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Abstract

We argue that, when learning a 1-Lipschitz neural network with the dual loss of an
optimal transportation problem, the gradient of the model is both the direction of
the transportation plan and the direction to the closest adversarial attack. Traveling
along the gradient to the decision boundary is no more an adversarial attack but
becomes a counterfactual explanation, explicitly transporting from one class to
the other. Through extensive experiments on XAI metrics, we find that the simple
saliency map method, applied on such networks, becomes a reliable explanation,
and outperforms the state-of-the-art explanation approaches on unconstrained
models. The proposed networks were already known to be certifiably robust, and
we prove that they are also explainable with a fast and simple method.

1 Introduction

In classification, a counterfactual explanation exhibits why the decision was A and not B. When
dealing with symbolic models, this modification may be significant and expresses causality between
the feature values and the class [32]. Unfortunately, in the deep learning settings, a counterfactual
corresponds to an adversarial attack [37]. The idea behind these attacks is that only carefully chosen
small modifications, such as an imperceptible noise, are necessary to change the class of an example
and to fool the network. Thus, this counterfactual usually does not provide a trustworthy explanation
[56]. Since saliency maps [47] – gradient of output with respect to the input – are the basis of most
adversarial attacks, they are generally unsuitable for explaining the model decision. Several methods
which require more complex computations, such as SmoothGrad [49], Integrated Gradient [51] or
Grad-CAM [45], have therefore been proposed to provide better explanations. Recently, the XAI
community has started to investigate the link between explainability and robustness and proposed
methods and metrics accordingly [28, 10, 35, 43].

In [46], authors propose to cope with the weakness with respect to adversarial attacks by training 1-
Lipschitz constrained neural networks with a loss that is the dual of an optimal transport optimization
problem, called hKR and noted LhKRλ,m . The models obtained have been proven to be robust with a
certifiable margin. In the following, we denote these networks as Optimal Transport Neural Networks
(OTNN).

In this paper, we show that OTNNs also have very valuable properties in terms of explainability.
Indeed, an optimal transport plan between two classes can be viewed as a global way to build
counterfactuals [14]. These counterfactuals no longer correspond systematically to the smallest
transformation for a given input sample, but to the smallest in average when pairing points of two
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classes. OTNNs encode the dual formulation of the optimal transport problem, and we prove that
their gradients on a given point x is both (i) in the direction of the closest adversarial example on
the decision boundary and (ii) in the direction of images of x according to the underlying transport
plan. This means that building an adversarial attack for an OTNN is equivalent to travelling along the
optimal transport path. Consequently, the modification obtained is not only an adversarial attack, but
a counterfactual explanation, i.e. why the classification was not another class. Fig. 1 illustrates, on an
OTNN learned on MNIST dataset, the transformation of an image of the class zero with respect to the
gradient of another class’s output (as done in a vanilla targeted attack). We observe that it explicitly
changes the zero into the target number, and gradients provide understandable explanations of why
it was not this number. The consequence of this property is that the saliency map of OTNN for an
image gives the importance of each pixel in the modification required to change class, and is thus a
trustworthy explanation. Note that several methods based on GAN [29] or on causality penalty [30]
achieve very realistic counterfactual images. In this paper, we don’t try to compete with the quality
of these results, but to show that OTNNs have in-built counterfactual explanations.

Figure 1: Counterfactual targeted samples of the form x− 10 ∗ f̂(x)∇xf̂(x) for an OTNN multiclass
classifier, learned on MNIST, on a sample x of the class 0. The second line is the targeted gradient
(negative values are in red and positive values in green).

We summarize our contributions: first, after introducing the background about OTNN and XAI, we
demonstrate several properties of the gradient of an OTNN with respect to adversarial attack, the
decision boundary and optimal transport. Second, we link the optimal transport to counterfactual
explanations, and we claim that saliency maps for OTNNs have valuable properties that make them
trustworthy explanations. Third, we propose a way to automatically tune the optimal transport loss
parameters and propose enhancements for the multiclass version of the hKR loss proposed in [46],
leading to higher performances. We also show in the experiments that saliency maps for OTNN have
top-rank scores on the state-of-the-art XAI metrics compared to more sophisticated methods, and
are equivalent to the ones provided by Smoothgrad. Thus Saliency maps provide faithful, stable and
trustworthy explanations for a minimal computational cost. We also find that OTNNs significantly
enhance metric scores of most of the XAI methods, in comparison to their use on unconstrained
neural networks. To end with we present several samples of gradient-based counterfactual obtained
with OTNNs.

2 Related work

1-Lipschitz Neural network and optimal transport. For sake of simplicity, we consider, in
Section 3, binary classification problems on feature vector space X ⊂ Ω and labels Y = {−1, 1}.
We name P+ = P(X|Y = 1) and P− = P(X|Y = −1), the conditional distributions with respect to
Y. We note p = P (Y = 1) and 1− p = P (Y = −1) the apriori class distribution.
A function f : Ω → R is a 1-Lipschitz functions over Ω (denoted Lip1(Ω)) if and only if ∀x, y ∈
Ω2, ||f(x)−f(y)|| ≤ ||x−y||. 1-Lipschitz neural networks have received a lot of attention, especially
due to the link with adversarial attacks. They provide certifiable robustness guarantees [25, 39],
improve the generalizations [50] and the interpretability of the model [53]. The simplest way to
constrain a network to be in Lip1(Ω) is to impose this 1-Lipschitz property to each layer. Frobenius
normalization [44], or spectral normalization [38] can be used for linear layers, and can also be
extended, in some situation, to orthogonalization [34, 1].

Optimal transport, 1-Lipschitz neural networks and binary classification have been first associated
in Wasserstein GAN (WGAN [6]). Indeed, the discriminator of a WGAN is the solution to the
Kantorovich-Rubinstein dual formulation of the 1-Wasserstein distance [55]. It could be viewed
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as a binary classifier given a carefully chosen threshold. However, [46] has shown that this kind
of classifier is sub-optimal, even on a toy dataset. In the same paper, the authors cope with the
sub-optimality of the Wasserstein classifier by proposing the hKR loss LhKR which adds a hinge
regularization term to the Kantorovich-Rubinstein optimization goal :

LhKRλ,m (f) = E
x∼P−

[f(x)]− E
x∼P+

[f(x)] + λE
x

(m− Y f(x))+ (1)

where m > 0 is the margin. We note f∗ the optimal minimizer of LhKRλ,m . The classification is given
by the sign of f∗. In the following, the 1-Lipschitz neural networks that minimize LhKRλ,m will be
denoted as OTNN. Given a function f , a classifier based on sign(f) and an example x, an adversarial
example is defined as follows:

adv(f, x) = argmin
z∈Ω|sign(f(z))=−sign(f(x))

‖ x− z ‖ . (2)

Since f∗ is a 1-Lipschitz function, |f∗(x)| is a certifiable lower bound of the robustness of the
classification of x (i.e. ∀x, |f∗(x)| ≤ ||x−adv(f∗, x)||). The function f∗ has the following properties
[46] (i) if P+ = and P− = are separable with a minimal distance of ε > 0, then for m < 2ε, f∗
achieves 100% accuracy on P+ and P−; (ii) minimizing LhKR is still the dual formulation of an
optimal transport problem (see appendix for more details).

