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Abstract. The network calculus theory is

widely used to check that a network satis-

fies its real-time requirements. Such check-
ing involves a lot of computations in the

min-plus dioid. This paper shows how such
computations can be formally checked us-

ing the Coq proof assistant in a realistic

industrial context.

1. Introduction

Network calculus is a theory widely used in in-
dustry to check that a real-time network (like AFDX
or TSN) provides guaranteed latency bounds to the
real-time data flow [7, 8, 15]. When these networks
are embedded in a critical system, where faults can
lead to severe damages or injuries, a very high level of
confidence on these bounds must be provided. Since
such bounds are commonly computed by a dedicated
tool [21], the correctness of the bounds depends both
on the correctness of the algorithms and the correct-
ness of their implementation.

The correctness of the algorithms is commonly
ensured by open publication and peer-reviewing while
the correctness of the implementation is mainly en-
sured by code review and tests. More confidence in
the implementation can be insured by developing sev-
eral pieces of software and comparing on the fly that
all programs give the same result. Nevertheless, such
approach can not detect an error in the algorithm
itself [11]. Using proof assistants, such as Coq or Is-
abelle/HOL, is a way to increase the confidence in
a software: one may prove the correctness of the
algorithms and derive an implementation from the
proof [13]. One may also use a skeptical approach,

where the proof assistant is not able to check an al-
gorithm or to compute a result, but still able to check
that a result is correct. Indeed, checking a solution
is commonly much easier that solving a problem (for
example, finding vs checking the roots of a polyno-
mial, the decomposition into prime factors, matrix
inversion,...). Of course, this approach can be used
only for software used at design: if there is a mistake
in the algorithm or a bug in the implementation, it
will only be detected at runtime, while a completely
proved approach will ensure that the software is con-
form to its specification. Nevertheless, the skeptical
approach often requires significantly less effort.

Network calculus is based on the min-plus dioid
theory [3], and analyzing a network involves a lot of
operations in this theory (like physics involves a lot
of matrix manipulations). In a recent work [17], this
skeptical approach has been applied to the min-plus
dioid of real functions. This paper shows how this
approach can be used in an industrial context.

2. Network calculus

Network calculus is a theory designed to compute
upper bounds on delay an memory usage in networks.
Data transiting through the network are called flows.
A flow is modeled by cumulative curves at each point
in the considered network, A : R+ → R+ where A(t)
represents the cumulative amount of data observed in
the flow up to time t at a given point of the network.
Possible cumulative curves are specified by envelopes
called arrival functions. A flow A satisfies an arrival
function α when: ∀t, d ≥ 0 : A(t + d)− A(t) ≤ α(d).
For instance, a periodic flow sending frames of size L
every T time unit admits as arrival curve νL,T : d 7→
L
⌈
d
T

⌉
, where d·e : R+ → N is the ceiling function.

All network elements are modeled by servers. A n-
server S transforms n input flows (A1, . . . , An) into
n output flows (D1, . . . , Dn), where all Ai and Di are
cumulative curves. The performance of these servers
is specified by service curves. A n-server S admits
a strict service curve β when, for all busy interval
(t, t + d], the aggregate output is at least β(d), i.e.,∑n

i=1Di(t+ d)−Di(t) ≥ β(d).
Among others, a result of network calculus states

that, if a server S uses a FIFO policy, if it admits a
strict service curve β and each of its incoming flow
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Ai admits as arrival curve a function αi, then the
delay experienced by each flow in the server is upper
bounded by

hDev

(
n∑

i=1

αi, β

)
(1)

with hDev(f, g) = sup
t≥0
{inf {d f(t) ≤ g(t+ d)}} .

(2)

Network calculus also uses other operators, like
the the min-plus convolution ∗ and deconvolution �,
defined by: ∀f, g : R+ → R+,∀t ∈ R+,

(f ∗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} ,(3)

(f � g)(t) = sup
s≥0
{f(t+ s)− g(s)} .(4)

3. Related work

To perform actual min-plus computations, one
has to settle on a given class of real functions. Two
main classes of functions are used in network calcu-
lus: the set of concave or convex piecewise linear
functions, C[x]PL [18], and the, strictly larger, set
of ultimately pseudo-periodic piecewise linear func-
tions, commonly known as UPP [6]. The data struc-
ture and algorithms for the CPL class are so simple
that they, to our knowledge, have never been pub-
lished. Nevertheless, they cannot accurately model
packetized traffic, whereas the UPP class gives more
precise results at the expense of higher computation
times [7]. The algorithms of the operators on the
UPP class are given in [6].

