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Abstract

The present work investigates the asymptotic behaviors, at the zero-noise limit, of the first collision-time and

first collision-location related to a pair of self-stabilizing diffusions and of their related particle approximations.

These asymptotic are considered in a peculiar framework where diffusions evolve in a double-wells landscape where

collisions manifest due to the combined action of the Brownian motions driving each diffusion and the action of a self-

stabilizing kernel. As the Brownian effects vanish, we show that first collision-times grow at an explicit exponential

rate and that the related collision-locations persist at a special point in space. These results are mainly obtained by

linking collision phenomena for diffusion processes with exit-time problems of random perturbed dynamical systems,

and by exploiting Freidlin-Wentzell’s LDP approach to solve these exit-time problems. Importantly, we consider

two distinctive situations: the one-dimensional case (where true collisions can be directly studied) and the general

multidimensional case (where collisions are required to be enlarged).

Key words: Noise-induced collisions; Asymptotic of McKean-Vlasov diffusion at small-noise limit; Freidlin-

Wentzell theory of Gaussian perturbed dynamical systems.
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1 Introduction

1.1 Setting

In this paper, we are interested in estimating the zero-noise limit of the first collision-time and first collision-location (or

an ǫ-approximation of these quantities) of two nonlinear self-stabilizing diffusions, X = (Xt)t≥0 and Y = (Yt)t≥0,

whose dynamics are given by:




Xt = x1 + σBt −

∫ t

0

(
∇V (Xs) +

∫
∇F (Xs − x) µX(s, dx)

)
ds ,

µX(t) = Law(Xt) , t ≥ 0 ,

(1a)

and 


Yt = x2 + σB̃t −

∫ t

0

(
∇V (Ys) +

∫
∇F (Ys − y) µY (s, dy)

)
ds ,

µY (t) = Law(Yt) , t ≥ 0 .

(1b)
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Here and after, x1 and x2 feature two deterministic initial conditions, σ a positive constant and B and B̃ denote two

independent Rd-Brownian motions. The derive functions in (1a) and (1b) are characterized by the potentials functions

V and F which, in addition to be smooth, will be assumed to generate, on the one hand, a bistable landscape and, on

the second hand, a stabilization effect which settles down each dynamic in a given steady region (our exact setting is

detailed in Assumptions (A) below).

Self-stabilizing diffusions define particular instances of McKean-Vlasov models with contractive nonlinear coef-

ficients. The latter, historically introduced in [McK66], [McK67], broadly refer to a class of SDEs where coefficients

depend on the distribution itself of the solution to the equation. McKean-Vlasov models arise with the probabilistic

interpretation of nonlinear PDEs and as the mean-field - or large population - limit of interacting stochastic particle

systems; we refer the interested reader to [B03], [JW17], [CD21] for exhaustive surveys on these topics. For their

parts, the dynamics (1a) and (1b) emerge as the natural large population limit (N ↑ ∞) of the family of exchangeable

interacting particle systems (X1,N , · · · , XN,N) and (Y 1,N , · · · , Y N,N), given by:





X i,N
t = x1 + σBi

t −
∫ t

0

(
∇V

(
X i,N

s

)
+

1

N

N∑

j=1

∇F
(
X i,N

s −Xj,N
s

))
ds ,

t ≥ 0 , 1 ≤ i ≤ N ,

(2a)

and 



Y i,N
t = x2 + σB̃i

t −
∫ t

0

(
∇V (Y i,N

s ) +
1

N

N∑

j=1

∇F
(
Y i,N
s − Y j,N

s )
)
ds ,

t ≥ 0 , 1 ≤ i ≤ N ,

(2b)

the driving noises (B1, · · · , BN ) and (B̃1, · · · , B̃N ) denoting here mutually independent copies of B and B̃.