Explainability and metrics. Attribution methods aim to explain the prediction of a deep neural
network by pointing out input variables that support the prediction – typically pixels or image
regions for images – which lead to importance maps. Saliency [47] was the first proposed white-box
attribution method and consists of back-propagating the gradient from the output to the input. The
resulting absolute gradient heatmap indicates which pixels affect the most the decision score. However,
this family of methods suffers from problems inherent to the gradients of standard models. Methods
such as Integrated Gradient [51] and SmoothGrad [49] partially address this issue by accumulating
gradients, either along a straight interpolation path from a baseline state to the original image or from
a set of points close to the original image obtained after adding noise but multiply the computational
cost by 100. These methods were then followed by a plethora of other methods using gradients
such as Grad-cam [45], Input Gradient [4], ... all relying on gradient calculation of the classification
method. Finally, other methods – sometimes called black-box attribution methods – do not involve
the gradient and rely on perturbations around the image to generate their explanations [41, 15].

However, it is becoming increasingly clear that current methods raise many issues [2, 26, 48] such
as confirmation bias: it is not because the explanations make sense to humans that they reflect the
evidence of the prediction. To address this challenge, a large number of metrics were proposed to
provide objective evaluations of the quality of explanations. Deletion and Insertion methods [41]
evaluate the drop in accuracy when important pixels are replaced by a baseline. µFidelity method [8]
evaluates the correlation between the sum of importance scores of pixels and the drop of the score
when removing these pixels. In parallel, a growing literature relies on model robustness to derive new
desiderata for a good explanation [28, 10, 35, 43, 16]. The central idea is that a region is considered
important if it allows to easily generate an adversarial example. In addition, [28] showed that some
of these metrics also suffer from a bias due to the choice of the baseline value and proposed a new
metric called Robustness-Sr. This metric assesses the ease to generate adversarial example when
the attack is limited to the important variables proposed by the explanation. Finally, other metrics
propose to assess other properties such as generalizability, consistency [17], or stability [60, 8] of
explanation methods.

These works on explainability metrics have initiated the emergence of links between the robustness of
models and the quality of their explanations [12, 58]. In particular,[17] claimed that 1-Lipschitz net-
works explanations have better metrics scores. But this study was not on OTNNs and was limited to
their proposed metrics.

To end with, several counterfactual explanation [56] methods, providing information on "why the
decision was A and B", have been proposed [23, 42, 57], but rely on complex models.

3 Optimal Transport, Robustness and explainability

In this section we extend the properties of the OTNNs to the explainability framework, all the proofs
are in the appendix A.1. We note π the optimal transport plan corresponding to the minimizer of
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LhKRλ,m . Given x ∈ P+ (resp. P−) we note y = trπ(x) ∈ P− (resp. P+) the image of x with respect
to π. Since the π is not deterministic, we take trπ(x) as the point of maximal mass with respect to π.

Proposition 1 (Transportation plan direction) Let f∗ an optimal solution minimizing the LhKRλ,m .
Given x ∈ P+ (resp. P−) and y = trπ(x), then ∃t ≥ 0 (resp. t ≤ 0) such that y = x − t.∇xf∗(x)
almost surely.

This proposition is also true for Kantorovich-Rubinstein dual problem without hinge regularization.
It proves that for most of x ∈ P+ ∪ P− the gradient ∇xf∗(x) represents the direction in the
transportation plan.

Proposition 2 (Decision boundary) Let P+ and P− two separable distributions with minimal dis-
tance ε and f∗ an optimal solution minimizing the LhKRλ,m with m < 2ε. Given x ∈ P+ ∪ P− and
y = trπ(x) ∈ {x − t∇xf∗(x)}, then |t| ≥ |f∗(x)| and xδ = x − f∗(x).∇xf

∗(x) ∈ δf∗ where
δf∗ = {x′ ∈ Ω|f∗(x′) = 0} is the decision boundary (i.e. the 0 level set of f∗)

Experiments suggest this probably remains true when P+ and P− are not separable. Prop. 2 proves
that an OTNN f learnt by minimizing the LhKRλ,m , |f(x)| provides a tight robustness certificate.

Corollary 1 Let P+ and P− two separable distributions with minimal distance ε and f∗ an optimal
solution minimizing the LhKRλ,m with m < 2ε, given x ∈ P+ ∪ P−,

adv(f∗, x) = xδ

almost surely where xδ = x− f∗(x).∇xf
∗(x) .

This corollary shows that adversarial examples are precisely known for the classifier based on LhKRλ,m .
In this case, optimal adversarial attacks are in the direction of the gradient (i.e. FGSM attack [22]).
This corroborates the observations in [46] where all the attacks, such as PGD [37] or Carlini and
Wagner [11] ones, applied on an OTNN model were equivalent to FGSM ones.

To illustrate these propositions, we learnt a dense binary classifier with LhKRλ,m to separate two complex
distribution, following two concentric Koch snowflakes. Fig.2-a shows the two distribution (blue and
orange snowflakes), the learnt boundary (0− levelset) (red dashed line). Fig.2-b,c show for random
samples x from the two distributions, the segments [x, xδ] where xδ is defined in 2 . As expected by
Prop. 2, xδ points fall exactly on the decision boundary. Besides, as stated in Prop. 1 each segment
provides the direction of the image with respect to the transport plan.

Finally, we showed that with OTNN, adversarial attacks are formally known and simple to compute.
Furthermore, since we proved that these attacks are along the transportation map, they are no more
an imperceptible modification but an understandable transformation of the example. In the following,
we will take advantage of these properties to show that∇xf∗(x) provides a natural counterfactual
explanation with provable explainability properties.

