.

4.2.2 First and second feature classes. In the first class, illustrated
by feature nhv.sd in Fig. 1 (first column), the feature values are

mostly impacted by the length of the walk ℓ , while being insen-
sitive to the value of 𝑟 . More precisely, the higher the value of ℓ ,
the smaller the relative deviation, independently of 𝑟 . This indi-
cates that the features converge to some fixed values as a function
of ℓ . However, the proportion of evaluated neighbors 𝑟 has almost
no impact on the feature values, while implying a substantially
higher costs. For instance, computing nhv.sd using a 5%-truncated
neighborhood and ℓ = 100 achieves a relative deviation lower than
0.05%, while being 20 times less expensive than a full neighborhood
exploration. Besides, our observations with respect to the relative
deviation values stay consistent when looking at the Spearman
correlations. For instance, the nhv.sd feature is mostly correlated
with the parameter 𝜌 of the considered landscapes. The correla-
tion changes in a consistent manner with respect to the relative
feature deviation. In particular, the larger ℓ , the higher the correla-
tion with 𝜌 . However, the neighborhood proportion has almost no
impact. Interestingly, exactly the opposite behavior can be reported
for other features, which constitute our second class of features
represented by inc.avg in Fig. 1 (second column). In this second
class, feature values appear to converge to some value as a function
of the neighborhood proportion 𝑟 . However, longer walks have a
very small impact on the feature values while leading to a substan-
tially higher cost. For instance, computing the inc.avg feature using
the full neighborhood and a very small random walk of size ℓ = 5
achieves less then 2.5% deviation compared to the most expensive
setting, while requiring 20 times less evaluations. We also observe
that the evolution of the correlation coefficient with respect to 𝜌

follows the same trend as a function of ℓ and 𝑟 .

4.2.3 Third and fourth feature classes. In the third class of fea-
tures, represented by in.avg.p2 in Fig. 1 (third column), both ℓ and
𝑟 influences substantially the feature value. Roughly speaking, a
larger budget, i.e., larger values of ℓ and 𝑟 , leads to lower relative
deviations. However, this trend is not linear with ℓ and 𝑟 . For in-
stance, for a small neighborhood proportion 𝛼 ∈ {0.1, 0.05}, a clear
gap is observed with the other values of 𝛼 ∈ {0.25, 0.5, 1}. A sim-
ilar observation can be made for relatively small walks of length
ℓ ∈ {5, 10}. However, combining a random walk of length ℓ = 25
and a neighborhood proportion of 𝑟 = 25%, is enough to achieve a
relative deviation lower than 3% while using 16 times less evalua-
tions compared against the most expensive setting. Notice that the
correlation coefficient increases consistently as commented previ-
ously for the other classes. Finally, in the fourth class of features,
represented by spd.avg.avg in Fig. 1 (forth column), the relative de-
viation decreases consistently with the cost of sampling. However,
the correlation coefficient does not follow the same trend in the
sense that intermediate settings can provide substantially higher
correlations. For instance, computing the spd.avg.avg feature using
a small walk of length ℓ ∈ {5, 10} and the full neighborhood shows
significantly larger correlation values compared against the most
expensive setting, while requiring a significantly lower budget.

4.2.4 Discussion. From the previous observations, we can say that
there is a complex interaction between the feature values and the
sampling configuration. In particular, a higher budget does not
systematically lead to more consistent values, independently of the
considered feature. Moreover, the settings of ℓ and 𝑟 can lead to
seemingly different features exposing different trade-offs both in
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Figure 1: Average feature relative deviation (top), and feature correlation (bottom) with 𝜌 (first and second subfigure) and k
(third and fourth subfigures) for random walks. From left to right: nhv.sd, inc.avg, in.avg.p2 and spd.avg.avg. The x-axis (in
log-scale) refers the number of evaluations of the sampling.

terms of feature values, feature cost, and feature ability to grasp the
global characteristics of the underlying landscape. Hopefully, our
analysis suggests that there could be some setting of ℓ and 𝑟 leading
to reasonably cheap and accurate features. This will be studied in
more details in Section 5. In the following, we first complement our
analysis with respect to the adaptive walk.