An open source implementation of the operators
on the C[x]PL class can be found in the DISCO net-
work calculus tool [2]. An open source implementa-
tion of the UPP class has been developed [4] but is no
longer maintained to our knowledge. The Real-Time
Calculus toolbox (RTC) does performance analysis
of distributed real-time systems [19, 20]. Its ker-
nel implements Variability Characterization Curves
(VCC’s), a class very close to UPP. None of these
implementations has been formally proved correct.

The first work on the formal verification of net-
work calculus computation were presented in [14].
The aim was to verify that a tool was correctly us-
ing the network calculus theory. An Isabelle/HOL
library was developed, providing the main objects of
network calculus and the statement of the main the-
orems, but not their proofs. They were assumed to
be correct, since they have been established in the
literature for long. Then, the tool was extended to
provide not only a result, but also a proof on how
network calculus has been used to produce this re-
sult. Then, Isabelle/HOL was in charge of checking

the correctness of this proof. The result was taking
the form of an algebraic min-plus expression, yet to
be computed.

Another piece of work, presented in [16], con-
sists in proving, in Coq, the network calculus results
themselves: building the min-plus dioid of functions,
the main objects of network calculus and the main
theorems (statements and proofs).

The tool CertiCAN [12] is able to produce Coq
proofs for some real-time analyses of the CAN pro-
tocol. These analyses are not based on the network
calculus theory.

The PROSA library also provides proofs of cor-
rectness for the response time of real-time systems,
but focuses on scheduling tasks for processors [10].

4. Existing tools

4.1. RTaW-Pegase. RTaW-Pegase is a propri-
etary tool written in Java and developed by the com-
pany RealTime-at-Work that can provide network
analyses and optimization. It can support many tech-
nology types and networks such as: automotive, aero-
space and industrial Ethernet TSN, CAN (FD,XL),
LIN, Arinc as well as wireless networks for off-board
communication.

Its first functionality is to model a network, visu-
alize it and set configuration parameters: priorities,
offsets, routing, shapers, transmission schedule, pre-
emption,... The graphical interface allows to manip-
ulate the configurations as shown in Figure 1. In this
example, the network is made of 5 switches (in blue)
and 14 end systems (in orange) and one of the flows
is shown, between ”CAM1” and ”ECU1”.

In addition to timing-accurate simulation, RTaW-
Pegase can compute guaranteed upper bounds on mes-
sage delays using a state-of-the-art analysis in net-
work calculus.

RTaW-Pegase can also generate complete traces
of its analyses. These traces contain all the computa-
tions performed during the analysis in a format both
readable by a human and that can be interpreted by
an additional RTaW tool, the Network calculus in-
terpreter. Figure 2 shows a simplified example of
such a trace. This trace gives the calculations for
two periodic flows (Flow1, Flow2) crossing the first
link of a network, arbitrated with FIFO policy. The
assert expression at last line checks that the com-
puted value is not greater than the value 156/5 com-
puted by RTaW-Pegase.

Thereby, a network calculus expert can read this
trace and check that the mathematical operations
performed correspond to the result of the network
calculus theory. Using the calculation capability of
the interpreter, it can perform other computations,
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Figure 1. Example of visualization in RTaW-Pegase.