As pointed out in the introduction, a counterfactual explanation for a given x of class P+ is the closest
element y ∈ P−. But we usually don’t have access to P+ and P−, only to a classifier f . In this case, a
counterfactual corresponds to an adversarial attack as defined in 2. For classical neural networks, this
can be done by only adding noise which is not a valuable explanation. As it only depends on x and
f , this definition of counterfactual explanation is local. On the contrary, a transport plan as the one
underlying the minimizer of LhKRλ,m describes an optimal way to go from the class P+ to P−. As such,
the transportation plan is a global counterfactual explanation, and∇xf

∗(x) is the local explanation
for x. Note that, the transportation plan doesn’t provide the closest example on the opposite class,
but provides the closest in average on the pairing process. According to Prop. 1, the image of x in
the optimal transport plan is y = x + t∇xf

∗(x). Even if t is only partially known, using t = f∗(x),
we know that y is on the decision boundary and is both an adversarial attack and a counterfactual
explanation and |t| ≥ |f∗(x)| is on the path to the optimal transport plan.

As stated in Section 2, Saliency maps [47], given by φx(i) = |∂flxi | often lead to blurry explanation
on classical networks. In this paper, we claim that for OTNNs saliency maps lead to trustworthy
explanations. Indeed, we have shown in the previous section that, for an OTNN, ∇xf∗(x) indicates
both the direction in the transportation plan and also to the closest point on the boundary δf∗.
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(a) (b) (c)

Figure 2: Level sets of an OTNN f̂ classifier for two concentric Koch snowflake (a). The decision
boundary (0-level set) is the red dashed line. Figure (b) (resp. (c)) represents translation of the form
x− f̂(x)∇xf̂(x) of each point x of the first class (resp second class). The movement is represented
by a line between the initial point and its transformation (which are all on the decision boundary).

Thus, the Saliency map φx(i) = |∂flxi | represents the importance of each input feature along this
direction. We will show in the experiments that, for the Saliency map explanation: (i) metrics scores
are higher or comparable to other explanation methods (which is not the case for unconstrained
networks), thus it has higher ranks; (ii) distance to other attribution methods such as Smoothgrad is
unnoticeable/imperceptible; (iii) scores obtained on metrics that can be compared between networks
are higher than those obtained with unconstrained networks.

4 Automatic margin and multiclass loss

In this section, we put aside the explainability to focus on hKR loss. As pointed out in [7], one
drawback of working with 1-Lipschitz functions is that it depends strongly on the parameters of the
loss. In the binary case, LhKRλ,m (equation 1 ) has two parameters : the margin m and the hinge weight
λ. λ represents the tradeoff between robustness and accuracy. When the classes are separable and the
m is small enough, the hinge part of the loss tends to zero. Since, the parameter m is hard to choose,
to we propose a new formulation of the loss as follows:

LhKRλ,α (f) = E
x∼P−

[f(x)]− E
x∼P+

[f(x] + λ
(

E
x

(m− Y f(x))+ + αm
)

(3)

with m > 0 a learnable parameter, and 0 < α ≤ 1 is a new parameter. It is easy to see that, according
to the linear growth of αm and its opposite hinge term, if f(x) is uniformly distributed on a bounded
interval, the optimal margin m is obtained when the ratio of x such that f(x) ≤ m is equal to α. The
latter can be interpreted as the target proportion of data that is concerned by the hinge part of the loss.
By choosing λ ≈ 1

α , weight of the KR part in the loss will be approximately the same as the hinge
part at the end of the optimizing process. With this approach, the only parameter to choose is α that
can be interpreted as the approximated error rate targeted in the learning process.

An extension has also been proposed in [46] to the multiclass case with q classes. The idea is to learn
q 1-Lipschitz functions f1, . . . , fq, each component fi being a one-versus-all binary classifier. The
loss proposed was the following

LhKRλ (f1, . . . , fq) =

q∑
k=1

[
E

x∼¬Pk
[fk(x)]− E

x∼Pk
[fk(x)]

]
+ λ E

x,y∼
⋃q
k=1

Pk
(H (f1(x), . . . , fq(x), y)

(4)
with :

H (f1(x), . . . , fq(x), y) =

q∑
k=1

m− (2 ∗ 1y=k − 1) ∗ fk(x)

This formulation has three main drawbacks: (i) the optimal margin for each class may be different
leading to a huge number of hyperparameters - solved by Eq.3-, (ii) for large number of classes
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several outputs may have few or no positive sample within a batch leading to slow convergence, (iii)
weight of fy(x) (the function of the true class) with respect to the other decreases when the number
of classes increases. To overcome these drawbacks, we propose a softmax based hinge regularization
with a learnable margin :

Hα
soft (f1(x), . . . , fq(x), y) = my −

1

2
fy(x) +

1

2

∑
k 6=y

fk(x) ∗ efk(x)∑
j 6=y e

fj(x)
+ αmy (5)

with my ≥ 0 and in this function, the value of fy(x) for the true class always has the same weight as
the value of the other functions, no matter the number of classes. At the beginning of the learning,
the softmax acts like an average since all the values of fk are close. During the learning process, the
values of fk diverge and the softmax acts like a maximum. Margins are automatically learnt as for
the binary case (α a single hyperparameter).

5 Experiments

We conduct experiments networks learnt on FashionMNIST [59], and 22 binary labels of CelebA [36]
datasets. Note that labels in CelebA are very unbalanced (see Table 5 in Appendix A.3, with for
instance less than 5% samples for Mustache or Wearing_Hat).

A VGG-like architecture [40] is used, with equivalent linear layer sizes for OTNNs and unconstrained
networks (same number of layers and neurons). Unconstrained networks use batchnorm and ReLU
layers for activation, whereas OTNNs only use GroupSort2 [5, 46] activation. OTNNs are built using
the DEEL.LIP1 library. The loss functions are cross-entropy for unconstrained networks (categorical
for multiclass, and sigmoid for multilabel settings), and hKR LhKRλ,m (and the proposed variants) for
OTNNs. We train all networks with ADAM optimizer [31]. Details on architectures and parameters
are given in Appendix A.2.

Classification performance: OTNN models achieve comparable results to unconstrained ones,
confirming claims of [7]: they reach 88.5% average accuracy on FashionMNIST (Table 8), and 81%
(resp. 82%) average Sensitivity (resp. Specificity) over labels on CelebA (Table 9 in Appendix A.3).
We use Sensitivity and Specificity for CelebA to take into consideration the unbalanced labels.

5.1 Quantitative evaluation of explanations metrics

In this section, we present the results of quantitative evaluations of XAI metrics to compare the
Saliency map method with others explanation methods on OTNN, and more generally compare XAI
explanations methods on these networks and on the unconstrained counterparts. On CelebA, we only
present the results for the label Mustache, but results for the other labels are similar. Parameters for
explanation methods and metrics are given in Appendix A.4.