4.3 Adaptive Walk Analysis
4.3.1 Feature values. Firstly, we report in Fig. 2 (left) the relative
deviation of features with respect to the values obtained using an
adaptive walk with the largest budget (ℓ = 100 and 𝑟 = 100%). We
observe that the relative deviation spans a wide range (from 2% to
more than 60%), as a function of 𝑟 . Actually, the largest deviations
are with respect to very small 𝑟 values. This is to contrast with
random walks where, although 𝑟 was found to have a significant
impact, the range of the relative deviation is relatively small, which
indicates that the size of the 𝑟 -truncated neighborhood is critical
for an adaptive walk. In general, the feature values converge as 𝑟
increases. However, some features are found to be less sensitive to
𝑟 , as illustrated by the in.avg.p2 and the spd.avg features, for which
a small value of 𝑟 allows to obtain a significantly lower deviation
range. Overall, an adaptive walk visiting 25% of the neighborhood
provides feature values which are relatively close to a full neigh-
borhood (up to 5%), while requiring a significantly lower budget.
One should however keep in mind that given the range of feature
values, even such a small deviation is not necessarily negligible.

4.3.2 Correlation values. Secondly, in Fig. 2 (middle and right),
we report the evolution of the correlation between feature values
and the benchmark parameters 𝜌 and k. In the situations where a
feature shows a significant (positive or negative) correlation with
either 𝜌 (e.g., rhv.sd or inc.avg) or k (e.g., spd.avg) when using a
full neighborhood, the strength of the correlation decreases when
extracting the feature with decreasing values of 𝑟 . For the other
situations, no general tendency can be reported. From our collected

data, we can state that computing features with an adaptive walk
using the original neighborhood seems to expose the strongest
correlation with the benchmark characteristics for the most part.

5 HIGH-LEVEL ELA TASKS
In the second part of our analysis, we consider two high-level
ELA tasks: (i) predicting the global benchmark parameters 𝜌 and
k, and (ii) selecting the (per-instance) best performing algorithm
in a portfolio. For both tasks, we use the exact same set of 𝜌mnk-
landscapes described previously.

5.1 Task #1: Predicting Benchmark Parameters
5.1.1 Task description. This task informs about the power of a
predictive model as a function of the sampling. We train one model
with each possible configuration of the sampling in order to fit
respectively the k and 𝜌 parameters of the input benchmarks. As
in [3], we use a random forest [2] classification model for k, and
a random forest regression model for 𝜌 . Each model is trained on
the basis of the input feature values using a default value of 100
trees [21].We then focus on themodels’𝑅2 values, as summarized in
Fig. 3. The higher the 𝑅2 value of a model, the more explainable the
variance, in the benchmark parameter 𝜌 or k, using the underlying
sampling.

5.1.2 Results and Discussion. From Fig. 3, we observe that in com-
parison to a random walk, an adaptive walk provides a poor trade-
off in terms of the 𝑅2 value and the implied budget for 𝑘 . We also
notice that the 𝑅2 has a global tendency to increase as the budget
underlying the sampling increases. However, reasonably high 𝑅2

values are obtained at lower costs by adjusting the sampling param-
eters. For instance, an adaptive walk with half of the neighborhood
(𝑟 = 50%) obtains almost the same 𝑅2 values (0.94 for 𝜌 and 0.84 for
k) while reducing the feature cost by half in average. Looking more
carefully at the random walk configurations, we find a number of
settings of ℓ and 𝑟 that obtain the same high level of accuracy, but
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Figure 2: Average feature relative deviation (left), and feature correlation with 𝜌 (middle) and k (right) for adaptive walks. The
x-axis (in log-scale) refers the number of evaluations of the sampling.

Figure 3: Average 𝑅2 (over 50 repetitions) of random forest
models for predicting 𝜌 (left) and 𝑘 (right). The x-axis (in
log-scale) refers the number of evaluations.

with a drastic saving in the budget when compared against the
most expensive setting. Interestingly, we found that the configu-
ration providing the best trade-offs are different depending on the
target prediction task. For k, a very small random walk (ℓ = 5) and
the full neighborhood exploration (𝑟 = 100%) provides among the
highest 𝑅2 values (0.97) while requiring 20 times less budget than
the most expensive setting. In fact, it appears that the most impor-
tant sampling parameter for predicting k is the proportion 𝑟 of the
neighborhood. For 𝜌 , a configuration using a walk length ℓ = 50
and very small proportion of the neighborhood 𝑟 = 10% provides
among the highest 𝑅2 values (0.94) while requiring 20 times less
budget than the most expensive setting. Actually, the 𝑅2 value with
respect to 𝜌 is mostly impacted by the length of the walk, provided
that the proportion of evaluated neighbors is at least 𝑟 = 10%.