1#################################

2# Time uni t : microsecond
3# Frame s i z e un i t : b i t

4#################################

5# Input f l o w s
6#################################

7# Flow1 e n t e r i n g at Node1>port−P1
8 Flow1 := s t a i r (0 ,10000 ,1360)
9

10# Flow2 e n t e r i n g at Node1>port−P1
11 Flow2 := s t a i r (0 ,5000 ,1760)
12

13#################################
14# EndSystem : Node1>port−P1
15#################################

16# Computations at p r i o r i t y l e v e l 0
17 cumA Node1 := zero
18

19# Flow1 in Node1 −> P1
20 cumA Node1 := cumA Node1 + Flow1
21

22# Flow2 in Node1 −> P1
23 cumA Node1 := cumA Node1 + Flow2

24

25# Common s e r v i c e at l e v e l 0
26 S Node1 := a f f i n e (100 , 0)
27

28# Common de lay

29 d Node1 := hDev(cumA Node1 , S Node1 )

30

31 a s s e r t ( d Node1 <= 156/5)

Figure 2. Example of a trace that
can be produced by RTaW-Pegase

get more values and also plot the functions. An on-
line version is available for non-commercial academic
use [1].

4.2. Minerve. Let’s look at the last assert on
Figure 2. To perform a formal proof of this result

within the Coq proof assistant, one needs to define
the three functions Flow1, Flow2 and S Node1, state
the property hDev (Flow1 + Flow2, S Node1) ≤ 156

5
and prove this property. Such a proof is given in
Figure 3.

First, one loads our tool Minerve [17] (for MIN-
plus ExpRession VErification) providing a formaliza-
tion of the UPP class of functions and an automatic
proof tactic to check min-plus computations on those
functions. The next line simply instructs Coq to in-
terpret all subsequent numeric constants as arbitrary
precision rationals.

Then one needs to define the considered UPP
functions. The first function Flow1 is, as seen on line
8 of Figure 2, a stair function that is incremented by
1360 every 10000, starting from 0. The second func-
tion Flow2 is also a stair function, as seen on line 11
of Figure 2, whereas the third function S Node1 is,
still according to Figure 2 (line 26), a linear function
of slope 100. These functions are encoded by their
period sequpp_d, increment sequpp_c and an initial
segment sequpp_T (to allow a specific initial behavior
before the regular periodic one) and a list of linear
segments following the pattern (x, (y, (ρ, σ))) where
(x, y) are the coordinates of the leftmost point of the
segment, ρ is its slope and σ its limit on the right of x
(discontinuities are allowed on the right of x, as seen
for instance on Flow1 where the function is y = 0 at
x = 0 and immediately jumps to σ = 1360 just af-
ter 0). Not all combinations of parameters are valid.
For instance the period must be positive. Such valid-
ity of the parameters is checked by the F_of_sequpp

function.
Finally, the property to prove is expressed after

the Goal keyword and automatically proved by our
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1 Require Import minerve.tactic.
2 Local Open Scope bigQ.
3

4 Definition Flow1_js : @seqjs bigQ := [::
5 (0, (0%:E, (0, 1360%:E)));
6 (5000, (1360%:E, (0, 1360%:E)));
7 (10000, (1360%:E, (0, 2720%:E)))].
8 Definition Flow1 := F_of_sequpp {|
9 sequpp_T := 5000;

10 sequpp_d := 10000;
11 sequpp_c := 1360;
12 sequpp_js := Flow1_js

13 |}.
14

15 Definition Flow2_js : @seqjs bigQ := [::
16 (0, (0%:E, (0, 1760%:E)));
17 (2500, (1760%:E, (0, 1760%:E)));
18 (5000, (1760%:E, (0, 3520%:E)))].
19 Definition Flow2 := F_of_sequpp {|
20 sequpp_T := 2500;
21 sequpp_d := 5000;
22 sequpp_c := 1760;
23 sequpp_js := Flow2_js

24 |}.
25

26 Definition S_Node1_js : @seqjs bigQ := [::
27 (0, (0%:E, (100, 0%:E)))].
28 Definition S_Node1 := F_of_sequpp {|
29 sequpp_T := 0;
30 sequpp_d := 1;
31 sequpp_c := 100;
32 sequpp_js := S_Node1_js

33 |}.
34

35 Goal hDev_bounded (Flow1 + Flow2) S_Node1 (156/5).
36 Proof. nccoq. Qed.

Figure 3. Example of Coq proof

nccoq tactic [17]. This tactic is a reflexive tactic,
which means it makes use of Coq efficient computa-
tion capabilities to perform proofs. This is key in
getting a very pervasive tactic being entirely devel-
oped in Coq. Of course, the proofs automatically per-
formed by the tactic offer the same strong correctness
guarantees as any other handmade Coq proof.