5.1.1 Saliency maps on OTNN become reliable explanations

Insertion and Deletion metrics: We first assess the quality of Saliency map explanations for the
proposed network using Insertion and Deletion metrics [41]. Classical explanation methods, including
the Saliency map, are evaluated on CelebA and FashionMNIST datasets for both types of networks.
Even if the score values cannot be compared between different networks, Table 1 shows the Saliency
map method becomes competitive on these metrics and matches the top-ranking methods, whereas it
is not the case for unconstrained networks. In Annex A.4, we show that it is also the case for other
metrics such as Robustness-SR [27].

Saliency map method on OTNN is equivalent to SmoothGrad: In the previous section, scores of
Smoothgrad and Saliency were very close. We will prove that these methods are in fact equivalent,
meaning that for OTNNs averaging over a large set of noisy inputs, as in SmoothGrad, is useless.

For this, we evaluated two distances in Table 2: L2 distance indicating the per pixel difference
between explanations, and 1− ρ where ρ is the Spearman’s rank correlation coefficient (as suggested
by [2, 17, 52, 21]). OTNN explanation distances are far lower than the unconstrained ones and very
close to zero. Fig. 3 also illustrates this equivalence.

1https://github.com/deel-ai/deel-lip distributed under MIT License (MIT)
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Table 1: Insertion and Deletion metrics evaluation; GC: GradCam, GI: Gradient � Input, IG:
Integrated Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Deletion (uniform baseline) (↓ is better)
GC GI IG Rise Saliency SmoothGrad

CelebA OTNN 9.41 9.38 9.36 8.89 8.32 (Rk2) 8.28
Unconstrained 5.13 3.33 3.18 3.61 3.50 (Rk4) 3.41

Fashion- OTNN 0.23 0.28 0.28 0.24 0.22 (Rk2) 0.21
MNIST Unconstrained 0.32 0.35 0.39 0.32 0.26 (Rk2) 0.24

Insertion (uniform baseline) (↑ is better)
CelebA OTNN 10.25 10.44 10.50 10.46 11.29 (Rk1) 11.28

Unconstrained 9.43 8.45 9.24 12.20 6.71 (Rk6) 6.72

Fashion- OTNN 0.28 0.20 0.20 0.26 0.25 (Rk4) 0.26
MNIST Unconstrained 0.44 0.32 0.26 0.40 0.30 (Rk4) 0.24

Table 2: Distance between Saliency map and SmoothGrad explanations (↓ is better)
Dataset Network Distance Saliency/SmoothGrad

L2 1− ρ
CelebA OTNN 3.1E-04 4.6E-02

Unconstrained 1.4E-01 6.2E-01
Fashion- OTNN 7.5E-03 3.0E-01
MNIST Unconstrained 07.0E-02 9.1E-01

Saliency Map on OTNN are less complex: Inspired by previous works [13] highlighting a strong
correlation between Kolmogorov complexity and human evaluation of complexity [20, 19]. We used
a JPEG based compressor [54] as a simple approximation of visual explanation complexity [33]:
OTNNs yield simpler explanations (9.5kB) than unconstrained networks (16.8kB) -see Figure 3 for
a qualitative comparison-.

5.1.2 OTNNs provide better explanations

In [17], it has been shown that 1-Lipschitz neural networks, for the two proposed metrics, produce
explanations with higher scores than common neural networks. In this section, we will assess this
property using SoTA XAI metrics.

µFidelity metric [8] is a well-known method that measures the correlation between important
variables defined by the explanation method and the model score decrease when these variables are
reset to a baseline state (or replaced by uniform noise). One interesting property of this metric, as a

Sa
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(a) OTNN (b) Unconstrained

Figure 3: Comparison of Saliency map and SmoothGrad explanations for (a) OTNN and (b)
unconstrained network for the Mustache label.
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Table 3: µFidelity metrics evaluation (↑ is better); GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient (in bold best model score)

Dataset Network µFidelity-Uniform
GC GI IG Rise Saliency SmoothGrad

CelebA OTNN 0.028 0.168 0.149 0.114 0.244 0.248
Unconstrained 0.002 0.074 0.093 0.051 0.052 0.018

Fashion- OTNN 0.215 -0.017 -0.005 0.220 0.114 0.156
MNIST Unconstrained 0.008 -0.009 -0.013 0.011 -0.001 -0.001

µFidelity-Zero
CelebA OTNN 0.127 0.439 0.400 0.350 0.325 0.324

Unconstrained 0.061 0.093 0.124 0.190 0.082 0.091
Fashion- OTNN 0.161 0.479 0.543 0.182 0.246 0.332
MNIST Unconstrained 0.046 0.079 0.134 0.063 0.034 0.052

Table 4: Stability metrics evaluation (↓ is better); IG: Integrated Gradient
Dataset Network Stability L2

IG Saliency SmoothGrad

CelebA OTNN 1.7E-08 1.2E-07 7.7E-08
Unconstrained 1.4E-02 5.3E-02 1.4E-04

Fashion- OTNN 1.5E-05 6.3E-05 1.5E-05
MNIST Unconstrained 3.7E-03 1.6E-01 1.1E-03

Stability Spearman rank
CelebA OTNN 0.52 0.51 0.52

Unconstrained 0.87 0.77 0.95
Fashion- OTNN 0.61 0.60 0.55
MNIST Unconstrained 0.79 0.91 0.82

correlation score, is that it can be compared between different networks. Table. 3 clearly state that
whatever the explanation method, the µFidelity score is higher when it is applied on OTNN.

Explanations on OTNN have higher stability An important property for explanations is their
stability for nearby samples. In [60], the authors proposed Stability metrics based on the L2 distance.
To better evaluate this stability, one can replace the L2 distance by 1− ρ, ρ being the Spearman rank
correlation, as above. In Table 4 we find once more that OTNNs outperform unconstrained ones.

We conclude with all these experiments, using many types of explanation metrics, that OTNN ex-
plainability is better than the unconstrained neural networks. Besides, for OTNN the simple Saliency
map method is enough. We show, in the following, qualitatively how gradient provides counterfactual
explanations.

5.2 Qualitative results

CelebA: Using the learnt OTNN on multilabels, Fig. 4 presents original images, average gradients
∇xfj over the channels, and images in the direction of the transport plan (Prop. 1), for several
negative and positive samples of different labels (other samples are given in Appendix A.5). We can
see that most of the gradients are visually consistent, adding/erasing hat or mustache, opening/closing
mouth, even with a very unbalanced training set.