5.2 Task #2: Automated Algorithm Selection
5.2.1 Task description. The second and more sophisticated task
aims at studying the impact of the sampling cost when tackling
the AAS problem [24] using a feature-informed ELA approach. For
this purpose, we consider the exact same portfolio of algorithms as
in [3]. The reader is referred there for more details. For complete-
ness, we comment that this portfolio is composed of three variants
of the state-of-the-art Moea/d algorithm that are shown to have
different performance profiles depending on the considered 𝜌mnk-
landscapes [17]. We measure algorithm performance in terms of

hypervolume relative deviation [33] to the best-known Pareto front
collected over all runs for every instance. Following a standard
supervised ML approach, we split the 1000 𝜌mnk instances into a
training set T and a testing set I. We then train a multi-output
random forest regression model [2] in order to fit the relative hy-
pervolume deviation of the different algorithms on the basis of
the feature extracted with respect to each instance in the training
set T . Afterwards, given an unseen instance from the testing set I,
the features are first computed, and the performance of each algo-
rithm is then predicted on the basis of the so-trained model. The
algorithm with the best predicted performance is selected as the
recommended one. Since extracting the features has a cost, we dis-
tinguish two scenarios for the purpose of our analysis. In the first
scenario, the selected algorithm is run with the maximum budget B,
hence not counting the sampling cost. In the second more realistic
scenario, the algorithm is run with a budget of B − FB, where FB is
the number of evaluations used to compute the features.

For performance assessment, we consider an adaptation of the
merit measure [15]. Let rhv(𝐴, 𝑖) be the average relative hypervol-
ume deviation of a given algorithm 𝐴 using the maximum allowed
budget B on an instance 𝑖 . Similarly, let rhvc(𝐴, 𝑖) be the average
relative hypervolume deviation of algorithm 𝐴 when subtracting
the cost of feature computation, that is when running the algorithm
with a budget of B−FB. Let r̃hvc(𝐴, 𝐽 ) and rhv(𝐴, 𝐽 ) be the average
over a given set of instances 𝐽 of the relative hypervolume devia-
tion, respectively when the feature cost is or not taken into account.
The so-called single best solver (SBS) is the algorithm with the best
rhv value on the training set T ; i.e., 𝑆𝐵𝑆 = argmin𝐴 rhv(𝐴,T).
Notice that the SBS does not need any feature computation. The
virtual best solver (VBS) is the oracle providing the best rhv(·, 𝑖,B)
value for each testing instance 𝑖 ∈ I. Let us call the Automated
Solver (AS) the algorithm selected by the trained model. The merit
measures the gain in quality of AS relatively to SBS and VBS. For
the purpose of our analysis, we consider two variants of the merit
where the sampling cost is either taken into account (m) or not
(m′):

m =
r̃hvc(AS,I) − rhv(VBS,I)
rhv(SBS,I) − rhv(VBS,I)

;m′ =
rhv(AS,I) − rhv(VBS,I)
rhv(SBS,I) − rhv(VBS,I)

A merit of𝑚 = 0 corresponds to the perfect oracle. A merit m < 1
(respectivelym > 1) indicates that using the model performs better
(respectively worse) than SBS.
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Table 2: Merit average values for the different sampling configurations.