It is worth noting the application of the skeptical
approach here, the horizontal deviation 156

5 is com-
puted by RTaW-Pegase but only checked with Coq.

4.3. Reading the Coq Specification. To fully
trust a Coq proof, one must inspect its statement in
order to agree that the proof is indeed proving what
the user is expecting. Indeed, whereas Coq can auto-
matically check proofs, it cannot read the user mind
to ensure the formal statement match its understand-
ing by the user.

So lets inspect our freshly proved theorem. If one
types

1Unset Printing Notations.
2Check hDev_bounded (Flow1 + Flow2) S_Node1 (156/5).
3Set Printing Notations.

Coq reprints the statement with all notations ex-
panded

1 UPP_PA_refinement.hDev_bounded (F_plus Flow1

2 Flow2) S_Node1 (bigQ2rat (BigQ.div (BigQ.Qz
3 (BigZ.Pos (BigN.N0 156))) (BigQ.Qz
4 (BigZ.Pos (BigN.N0 5)))))

in particular, one can see that + was a notation for
F plus. One can for instance inspect the latter by
asking Coq to print its definition

1 Print F_plus.

and Coq answers

1 F_plus = fun f g : F ⇒ f \+ g

By deactivating printing of notations again, one could
see that \+ is the pointwise addition of functions.

Proceeding with such investigations, one can check
that hDev_bounded indeed states that the horizontal
deviation is bounded and that the definitions of func-
tions introduced with F_of_sequpp perfectly match
what one is expecting.

Digging further, one could even look at the def-
inition of the field of real numbers R given by the
library we are using.

5. Checking RTaW-Pegase traces with
Minerve

The RTaW-Pegase tool allows to compute upper
bounds on the delays on the flows crossing a net-
work. As presented in Section 4.1, the engineer enters
into the tool the network description, the flow char-
acteristics, and the tool can apply network calculus
to check that the system satisfies its latency require-
ments. The correctness of these bounds depends on
a chain of responsibilities. The first link of the chain
is the correctness of the network calculus theorems
(for example, the result presented in (1)). In case
of mistake in the proof, the confidence in the result
collapses. Such issue have been addressed in [16]. A
second link is the correct application of network cal-
culus results by the tool: if the tool applies a result
whose hypotheses are not satisfied by the system, the
confidence also collapses. The trace generated by the
tool, illustrated in Figure 2, has been designed to al-
low proofreading by a human expert. A formal proof
can also be generated [14]. The last link is the exact-
ness of the computation: the basic operations (sum,
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convolution, deconvolution, hDev...) are too complex
to be checked by humans. This is the aim of Minerve,
presented in Section 4.2.

The approach presented in the current work boils
down to checking that all computations done in a
given RTaW-Pegase trace have provided a sound re-
sult, i.e., verifying that the transformations of expres-
sions into values have been performed correctly.

But the traces generated by RTaW-Pegase have
been designed to be read by a network calculus ex-
pert, to increase confidence in the operations, whereas
Minerve has been designed for proof simplicity.

To make both tools run together, we had to solve
a few issues:

(1) Function syntax: Both tools do not have the
same syntax to represent functions. In par-
ticular, the domain of the non-periodic part
(the initial prefix) of a function in Minerve is
always a right open interval [0, T ), whereas
it can be open [0, T ) or closed [0, T ] in the
syntax of RTaW-Pegase.

(2) Single assignment: The RTaW-Pegase trace
is a script in an imperative programming
language, in which identifiers are variables,
whose value can be updated along the script
lines. On the opposite, Coq is designed to
state mathematical definitions, where a given
identifier represents the same value all along
the proof. There are several ways to solve
this problem, and we have basically chosen
to resort on a single static assignment trans-
formation.

(3) Performance tricks: While going from hand-
made examples, with dozens of operations,
to realistic examples with thousands of op-
erations, we faced some performance prob-
lems, not related to the core of the algo-
rithms but related to some details in imple-
mentations.

5.1. Function syntax. One problems is that,
although both tools represent functions as sequences
of segments and spots, RTaW-Pegase’s input language
accepts segments that can be open or closed on both
ends, whereas NCCoq always considers a sequence of
spots and open segments.