FashionMNIST: The same illustration is given in Fig. 1 on this multiclass problem, where the
gradient are targeted to explain, for instance, why the decision was a trouser and not a dress . The
gradient, i.e. Saliency maps of OTNN are counterfactual explanations (See Appendix A.5 for other
examples).

More generally, we observe that the gradient gives clear information about how the classifier makes
its decision. For instance, for the hat, it shows that the classifier does not need to encode perfectly the
concept of hat, but mainly to identify a large darker area on the top of the head.
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Mouth Slightly Open label: left close to open, right open to close

Mustache label: left without to with, right with to without

Wearing hat label: left no hat to hat, hat to no hat

Figure 4: Samples from different labels of CelebA: (left) source image , (center) gradient image,
(right) counterfactual of the form x− t ∗ f̂(x)∇xf̂(x), for t > 1

Figure 5: Samples from different classes of FashionMNIST: (left) source image , (center) targeted
gradient image of an OTNN, (right) targeted counterfactual of the form x− 10 ∗ f̂(x)∇xf̂(x)

6 Conclusions and broader impact

In this paper, we study OTNN (Optimal Transport Neural Networks) that are 1-Lipschitz constrained
neural networks trained with a loss that is the dual of an optimal transport optimization problem. We
first provide enhancements of the LhKRλ,m , proposed in[46], reducing the number of hyperparameters
and the improving the performances at convergence. We prove that OTNNs, because of their
connection with optimal transport, structurally produce counterfactual explanations. Indeed, we prove
that the gradient of an OTNN at a point represents the direction of the adversarial attack but also of
its image in the optimal transport plan, transforming the adversary attacks into an understandable
counterfactual explanation. This is illustrated in the experiment which shows that the simple Saliency
map for OTTNs has top-rank scores on state-of-the-art XAI metrics, and largely outperforms any
method applied to unconstrained networks. In future works, we will investigate the link with Fairness,
for instance if the explanations can point out sensitive variables.

Broader impact. This paper demonstrates the value of OTNNs for critical problems. OTNNs are
certifiably robust and explainable with the simple Saliency map method and have accuracy perfor-
mances comparable to unconstrained networks. On the other hand, even if the learning process of
these networks is between 3 and 6 times longer than for unconstrained ones, at the inference time,
OTNNs are classical networks with the same computation cost as their unconstrained counterparts.
We hope that this contribution will raise a great interest for these OTNN networks.
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A Appendix

A.1 Additional definition and proofs

Let us first recall the optimal transport problem associated with the minimization of LhKRλ,m :

inf
f∈Lip1(Ω)

LhKRλ(f),m = inf
π∈Πpλ(P+,P−)

∫
Ω×Ω

|x− z|dπ + πx(Ω) + πz(Ω)− 1 (6)

Where Πp
λ(P+, P−) is the set consisting of positive measures π ∈M+(Ω×Ω) which are absolutely

continuous with respect to the joint measure dP+×dP− and dπx
dP+
∈ [p, p(m+λ)], dπz

dP−
∈ [1−p, (1−

p)(m + λ)]. We name π∗ the optimal transport plan according to Eq.6 and and f∗ the associated
potential function.

Proof of proposition 1: According to [46], we have

||∇xf∗(x)|| = 1

almost surely and

P(x,y)∼π∗ (|f∗(x)− f∗(y)| = ||x− y||) = 1

Following the proof of proposition 1 in [24] and [3] we have :
Given xα = α ∗ x+ (1− α)y, 0 ≤ α ≤ 1

P(x,y)∼π∗

(
∇xf∗(xα) =

xα − y
||xα − y||

)
= 1.

So for for α = 1 whe have

P(x,y)∼π∗

(
∇xf∗(x) =

x− y
||x− y||

)
= 1

and then
P(x,y)∼π∗ (y = x−∇xf∗(x).||x− y||) = 1

This prove the proposition 1 by choosing t = ||x− y||.

Proof of proposition 2: Let P+ and P− two separable distributions with minimal distance ε and f∗ an
optimal solution minimizing the LhKRλ,m with m < 2ε. According to [46], f∗ is 100% accurate. Since
the classification is based on the sign of f we have : ∀x ∈ P+, f

∗(x) ≥ 0 and ∀y ∈ P−, f∗(y) ≤ 0.
Given x ∈ P+ and y = trπ(x) = x− t∇xf∗(x) and y ∈ P−. According to the previous proposition
we have :

|f∗(x)− f∗(y)| = ||x− y||
|f∗(x)− f∗(y)| = ||x− (x− t∇xf∗(x))||
|f∗(x)− f∗(y)| = ||t∇xf∗(x))||
|f∗(x)− f∗(y)| = t.||∇xf∗(x))|| (t ≥ 0)

|f∗(x)− f∗(y)| = t (∇xf∗(x) = 1)

f∗(x)− f∗(y) = t (f∗(x) ≥ 0, f∗(y) ≤ 0)

f∗(y) = f∗(x)− t

since f∗(y) ≤ 0 we obtain :
f∗(x) ≤ t

Since f∗ is continuous, ∃t′ > 0 such that xδ = x− t′∇xf∗(x) and f∗(xδ) = 0. We have :

|f∗(x)− f∗(xδ|) ≤ ||x− xδ||
f∗(x) ≤ ||x− (x− t′∇xf∗(x))||
f∗(x) ≤ t′
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and

|f∗(xδ)− f∗(y)| ≤ ||xδ − y||
−f∗(y) ≤ ||(x− t′∇xf∗(x))− (x− t∇xf∗(x))||
−f∗(y) ≤ t− t′

−f∗(y) ≤ ||x− y|| − t′ )

Then, if f∗(x) < t′ we have

f∗(x)− f∗(y) <t′ + ||x− y|| − t′

f∗(x)− f∗(y) <||x− y||

which is a contradiction so f∗(x) = t′ and

xδ = x− f∗(x)∇xf∗(x)
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A.2 Parameters and architectures

A.2.1 Datasets

FashionMNIST has 50,000 images for training and 10,000 for test of size 28 × 28 × 1, with 10
classes.

CelebA contains 162,770 training samples, 19,962 samples for test of size 218 × 178 × 3. We
have used a subset of 22 labels: Attractive, Bald, Big_Nose, Black_Hair, Blond_Hair, Blurry,
Brown_Hair, Eyeglasses, Gray_Hair, Heavy_Makeup, Male, Mouth_Slightly_Open, Mustache,
Receding_Hairline, Rosy_Cheeks, Sideburns, Smiling, Wearing_Earrings, Wearing_Hat, Wear-
ing_Lipstick, Wearing_Necktie, Young.