Merit with feature cost (m) Merit without feature cost (m′)
Random Walk Adaptive Random Walk Adaptive

𝑟 ℓ = 100 ℓ = 50 ℓ = 25 ℓ = 10 ℓ = 5 Walk ℓ = 100 ℓ = 50 ℓ = 25 ℓ = 10 ℓ = 5 Walk
100% 0.537 0.529 0.562 0.577 0.576 0.624 0.513 0.517 0.555 0.573 0.573 0.617
50% 0.521 0.552 0.580 0.620 0.577 0.610 0.507 0.544 0.575 0.616 0.574 0.606
25% 0.515 0.566 0.569 0.640 0.634 0.629 0.507 0.561 0.566 0.637 0.631 0.626
10% 0.544 0.583 0.566 0.609 0.585 0.672 0.538 0.579 0.563 0.606 0.583 0.670
5% 0.551 0.575 0.552 0.639 0.646 0.692 0.547 0.572 0.550 0.637 0.644 0.690

The maximum budget is set to 106 evaluations. The parameters
of the threeMoea/d algorithms are exactly the same as in [3]. Each
algorithm is executed for 20 independent runs on each instance. We
adopt a standard repeated random hold-out strategy with a 90/10%
split for training/testing, and we report the average merit value
over 100 independent folds.

5.2.2 Results and Discussion. In Table 2, we report the merit values
obtained for the different configurations. First, we observe that the
merit valuem, taking into account the feature cost, is always worse
than m′. With no surprise, this indicates that reducing the budget
devoted to feature computation can help improving the overall
performance. More importantly, the meritm is always lower than 1.
This means that a feature-informed AAS approach is always better
than SBS, independently of the experimented sampling configura-
tion. This is especially interesting for the cheapest configuration
(ℓ = 5, 𝑟 = 5%), implying an extremely constrained feature budget
of at most 50 evaluations. Besides, a random walk provides bet-
ter merit values than an adaptive walk. The merit increases when
the sampling size decreases. More precisely, the loss of accuracy is
slightly more important when the length of randomwalk is reduced.
We also find that using the most expensive sampling configuration
(ℓ = 100, 𝑟 = 100%) is not the most efficient in terms of merit. In
fact, a random walk with ℓ = 100 and 𝑟 = 25% requires four time
less budget while providing the best merit values. Surprisingly,
this holds independently of whether the cost of sampling is taken
into account or not. This gain can be attributed to the fact that a
relatively small budget (i.e., 0.5% of the global budget) still allows
to compute informative features leading to accurate predictions,
while leaving more chance for the algorithm to converge. Which
is consistent with the results from our first task, where we were
able to elicit some cost-vs-accuracy trade-offs when varying the
sampling parameters ℓ and 𝑟 for predicting the values of k and 𝜌 .

Finally, we use the mean Gini impurity measure to extract the
importance of each feature from the trained random forest models.
We then compute the importance rank of each feature normalized in
[0, 1], with 1 being the most important feature. In Fig. 4, we report
the 10 most important features when using the most expensive
setting (ℓ = 100, 𝑟 = 100%, left) and the sampling providing the best
merit (ℓ = 100, 𝑟 = 25%, right). We clearly see that the ten most
important features are the same in both settings. This indicates that
using a restricted budget does not necessary lead to a major change
in feature importance. However, we can observe small variations in
the respective ranks of features. Besides, we found that five features
fall into the first category elicited in the analysis of Section 4. In
particular, the values of the four most important features hvd.sd,

Figure 4: Top 10 most important features. Line styles and
shapes refer to the feature categories.

lsupp.sd, inc.sd, hv.sd are highly impacted by the length of the
walk ℓ . One feature fd.avg.p2 falls into the second category where
the proportion of neighbors 𝑟 is found to have the greatest impact
on this feature value. Another feature inf.sd belongs to the third
category, increasing its accuracy according to the sampling size.
Finally, three features, namely hv.r1, in.sd.avg, and fv.r1.avg fall
into the fourth category, where the highest correlation with the
landscape characteristics is observed with a reduced sampling size.

6 CONCLUSION
In this paper, we conducted the first systematic analysis on the
impact of sampling on the extraction of multi-objective combinato-
rial landscape features, and their integration into feature-informed
performance prediction and algorithm selection approaches. From
extensive experiments using state-of-the-art features, we provide
evidence that feature values, and their correlation with unknown
benchmark characteristics, expose complex dependencies with the
sampling type and cost. In particular, we showed that a random
walk using a reasonably small proportion of neighbors leads to
cheap and informative feature values. Different questions are how-
ever left open. For instance, it would be interesting to extend our
analysis to other algorithms, combinatorial domains and objective
space dimensions, eventually including real-world problems, where
the development of successful landscape-aware approaches is still
not fully addressed.
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