Consider a function f : R+ → R+, defined by

(5) f(t) =

{
1 if t ≤ 2,

t if t > 2.

In RTaW-Pegase, such a function can be repre-
sented as a sequence of two segments, the first one go-
ing from point (0,0) to (2,0) with slope 0 (printed as
[(0,0)0(2,0)]) and a second one going from (2,2),

excluded, up to infinity with slope 1 (then printed
as ](2,2)1(+Inf,+Inf)[). In Minerve input, such
a function is represented as a sequence of two pairs
(spot, open segment), the first one having a spot (0,0)
and a segment with origin 0 and slope 0, and the sec-
ond one having a spot (2,0) and a segment with origin
0 and slope 1. Then, the translation from RTaW-
Pegase to Minerve has to split the closed segment
into a spot and an open segment, and push the right
extremity as a spot of the second segment. Eventu-
ally, the translation can be done on a per-segment
basis, pushing spots from one segment to another.

A second problem was that RTaW-Pegase may
have no periodic part when the function ends with
an infinite segment. The transformation into Minerve
has to chose an arbitrary period value (we chose 1).

The third problem was that RTaW-Pegase ac-
cepts two expressions of the periodicity, whereas Min-
erve admits only one. In RTaW-Pegase, one may ei-
ther state that a function is pseudo-periodic when it
exists T, d, c such that: ∀t > T, f(t + d) = f(t) + c
or: ∀t ≥ T, f(t + d) = f(t) + c, whereas Minerve
only knows about the latter definition. Both condi-
tions are equally expressive, but one has to increase
the value of T in order to cast a definition from the
former format into the latter one.

Consider, for instance, the function

g : t 7→ max

(
t+ 1,

⌊
t

2

⌋)
plotted in Figure 4. In RTaW-Pegase, it can be repre-
sented by a the closed first segment [(0, 2)−1/2(2, 0)]
followed by the left-open segment ](2, 1)0(4, 0)] re-
peated with periodicity 2 and increment 1, as shown
in the upper part of Figure 4. In Minerve, such a rep-
resentation is impossible, and one has to extend the
non-periodic prefix, as illustrated in the lower part of
Figure 4.

5.2. Static Single assignment. Looking at the
trace presented in Figure 2, the correctness of the
trace relies on a correct computation of the variable
cumA Node. But since this variable is assigned three
times in the trace, there is no single value to check.
We may consider the line number of the expression
as a tie-breaker, but it is somehow fragile. Then,
RTaW-Pegase can generate an enhanced trace, aug-
mented with comments giving an number identifier
to each expression to check. This enhanced trace
also contains as assertions the expected values of the
operands and results for each operation. For instance,
the line 20 in the listing of Figure 2 is replaced by the
set of lines presented in Figure 5.2.



6 MARC BOYER, PIERRE ROUX, AND HUGO DAIGMORTE

x1 2 3 4 5 6 7 8

y

1

2

3

T

c

d

x1 2 3 4 5 6 7 8

y

1

2

3

c

d

T ′

Figure 4. Prefix extention due to
translation from RTaW-Pegase to
NCCoq

# MP−Coq−Check 1
a s s e r t ( cumA Node1 = uaf ( [ ( 0 , 0 ) 0(+ I n f i n i t y , 0 )

[ ) )

a s s e r t ( Flow1 = upp ( [ ( 0 , 0 ) ] , pe r iod ( ] ( 0 , 1 3 6 0 )
0(10000 ,1360) ] ) , 1360 , 10000) )

cumA Node1 := cumA Node1 + Flow1

a s s e r t ( cumA Node1 = upp ( [ ( 0 , 0 ) ] , pe r iod
( ] ( 0 , 1 3 6 0 ) 0(10000 ,1360) ] ) , 1360 , 10000) )

# Coq Check 1 : cumA Node1 = (cumA Node1 +

Flow1 )

Figure 5. Example of a trace that
can be produced by RTaW-Pegase

Then a Coq file is generated with a list of defi-
nitions and proof obligations. For instance, from the
part of the trace presented in Figure the Coq code
presented in Figure 6 is generated. The idtac and
Time commands are there to log the time taken by
Coq to perform the proof.