The motions of the self-stabilizing diffusions (1a) and (1b) are governed by three mechanisms: the diffusive

effect of the Brownian motions whose intensities are parameterized by σ; the action of the external potential force

−∇V ; and the action of an internal potential force −∇F , characterizing at the meso-scopic scale, the interactions

driving (2a) and (2b). In the absence of an internal force, the diffusions correspond to stochastic gradient flows

whose long-time behaviors, for a non-trivial potential V with suitably growth, are governed by the Gibbs measure

(Rσ)
−1 exp{−2V/σ2} - where Rσ is standing for a renormalizing constant - regardless of the convexity of V and

the initial states. On the other hand, in the absence of an external potential, the force field −∇F may induce a

long-time stabilization effect on the Brownian diffusion towards an invariant probability measure depending only on

the first initial moment of the diffusion process (see [BRTV98], [BRV98]). Combined, the potentials can create a

discrepancy generating multiple invariant probability measures. A prototypical example where this situation occurs is

given by the one-dimensional double-wells potential V (x) := x4/4−x2/2 and the mean-attracting force generated by

F (x) := αx2/2 and α > 0 (we refer the interested reader to the seminal papers [K40] and [D83], and the references

therein, for the practical and theoretical interests of these potentials). The resulting model illustrates the situation

where different stationary regimes emerge depending on the parameters α and σ. The wells λ1 = −1 and λ2 = 1
and the “bump” λ0 = 0 characterize the three possible attractive points for the dynamics which dominate long-time

asymptotic as σ ↓ 0. Whenever σ is larger than a certain threshold, convergence to the unique invariant measure is

ensured while, whenever σ is below this threshold, three invariant probability measures emerge, two of them being

concentrated around λ1 and λ2 ([D83, Sections 3 and 4]). In the case where α is itself large enough (a case that we

will below refer to as synchronization), long-time behavior can be analyzed at very small-noise intensity.

The question of the long-time behavior of self-stabilizing diffusions along establishing explicitly the asymptotic

“large population, large time” of the related particle systems, has been intensively investigated under prior assumptions

ensuring uniqueness of the invariant measure, see e.g. [BCCP98], [M01], [BGG13], [CMV03], [CGM08], [BGM10].

In the case where different invariant measures exist, the long-time convergence of self-stabilizing diffusions has been

addressed in e.g. [T84], [T13], [DT18].

From here on, the pairs (1a)-(1b) and (2a)-(2b) will be all subject to the following assumptions:

(A) − (i) V : Rd → R is of class C2, uniformly convex at infinity, and such that ∇V is locally Lipschitz continuous

and grows at most at a 2n-polynomial rate. Namely, ∇V satisfies the following properties: for some threshold R′ > 0,



the matrix inf ||x||≥R′ ∇2V (x) is positive definite;

∀R > 0, sup
max(||x||,||y||)<R

||∇V (x) −∇V (y)||
||x− y|| < ∞,

and

sup
x∈Rd

{
(1 + ||x||2n)−1||∇V (x)||

}
< ∞ ,

|| · || denoting the Euclidean norm.

(A)− (ii) V admits exactly two distinct (strict) local minima located at the points λ1 and λ2.

(A)− (iii) F (x) := α
2 ||x||2 with α > −θ for θ := infx∈Rd infξ∈Rd : ||ξ||=1

(
ξ∇2V (x)ξ

)
.

(A) − (iv) Each initial condition x1 and x2 lies in a distinctive basin of attraction of V , that is: for i = 1 or 2, xi

belongs to the set G(λi) defined by

G(λi) :=

{
z ∈ R

d : λi = lim
t→∞

φt(z) for φt(z) = z −
∫ t

0

∇V (φs(z)) ds

}
.

Under Assumptions (A) − (i) to (A) − (iii), Equations (1a) and (1b) are well-posed, with uniqueness holding in

a path-wise sense, and the solutions X and Y each has uniform-in-time finite moments of all orders (see [HIP08,

Theorem 2.13] for the precise statements and demonstrations of these results). The same implication can be stated for

(2a) and (2b) with: for all p > 0,

sup
t,N

E

{
||X i,N

t ||2p + ||Y i,N
t ||2p

}
< ∞ .

The condition (A)− (iii) corresponds to the simplest form of synchronized regime and has been purposely chosen to

simplify some proof arguments later on. (Possible extensions of our working assumptions, notably (A) − (iii), will

be presented at the end of this section.) In view of (A)− (i), the self-stabilizing force compensates the lack of global

convexity of the potential V , and the resulting effective potential of the system, x 7→ V (x) +
∫
F (x − z)µ(dz) =

V (x) + α
2

∫
||x − y||2µ(dy) is uniformly convex on R

d, independently of the measure argument µ.