Note that labels in CelebA are very unbalanced (see Table 5, with less than 5% samples for Mustache
or Wearing_Hat for instance). Thus we will use Sensibility and Specificity as metrics.

Table 5: CelebA label distribution: proportion of positive samples in training set (testing set) [bold:
very unbalanced labels]

Attractive Bald Big_Nose Black_Hair Blond_Hair
0.51 (0.50) 0.02 (0.02) 0.24 (0.21) 0.24 (0.27) 0.15 (0.13)

Blurry Brown_Hair Eyeglasses Gray_Hair Heavy_Makeup
0.05 (0.05) 0.20 (0.18) 0.06 (0.06) 0.04 (0.03) 0.38 (0.40)

Male Mouth_Slightly_Open Mustache Receding_Hairline Rosy_Cheeks
0.42 (0.39) 0.48 (0.50) 0.04 (0.04) 0.08 (0.08) 0.06 (0.07)
Sideburns Smiling Wearing_Earrings Wearing_Hat Wearing_Lipstick
0.06 (0.05) 0.48 (0.50) 0.19 (0.21) 0.05 (0.04) 0.47 (0.52)

Wearing_Necktie Young
0.12 (0.14) 0.78 (0.76)

preprocessing: Images are normalized between [0, 1]. For CelebA dataset, data augmentation is
used with random crop, horizontal flip, random brightness, and random contrast. No data augmenta-
tion is used for FashionMNIST.

A.2.2 Architectures

As indicated in the paper, linear layers for OTNN and unconstrained networks are equivalent (same
number of layers and neurons), but unconstrained networks use batchnorm and ReLU layer for
activation, whereas OTNN only use GroupSort2 [5, 46] activation. OTNN are built using DEEL.LIP2

library.

1-Lipschitz networks parametrization. Several soltutions have been proposed to set the Lipschitz
constant of affine layers: Weight clipping [6] (WGAN), Frobenius normalization [44] and spectral
normalization [38]. In order to avoid vanishing gradients, orthogonalization can be done using
Björck algorithm [9]. DEEL.LIP implements most of these solutions, but we focus on layers called
SpectralDense and SpectralConv2D, with spectral normalization [38] and Björck algorithm [9]. Most
activation functions are Lipschitz, including ReLU, sigmoid, but we use GroupSort2 proposed by [5],
and defined by the following equation:

GroupSort2(x)2i,2i+1 = [min (x2i, x2i+1),max (x2i, x2i+1)]

Network architectures used for CelebA dataset are described in Table 6.

Network architectures used for FashionMNIST dataset are described in Table 7. The same OTNN ar-
chitecture is used for MNIST expermentation presented in Fig. 1.

A.2.3 Losses and optimizer

The loss functions used for training the neural networks are: cross-entropy for unconstrained networks
(categorical for multiclass, and binary for multilabel settings), and the proposed variant LhKRλ,α of

2https://github.com/deel-ai/deel-lip distributed under MIT License (MIT)
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Table 6: CelebA Neural network architectures: Sconv2D is SpectralConv2D, GS2 is GroupSort2,
L2Pool is L2NormPooling, SDense is SpectralDense, BN is BatchNorm, AvgPool is AveragePooling

Dataset OTNN Unconstrained NN

Layer Layer Output size

CelebA Input Input 218× 178× 3
SConv2D, GS2 Conv2D, BN, ReLU 218× 178× 16
SConv2D, GS2 Conv2D, BN, ReLU 218× 178× 16
L2Pool AvgPool 109× 89× 16
SConv2D, GS2 Conv2D, BN, ReLU 109× 89× 32
SConv2D, GS2 Conv2D, BN, ReLU 109× 89× 32
L2Pool AvgPool 54× 44× 32
SConv2D, GS2 Conv2D, BN, ReLU 54× 44× 64
SConv2D, GS2 Conv2D, BN, ReLU 54× 44× 64
SConv2D, GS2 Conv2D, BN, ReLU 54× 44× 64
L2Pool AvgPool 27× 22× 64
SConv2D, GS2 Conv2D, BN, ReLU 27× 22× 128
SConv2D, GS2 Conv2D, BN, ReLU 27× 22× 128
SConv2D, GS2 Conv2D, BN, ReLU 27× 22× 128
L2Pool AvgPool 13× 11× 128
SConv2D, GS2 Conv2D, BN, ReLU 13× 11× 128
SConv2D, GS2 Conv2D, BN, ReLU 13× 11× 128
SConv2D, GS2 Conv2D, BN, ReLU 13× 11× 128
L2Pool AvgPool 6× 5× 128
Flatten, SDense, GS2 Flatten, Dense, BN, ReLU 256
SDense, GS2 Dense,BN, ReLU 256
SDense Dense 22

hKR: i.e. we use Eq. 3 with the soft Hinge (Eq. 5) for CelebA, with hyperparameters λ is set to
20, and α = 0.05. For FashionMNIST, we use Eq. 4 with the soft Hinge (Eq. 5), λ is set to 5, and
α = 0.2. As explained in the paper we set α = 1/λ.

We train all networks with ADAM optimizer [31], using a batch size of 128, number of epochs 200,
and a fixed learning rate 1e−2 for CelebA and 1e−4 for FashionMNIST.
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Table 7: FashionMNIST Neural network architectures: Sconv2D is SpectralConv2D, GS2 is Group-
Sort2, SDense is SpectralDense, BN is BatchNorm, AvgPool is AveragePooling, SGAvgPool is
ScaledGlobalAveragePooling (DEEL.LIP), GAvgPool is GlobalAveragePooling

Dataset OTNN Unconstrained NN

Layer Layer Output size

FashionMNIST Input Input 28× 28× 1
SConv2D, GS2 Conv2D, BN, ReLU 28× 28× 96
SConv2D, GS2 Conv2D, BN, ReLU 28× 28× 96
SConv2D, GS2 Conv2D, BN, ReLU 28× 28× 96
SConv2D (stride=2), GS2 Conv2D (stride=2), BN, ReLU 14× 14× 96
SConv2D, GS2 Conv2D, BN, ReLU 14× 14× 192
SConv2D, GS2 Conv2D, BN, ReLU 14× 14× 192
SConv2D, GS2 Conv2D, BN, ReLU 14× 14× 192
SConv2D (stride=2), GS2 Conv2D (stride=2), BN, ReLU 7× 7× 192
SConv2D, GS2 Conv2D, BN, ReLU 7× 7× 384
SConv2D, GS2 Conv2D, BN, ReLU 7× 7× 384
SConv2D, GS2 Conv2D, BN, ReLU 7× 7× 384
SGAvgPool GAvgPool 384
SDense Dense 10

A.3 Complementary results

A.3.1 FashionMNIST performances and ablation study

Table 8 presents different performance resuts on FashionMNIST. First line is the reference uncon-
strained network. Second line shows the performances of the new version of LhKRλ,α . First, we observe
that the auto-tuning of the m is as accurate as when we set it manually (line three). This is expected
since the goal of the formulation of LhKRλ,α with margin penalty is only to reduce the number of
hyperparameters (so to simplify the parameters’ tuning). Table 8 also shows that the new version of
the LhKRλ,α in the multiclass case (Eq. 5) outperforms the LhKRλ,m defined in [46] (Eq. 4). Obviously,
the accuracy enhancement is obtained at the expense of the robustness. The main interest of this new
loss is to provide a wider range in the accuracy/robustness trade-off.