5.3. Performance tricks. Going from simple
hand-made examples, with dozens of operations, to
realistic examples with thousands of operations, we
encountered some performance issues, not related to
the core of the algorithms but related to some details
in implementations. We sum them up here.

In a first version of the files we used Let instead
of Definition. While this was apparently inocuous
with only a few occurrences, this became a major is-
sue with hundreds or thousands of occurences as this
means the terms computed by Coq for the last check
was embedding all previous definitions, dramatically
slowing down computations. Replacing the keyword
Let by Definition was enough to fix the issue.

(* Proof for Check 1*)

(* Conversion of upp([(0,0)0(1,0)[, period

([(1,0)0(2,0)[), 0, 1) *)

Definition lop_1_js : @seqjs bigQ := [::
(0, ( (0)%:E, (0, (0)%:E)));
(1, ( (0)%:E, (0, (0)%:E)))]

%bigQ.
Definition lop_1 := F_of_sequpp {|
sequpp_T := 1;
sequpp_d := 1;
sequpp_c := 0;
sequpp_js := lop_1_js

|}%bigQ.
(* Conversion of upp([(0,0)0(0,0)], period

(](0,1360)0(10000,1360)]), 1360, 10000) *)

Definition rop_1_js : @seqjs bigQ := [::
(0, ( (0)%:E, (0, (1360)%:E)));
(5000, ( (1360)%:E, (0, (1360)%:E)));
(10000, ( (1360)%:E, (0, (2720)%:E)))]

%bigQ.
Definition rop_1 := F_of_sequpp {|
sequpp_T := 5000;
sequpp_d := 10000;
sequpp_c := 1360;
sequpp_js := rop_1_js

|}%bigQ.
(* Conversion of upp([(0,0)0(0,0)], period

(](0,1360)0(10000,1360)]), 1360, 10000) *)

Definition res_1_js : @seqjs bigQ := [::
(0, ( (0)%:E, (0, (1360)%:E)));
(5000, ( (1360)%:E, (0, (1360)%:E)));
(10000, ( (1360)%:E, (0, (2720)%:E)))]

%bigQ.
Definition res_1 := F_of_sequpp {|
sequpp_T := 5000;
sequpp_d := 10000;
sequpp_c := 1360;
sequpp_js := res_1_js

|}%bigQ.
Goal res_1 = (lop_1 + rop_1).
Proof. idtac "Check 1". Time nccoq. Qed.

Figure 6. Coq proof generated
from listing in Figure 5.2

As a first step, our automatic tactic nccoq maps
each min-plus operation, like + or ∗ introduced in
Section 2, on arbitrary functions to effective opera-
tors on UPP functions, our tactic uses the typeclass
resolution mechanism of Coq. This mechanism can
perform exponential searches and is known to eas-
ily lead to serious slow downs. After doing some
profiling, we discovered that more time was spent in
this resolution than actually performing the compu-
tation of the reflexive tactic. Putting the definitions
of the sequences sequpp_js in a separate definition
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(they were originally inlined) solved the issue by en-
abling the type class search procedure of Coq to find
the expected solution much earlier.

Finally, the largest computations first appeared
much slower than expected. Inspecting the interme-
diate values computed, we discovered rational num-

bers such as 17498164897827×105000
38753975857×105000 . Further investiga-

tion revealed that we were using non normalizing op-
erations on arbitrary precision rational numbers. Re-
placing them with the normalizing operations solved
the issue.

In Minerve, all functions are periodic with a given
period (c.f. d in Figure 4). For affine functions, this
means that an arbitrary period must be chosen. A
bad choice can be an issue when computing an op-
erator whose operands have wildly diferent periods.
To avoid such issues, a preprocessing was added to
change the (fake) period of affine functions in accor-
dance to the period of the other operand before any
binary operation.

When performing a proof with Coq, the proof
is first elaborated with tactics (everything between
Proof and Qed) then rechecked by the kernel of Coq
at Qed time. This means any expensive computation
performed by the tactics will be performed a second
time by the Qed. To avoid such duplications, a trick
using the abstract tactic of Coq is used1.

6. Benchmarks

We evaluated our approach on three midsize to
large case studies representative of actual industrial
use cases.