Without further assumptions and outside the one-dimensional case (which will be treated separately from the

general d-dimensional case), tracking the first time t where X and Y will collide is by nature ill-posed. Indeed, in the

case d ≥ 2, as B and B̃ almost surely do not collide at finite time, under the assumptions (A) − (i) and (A) − (iii)
- and up to a change of probability measure - the same can be stated for the pairs (X,Y ) and (X i,N , Y i,N ). Properly,

the first collision-time between (1a) and (1b) is obtained by the ε ↓ 0-limit of the family of stopping times:

Cε(σ) := inf {t ≥ 0 : ||Xt − Yt|| ≤ 2ε} , (3)

while the first collision-location is characterized by the ε ↓ 0-limit of (XCε(σ), YCε(σ)) in some region of the space.

(Below, this limit will be often refer to as the persistence of the first collision-location.) Considering the continuously

diffusive nature of X and Y for arbitrary σ > 0, approximating true-collisions into ǫ-collisions is rather natural.

Equivalently, this approximation amounts to widening the point-materials (Xt, Yt) into a pair of moving permeable

balls, with center of mass located in Xt and Yt at each time t, and with a specified radius ǫ defining the radius of

collision between the two bodies. To avoid any trivial situation, the collision radius ε has to be taken smaller than the

smallest distance between the zero-noise limit (φ(x1), φ(x2)) of (X,Y ); that is

ε0 := 2−1 inf
t≥0

{||φt(x1)− φt(x2)||} . (4)

The analog for (2a)-(2b) is characterized by the family of hitting times,

Ci
ε,N (σ) := inf

{
t ≥ 0 : ||X i,N

t − Y i,N
t || ≤ 2ε

}
, 1 ≤ i ≤ N . (5)

The assumptions (A)−(i) to (A)−(iv) are purposely set to generate a specific regime where collisions result from

the sole and combined actions of the driving Brownians. As these actions vanish with σ, collision-time necessarily



grows at a certain rate while the associated collision-location may remain in a balanced region between the wells λ1

and λ2. Both phenomena are intuitively determined by the parameters α, σ, the radius ε and the depth of the wells

where lie the attractors λ1 and λ2.

More specifically, the combination of (A) − (i), (A) − (ii) and (A) − (iv) ensures a bistable regime where all

diffusions evolve in a landscape where λ1 and λ2 define two separate attractors, one for X and the other one for Y . As

σ ↓ 0, all sources of randomness disappear and the paths of (1a) and (1b) naturally simplify into two gradient flows

φ(x1) and φ(x2) solutions to

dφt(xk)

dt
= −∇V (φt(xk)), φ0(xk) = xk, k = 1, 2 .

Due to (A) − (iv), limt→∞ φt(xk) = λk and, with (A) − (ii), φ(x1) and φ(x2) are collision-free. In the same way,

each moving dynamical couple of balls with a center of mass located at φt(x1) and φt(x2) are collision-free at all

time t. Finite time ε-collisions so occur as long as the diffusive effects of B and B̃ remain. As time goes by and as σ
vanishes, the potential force prevails and, for a collision to happen, the driving Brownians have to force each diffusion

X and Y to overcome their potential barrier. As such, and in view of (A) − (ii) and (A) − (iv), the asymptotic

limσ→0(XCε(σ), YCε(σ)) should remain in a region surrounding λ1 and λ2, and whose "width" depends on ǫ. This

phenomenon is also expected for (2a) and (2b). Indeed, as σ ↓ 0, the particle systems (X i,N , Y i,N ), 1 ≤ i ≤ N ,

converge to the family of dynamical systems (φi(x1), φ
i(x2)), 1 ≤ i ≤ N , satisfying

dφi
t(xk)

dt
= −∇V (φi

t(xk))− α
(
φi
t(xk)−

1

N

N∑

j=1

φj
t (xk)

)
, φi

0(xk) = xk, 1 ≤ i ≤ N, k = 1, 2 .