Table 8: FashionMNIST accuracy comparison with the different version of multiclass LhKRλ,m . For the
fixed margin, we use the one that performs best by parameter tuning (i.e. m = 0.5)

Model Accuracy
Unconstrained 88.5
OTNN LhKRλ,α (α = 0.1, λ = 10) 88.6
OTNN LhKRλ,m fixed margin (λ = 10, m = 0.5) 88.6
OTNN LhKRλ,m multiclass version [46] (λ = 10, m = 0.5) 72.2

A.3.2 CelebA performances

Table 9 presents the Sensibility and Specificity for each label reached by Unconstrained network and
OTNN.

As a reminder, given True Positive (TP), True Negative (TN), False Positive (FP), False Negative
(FN) samples, Sensitivity (true positive rate or Recall) is defined by:

Sens =
TP

TP + FN

Specificity (true negative rate) is defined by:

Spec =
TN

TN + FP
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Table 9: CelebA performance results for unconstrained and OTNN networks
Model Metrics: Sensibility/Specificity

Attractive Bald Big_Nose Black_Hair
Unconstrained 0.83 / 0.81 0.64 / 1.00 0.65 / 0.87 0.74 / 0.95
OTNN 0.80 / 0.75 0.87 / 0.83 0.73 / 0.70 0.78 / 0.84

Blond_Hair Blurry Brown_Hair Eyeglasses
Unconstrained 0.86 / 0.97 0.49 / 0.99 0.80 / 0.88 0.96 / 1.00
OTNN 0.86 / 0.89 0.66 / 0.72 0.81 / 0.73 0.80 / 0.89

Gray_Hair Heavy_Makeup Male Mouth_Slightly_Open
Unconstrained 0.62 / 0.99 0.84 / 0.95 0.98 / 0.98 0.93 / 0.94
OTNN 0.84 / 0.83 0.89 / 0.83 0.92 / 0.89 0.80 / 0.89

Mustache Receding_Hairline Rosy_Cheeks Sideburns
Unconstrained 0.47 / 0.99 0.47 / 0.98 0.46 / 0.99 0.79 / 0.98
OTNN 0.86 / 0.76 0.81 / 0.79 0.82 / 0.80 0.79 / 0.82

Smiling Wearing_Earrings Wearing_Hat Wearing_Lipstick
Unconstrained 0.90 / 0.95 0.84 / 0.90 0.89 / 0.99 0.90 / 0.96
OTNN 0.84 / 0.88 0.78 / 0.72 0.86 / 0.90 0.90 / 0.89

Wearing_Necktie Young
Unconstrained 0.75 / 0.98 0.95 / 0.65
OTNN 0.87 / 0.86 0.79 / 0.69

A.4 Complementary explanations metrics

A.4.1 Explanation attribution methods

An attribution method provides an importance score for each input variables xi in the output f(x).
The library used to generate the attribution maps is Xplique [18].

For a full description of attribution methods, we advise to read [16], Appendix B. We will only
remind here the equations of

• Saliency: g(x) = |∇xf(x)|
• SmoothGrad: g(x) = E

δ∼N (0,Iσ)
(∇f(x + δ))

SmoothGrad is evaluated on N = 50 samples on a normal distribution of standard deviation σ = 0.2
around x. Integrated Gradient [51], noted IG, is also evaluated on N = 50 samples at regular
intervals. Grad-CAM [45], noted GC, is classically applied on the last convolutional layer. And RISE
black-box method [41] is evaluated on N = 4000 samples.

A.4.2 XAI metrics

For the experiments we use four fidelity metrics, evaluated on 1000 samples of test datasets:

• Deletion [41]: it consists in measuring the drop of the score when the important variables are
set to a baseline state. Formally, at step k, with u the k most important variables according
to an attribution method, the Deletion(k) score is given by:

Deletion(k) = f(x[xu=x0])

The AUC of the Deletion scores is then measured to compare the attribution methods (↓ is
better). The baseline x0 can either be a zero value (Deletion-zero), or a uniform random
value (Deletion-uniform).

• Insertion [41]: this metric is the inverse of Deletion, starting with an image in a baseline
state and then progressively adding the most important variables. Formally, at step k, with u
the most important variables according to an attribution method, the Insertion(k) score is
given by:

Insertion(k) = f(x[xu=x0])

19



The AUC is also measured to compare attribution methods (↑ is better). The baseline is the
same as for Deletion.

• µFidelity [8]: this metric measures the correlation between the fall of the score when
variables are put at a baseline state and the importance of these variables. Formally:

µFidelity = Corr
u⊆{1,...,d}
|u|=k

(∑
i∈u

g(x)i, f(x)− f(x[xu=x0])

)
For all experiments, k is equal to 20% of the total number of variables, and cutting the
image in a grid of 20× 20. The baseline is the same as the one used by Deletion. Being a
correlation score, we can either compare attribution methods, or different neural networks
on the same attribution method (↑ is better).

• Robustness-Sr [27]: this metric evaluate the average adversarial distance when the attack is
done only on the most relevant features. Formally, given the u most important variables:

Robustness-Sr =

{
min||δ||

δ

s.t.f(x + δ) 6= x, δu = 0

}
where δu = 0 indicates that adversarial attack is authorized only on the set u. The AUC is
measured to compare attribution methods (↓ is better). Note this metric cannot be used to
compare different networks, since it depends on the robustness of the network.

We use also several other metrics:

• Distances between explanations: to compare two explanation f(x), we use either L2

distance, or 1− ρ where ρ is the Spearman rank correlation [2, 17, 52] (↓ is better).
• Explanation complexity: we use the JPEG compression size as a proxy of the Kolmogorov

complexity (↓ is better).
• Stability: As proposed in [60], the Stability is evaluated by the average distance of explana-

tions provided for random samples drawn in a ball of radius 0.3 around x. As before, the
distance can be either L2 or 1− ρ (↓ is better).