The first case study, is a medium size network
made of 8 end systems and 2 switches. It is crossed
by 57 flows, each having 1 to 5 receivers. The links
data rate is set to 100Mb/s except for the link be-
tween the two switches which is at 1000Mb/s. For
the service policy used, all the flows are distributed
between 5 priority levels, at the same level of priority
flows respect the FIFO rule. The analysis of such a
network with RTaW-Pegase as well as the writing of
the trace takes about 1 second.

In the second and third case studies, the consid-
ered network is much larger. Comprising 104 end sys-
tems and 8 switches, it is crossed by a thousand flows.
The links data rate is set to 100Mb/s. For the second
case study, all the flows have the same level of pri-
ority and are processed in a single FIFO queue. For
the third case study, the flows are now distributed in
different priority levels and are processed by 5 FIFO

1This tactic basically seals a computation into an auxil-

iary lemma (with its own Qed), then the final Qed just checks

the auxiliary lemma statement rather than completely recheck-
ing it.

queues. RTaW-Pegase analyzes these configurations
in about 4 and 8 seconds.

Checking each of these benchmarks involved ver-
ifying thousands of operations in each case. We ran
the benchmarks on an average few years old laptop
with 4 GiB of RAM. The total run time where kept
within a couple of hours thanks to checking time per
operation well below the second in most cases, with
only a handful of operations requiring a few dozen
of seconds to be proved correct by Coq. All timings
are summarized in Table 1. Note that the last bench-
mark had to be divided in eight separate Coq files to
avoid Coq running out of memory on a huge file.

Although much slower than the initial runs of
RTaW-Pegase, we consider these runtimes for veri-
fication to be perfectly acceptable considering that
they would constitute the last part of the develop-
ment or certification process of an embedded network.
The fat RTaW-Pegase can still be used without ex-
tra verification for dimensioning or development pur-
poses.

Last but not least, no bug was found in RTaW-
Pegase during the experiments.

The benchmarks, as well as detailed instructions
to reproduce those results, are available at https:

//doi.org/10.5281/zenodo.5849594.

7. Conclusion

The skeptical approach (that formally proves the
correctness of a result given by a program), is an ef-
ficient way to get a high level of confidence in the re-
sults of a program. It has been applied in the context
of the real-time performances of embedded networks:
the correctness of the min-plus operations involved
in the computation of real-time bounds can now be
checked using the Coq proof assistant. The theoret-
ical part have been presented in [17]. This paper
presents how it can be used in an industrial context.

This research experiment can be seen as a suc-
cess both in terms of development effort and scalabil-
ity of the verification. Developing a min-plus toolbox
requires about one man-year of development [5, 9],
developing our min-plus checker required one PhD
year of development [17] and plugging the min-plus
checker and RTaW-Pegase required about 1 month
of development. On run-time, analyzing a network
with the RTaW-Pegase requires typically a few min-
utes using a common laptop whereas checking the
results requires a few hours on the same hardware.
For software with such a confidence level, the over-
head in development time and running time is fully
acceptable.

As a future work, one could consider unifying the
previous works in [16], [14] and the current work in

https://doi.org/10.5281/zenodo.5849594
https://doi.org/10.5281/zenodo.5849594
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benchmark #op time time / op max time
MEDIUM SP 1923 4:44 0.15 15.23
BIG FIFO 34121 47:35 0.08 7.61
BIG SP 81333 4:19:38 0.19 20.28

Table 1. Benchmarks: “#op” is the number of operations, “Time” the total time for Coq
to check all operations (hours:minutes:seconds), “time / op” the average time per operations
(in seconds), “max time” the maximum time to check a single operation (in seconds).

a single Coq proof. This would greatly reduce the
trusted code base and avoid having a Network Cal-
culus expert check the output trace of RTaW-Pegase
and its mapping to the verified Coq file.
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Löwe, editors, Logic and Theory of Algorithms, 4th Con-
ference on Computability in Europe, CiE 2008, Athens,

Greece, June 15-20, 2008, Proceedings, volume 5028

of Lecture Notes in Computer Science, pages 359–369.
Springer, 2008.

[14] Etienne Mabille, Marc Boyer, Löıc Fejoz, and Stephan
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