As (A) − (i) ensures that ∇V is locally Lipschitz continuous and as all the flows φj(xk) start at xk, a uniqueness

argument yields that each φi(xk) simply corresponds to φ(xk).
Our interest for the present study has been initially motivated with the modeling and the analysis of collisions

induced by a vanishing random perturbation in swarming interacting multi-agent systems, notably in Cucker-Smale

models. Introduced in [CS07a], [CS07b], these models broadly define a class of second order high dimensional

systems representing, at each time, the position and the velocity of a finite population of individuals of the same specie.

Albeit initially dispersed, individuals, through their interactions, adopt a common behavior over time. Since their

introduction, Cucker-Smale models and their connections with statistical physics have been extensively studied and

adapted to wider situations in social science and in economy (see e.g. [NPT10], [PT14]). The introduction of stochastic

perturbation has also been considered where a variety of collective behaviors can be found depending on how the noise

acts in the dynamic (additively or multiplicatively; privately or commonly; ...); see [P17], [CDL18] and the references

therein. In parallel to the impact of the noise in flocking models, another extension which motivated our setting is

the introduction of leaders (see again [PT14]) in the models, which influence the emergence of distinct agglomeration

over distinct steady regions. Having this modeling perspective in mind, the particle systems (2a) and (2b) - and

their large population limit (1a) and (1b) - can be viewed as describing only the positions of two groups of bodies

(representing e.g. economical agents, animal populations or cells) where each group evolves independently from the

other and is attracted to a specific source (e.g. economical objectives, nutriment sources, or chemical attractants).

Placed in a random environment where each individual is affected by an idiosyncratic noise, the two entities are forced

to collide - ε being understood as a range of influence. In this framework, we specifically address the question of how

characteristics of the first collision (time and location) behave as the source of the collision elapses.

Compared to our original interest, the models (1a)-(1b) and (2a)-(2b) only provide a simplified version of our cases

of interest: Langevin dynamics are eased into their over-damped - or Kramers-Smoluchowski - limits and all possible

interaction, notably any possible post-collision effect, between the two self-stabilizing diffusions - or the two families

of particles - are neglected. Concretely, the extension of our main results to the framework of Cucker-Smale models -

or even general second order dynamics - currently out-scopes the applicative and technical range of the present paper.

This gap is inherent to the fact that LDP for Langevin dynamics have been scarcely addressed in the literature. This

gap is further significant with Freidlin-Wentzell’s theory on exit-time problems - which carries the essence of this

paper. Enabling to fill this gap would require to revisit Freidlin-Wentzell’s theory and further thoroughly revisit the

literature addressing this theory in the case of self-stabilizing diffusions. Despite this deviation from our initial intent,



the present framework and the methodology developed later in the paper set a solid theoretical basis, solid enough to

carry our scientific program in the near future.

1.2 First collision-times viewed as first exit-times

As it will become clear in a few lines, and following the terminology introduced in [HIP08], the questions of estimating

how fast the first collision-times between (X,Y ) and (X i,N , Y i,N ) grow and whether - and where - the first collision-

locations (XCε(σ), YCε(σ)) and (X i,N

Ci
ε,N (σ)

, Y i,N

Ci
ε,N (σ)

) may persist amount to establishing a Kramers’ type law for the

systems (1a)-(1b) and (2a)-(2b). By definition, Cε(σ) can be alternatively viewed as the first time when the diffusion

(X,Y ) enters the domain △ε := {(x, y) ∈ R
d : ||x − y|| ≤ 2ε} or equivalently the first time when (X,Y )

leaves R2d \ △ε. With this view, the natural framework to study our question is the one of the large deviations, and

more precisely the Freidlin-Wentzell theory on the exit-problem for the perturbed dynamical systems out of stable sets

(see the definition below). While we refer the reader to [FW98, Chapters 3 and 4] - and [DZ10, Sections 5.6, 5.7] - for

a detailed introduction on this theory, for the sake of completeness, we briefly recollect essential results which will be

used later on.

Consider the diffusion process:

zσt = z0 + σWt +

∫ t

0

b (zσs ) ds , t ≥ 0, (6)

where b is a smooth vector field on R
m (m ≥ 1) and W is a R

m-Brownian motion. As σ decreases, the paths of zσ

become closer to the deterministic dynamical system Ψ(z0) defined by

Ψt(z0) = z0 +

∫ t

0

b (Ψs(z0)) ds, t ≥ 0.