A.4.3 Supplementary metric results

In this section we present several experiments and metrics that we were not able to insert in the core
of the paper.

Deletion-zero and Insertion-zero are evaluated on CelebA and FashionMNIST dataset. It is known
that the baseline value can be a bias for these metrics, and we are convinced that it has a higher
influence with 1-Lipschitz networks. Even if results for Deletion-zero and Insertion-zero are less
obvious than for Deletion and Insertion Uniform, we can see in Table 10, that for these metrics, the
rank of Saliency is most of the time higher for OTNN.

To leverage the bias of the baseline value, as proposed in [27] we evaluated the Robustness-SR metric,
Saliency map on OTNN achieves top-ranking scores. One might argue that scores for unconstrained
networks are lower, but this is directly linked to the higher intrinsic robustness of OTNNand thus
cannot be compared.

The full results for the explanation complexity is given on Table 12. The complexity is still lower for
OTNN on FashionMNIST, even if the gap with Unconstrained networks is narrower than for CelebA.
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Table 10: Insertion and Deletion metrics evaluation; GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Deletion-Zero (↓ is better)
GC GI IG Rise Saliency SmoothGrad

Deletion-Zero
CelebA OTNN 8.01 7.04 7.05 7.09 6.98 (Rk2) 6.96

Unconstrained 5.77 4.56 4.38 5.07 4.13 (Rk1) 4.51
Fashion- OTNN 0.24 0.16 0.15 0.26 0.20 (Rk4) 0.19
MNIST Unconstrained 0.33 0.28 0.23 0.16 0.38 (Rk5) 0.39

Insertion-zero (↑ is better)
CelebA OTNN 10.26 11.63 11.58 15.50 10.06 (Rk6) 10.10

Unconstrained 14.24 11.71 12.37 15.70 6.67 (Rk6) 7.65
Fashion- OTNN 0.31 0.46 0.47 0.36 0.36 (Rk4) 0.39
MNIST Unconstrained 0.53 0.59 0.68 0.73 0.45 (Rk6) 0.46

Table 11: Robustness-SR metrics evaluation; GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Robustness-SR (↓ is better)
GC GI IG Rise Saliency SmoothGrad

CelebA OTNN 28.54 14.01 13.28 30.54 11.64 (Rk1) 12.65
Unconstrained 11.11 9.19 10.00 15.15 7.38 (Rk2) 7.20

Fashion- OTNN 1.69 3.31 3.36 3.27 2.29 (Rk3) 2.01
MNIST Unconstrained 1.17 1.36 1.17 1.15 1.21 (Rk4) 1.25

A.5 Complementary qualitative results

In this section, we provide more samples of couterfactual exlanations for OTNN, based on the
gradient, i.e. x− t ∗ f̂(x)∇xf̂(x) for t > 1.

Fig. 6 gives more results on FashionMNIST.

Fig. 7,8,9,10,11,12 presents more results on the labels presented in the core of the paper,
Mouth_Slightly_Open, Mustache,Wearing_Hat.

To end with, we presents results for other labels of CelebA. For ethic concerns we have hidden labels
that can be subject to misinterpretation, such as Attractive, Male, Big_Nose.

Figure 6: FashionMNIST samples
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Table 12: Complexity of Saliency map by JPEG compression (kB): lower is better
CelebA FashionMNIST

OTNN 9.48 0.92
Unconstrained 16.84 0.94

Figure 7: Samples from label Mouth_slightly_open: left source image (closed) , center difference
image, right counterfactual (open) of form x− 10 ∗ f̂(x)∇xf̂(x)
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Figure 8: Samples from label Mouth_slightly_open: left source image (open) , center difference
image, right counterfactual (close) of form x− 10 ∗ f̂(x)∇xf̂(x)
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Figure 9: Samples from label Mustache: left source image (no mustache) , center difference image,
right counterfactual (mustache) of form x− t ∗ f̂(x)∇xf̂(x) with t ∈ {5, 10, 20}

Figure 10: Samples from label Mustache: left source image (Mustache) , center difference image,
right counterfactual (Non Mustache) of form x− t ∗ f̂(x)∇xf̂(x), t ∈ 5, 10
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Figure 11: Samples from label Wearing Hat: left source image (No Hat) , center difference image,
right counterfactual (Hat) of form x− t ∗ f̂(x)∇xf̂(x), t ∈ 5, 10
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Figure 12: Samples from label Wearing Hat: left source image (Hat) , center difference image, right
counterfactual (No Hat) of form x− t ∗ f̂(x)∇xf̂(x), t ∈ 5, 10

Bald→ "not" Bald

"not" Bald→ Bald

Figure 13: Samples from label Bald
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Black_Hair→ "not" Black_Hair

"not" Black_Hair→ Black_Hair

Figure 14: Samples from label Black_Hair

Blond_Hair→ "not" Blond_Hair

"not" Blond_Hair→ Blond_Hair

Figure 15: Samples from label Blond_Hair

Blurry→ "not" Blurry

"not" Blurry→ Blurry

Figure 16: Samples from label Blurry
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Brown_Hair→ "not" Brown_Hair

"not" Brown_Hair→ Brown_Hair

Figure 17: Samples from label Brown_Hair

Eyeglasses→ "not" Eyeglasses

"not" Eyeglasses→ Eyeglasses

Figure 18: Samples from label Eyeglasses
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Gray_Hair→ "not" Gray_Hair

"not" Gray_Hair→ Gray_Hair

Figure 19: Samples from label Gray_Hair

Hairline→ "not" Hairline

"not" Hairline→ Hairline

Figure 20: Samples from label Hairline
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Heavy_Makeup→ "not" Heavy_Makeup

"not" Heavy_Makeup→ Heavy_Makeup

Figure 21: Samples from label Heavy_Makeup

Rosy_Cheeks→ "not" Rosy_Cheeks

"not" Rosy_Cheeks→ Rosy_Cheeks

Figure 22: Samples from label Rosy_Cheeks

Smiling→ "not" Smiling

"not" Smiling→ Smiling

Figure 23: Samples from label Smiling
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Wearing_Lipstick→ "not" Wearing_Lipstick

"not" Wearing_Lipstick→Wearing_Lipstick

Figure 24: Samples from label Wearing_Lipstick

Young→ "not" Young

"not" Young→ Young

Figure 25: Samples from label Young
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