Precisely, the way at which zσ approaches Ψ(z0) obeys to the following large deviations principle: for any finite

arbitrary time horizon T and for any δ > 0, as σ ↓ 0,

logP

{
sup

t∈[0;T ]

||zσt −Ψt(z0)|| > δ

}
≈ − 1

2σ2
inf
Φ

{∫ T

0

∣∣∣∣
∣∣∣∣
dΦt(z0)

dt
− b(Φt(z0))

∣∣∣∣
∣∣∣∣
2

dt

}
, (7)

the infimum being taken over the class of continuously differentiable functions Φ : [0, T ] → R
m starting from z0 at

t = 0, and such that max0≤t≤T ||Φt(z0)−Ψt(x0)|| > δ. In the case where the orbits Ψ(z0) have a unique attractor -

that is limt→∞ Ψt(z0) = a0 for any starting point z0 - the paths of zσ are naturally wandering around a neighborhood

of a0, as σ decreases to 0.

As such, the diffusion will stick to a neighborhood of a0 for an arbitrary long-time, for small values of σ. One

may wonder which time scale will it take for zσ to escape such neighborhood. For this question, the relevant sets to

consider are given by the class of stable sets.

Definition 1.1. A subset G of Rd is said to be stable by the vector field b if the orbits Ψ(z0) = (Ψt(z0))t≥0 defined as

in (1.2) are included in G for all initial state z0 ∈ G.

While the terminology “stable by” is more often referred to as “positively invariant by” in the literature, we retain

the former terminology to remain consistent with the bibliographic sources referenced hereafter.

Under not-too restrictive assumptions on b, M. I. Freidlin and A. D. Wentzell established the exponential growth

of the exit-time of zσ from a domain G stable by b and the concentration point of zσ evaluated at this exit-time. In the

special case of stochastic gradient flows, with b = −∇U , Freidlin-Wentzell results formulate as follows (see [FW98,

Chapter 4, Theorem 3.1], [DZ10, Theorem 5.7.11]):

Theorem 1.2. Assume that U : Rm → R is of class C1 with ∇U Lipschitz continuous on R
d, and define the exit-time

τG(σ) = inf{t > 0 : zσt ∈ ∂G},



for zσ as in (6) and G an open bounded set of Rd, stable by −∇U and G contains one and only one minimizer of U ,

a0. If, for all z0 in the closure G, Ψt(z0) converges to a0 as t ↑ ∞ then, for any z0 in G, we have

lim
σ→0

P

{
exp

[
2

σ2
(H − δ)

]
< τG(σ) < exp

[
2

σ2
(H + δ)

]}
= 1 , (8)

where

H := inf
z∈∂G

(
U(z)− U(a0)

)
,

corresponds to the so-called exit-cost (from G). Additionally,

(a) For all z0 in G, limσ→0
σ2

2 log
(
E
{
τG(σ)

})
= H ;

(b) For any closed subset N of ∂G such that

inf
z∈N

[U(z)− U(a0)] > inf
z∈∂G

[U(z)− U(a0)] ,

then

lim
σ→0

P

{
zστG(σ) ∈ N

}
= 0.

The properties (8) and (a) above state that τG(σ) grows at an exponential rate in probability and in average. The

property (a) specifically recovers the so-called Arrhenius’ law ([A89], [L84]) also known as a first-form of Kramers-

Eyring law ([E35], [K40], [B13]). Additionally, the result demonstrates that the exit-location zσ
τG(σ)

asymptotically

concentrates on the region where it is the least costly to exit the domain starting from the attraction point a0. In

particular, if there exists a unique z⋆ in ∂G such that U(z⋆)− U(a0) = infz∈∂G(U(z) − U(a0)), then, for all δ > 0,

z0 ∈ G,

lim
σ→0

P

{
||zστG(σ) − z⋆|| < δ

}
= 1 .

It is worth noticing that Freidlin-Wentzell results are purposely stated here in a simplified framework and the original

Freidlin-Wentzell result in [FW98], [DZ10] also holds true for non-reversible processes. On the other hand, the force

field −∇U is assumed to be globally Lipschitz, whereas, in the paper, we consider a setting which clearly violates this

condition. In effect, the globally Lipschitz assumption can be weakened to a local one (this extension was previously

remarked in e.g. [HIP08]).

The question of whether Freidlin-Wentzell theory applies to self-stabilizing diffusions is not new and has been

addressed by S. Herrmann, P. Imkeller and D. Peithmann in their work [HIP08]. Therein, the authors establish an

analog of Theorem 1.2, which they refer to as a Kramers’ type law, for the self-stabilizing diffusion Z satisfying




Zt = z + σBt −

∫ t

0

(
∇U (Zs) +

∫
∇F (Zs − x) µZ(s, dx)

)
ds ,

µZ(t) = Law(Zt) , t ≥ 0 .

The potentials U and F are both assumed to be uniformly convex and the unique attractor of U is a. The law for the

exit-time τG(σ) := inf{t ≥ 0 : Zt /∈ G} is there ([HIP08, Theorem 4.2 and Section 5]) given by

τG(σ) ≈ exp

[
2

σ2
H

]
, H := inf

z∈∂G
{U(z)− U(a) + F (z − a)} , (9)

for ≈ denoting asymptotic equivalence as in (8).

In a series of papers, the second author has successfully extended these Kramers’ type laws to the situation of a

non-globally convex potential U , under a synchronized regime or weaker assumptions (see [T18], [T19] and references

therein) as well as for stochastic particle systems ([T20]). Parts of the strategies displayed in these papers will be

adapted or extended herein. Notably, the coupling technique which asserts that a self-stabilizing diffusion can be

found arbitrarily close to a given Markov process after a certain (deterministic) time.



1.3 Main results

For the case of the self-stabilizing diffusions (1a)-(1b), the Kramers’ type law for Cε(σ) defined in (3) states as follows:

Theorem 1.3. Let H0 be the minimum of the function H0 : Rd → R given by

H0(λ) := 2V (λ)− V (λ1)− V (λ2) + F (λ− λ1) + F (λ− λ2) , (10)

and let λ0 be the unique minimizer of H0. Then, for any δ > 0,

lim
ε→0

lim
σ→0

P

{
exp

[
2

σ2
(H0 − δ)

]
< Cε(σ) < exp

[
2

σ2
(H0 + δ)

]}
= 1 .

Moreover, the collision-location (XCε(σ), YCε(σ)) persists asymptotically in the vicinity of λ0. Namely: for any δ > 0,

lim
ε→0

lim
σ→0

P

{
max

( ∣∣∣∣XCε(σ) − λ0

∣∣∣∣ ,
∣∣∣∣YCε(σ) − λ0

∣∣∣∣
)

≤ δ

}
= 1 .

Remark 1.4. Notice that the existence and the uniqueness of the minimizer λ0 is a direct consequence of the synchro-

nization assumption (A)− (iii). As this condition yields the uniform convexity of x 7→ V (x) + F (x−m) for any m
in R

d, readily,

λ0 =
(
∇V + αId

)−1
(
α

2
(λ1 + λ2)

)
,

for Id denoting the identity map x 7→ Id(x) = x. Illustratively, in the situation of a perfectly symmetrical landscape

- namely λ1 = −λ2 - λ0 is simply the root of x 7→ ∇V (x) + αx, and in the more prototypical case where V (x) =
x4/4 − x2/2, the first collision-location persists at the hill λ0 = 0. In the situation of the asymmetric double-wells

potential V (x) = x4/4+x3/3−x2/2, where the wells are located at the points −1/2±
√
5/2 - the lowest well lying in

−1/2−
√
5/2 -, and for a synchronization α > 4/3, λ0 corresponds to the root of the polynomial V ′(x)+α(x+1/2).

This point is notably distinct from the saddle point x = 0 of V ′.

The above Kramers’ type law is on par with what one would have expected from a heuristic application of (9):

assuming that the domain (Rd × R
d) \ △ε was stable, Cε(σ) would obey to the general asymptotic estimate (8) with

the exit-cost

inf
(x,y)∈∂△ε

(
V (x) − V (λ1) + F (x − λ1) + V (y)− V (λ2) + F (y − λ2)

)
.

Also, all possible exit-locations from (Rd ×R
d) \ △ε would be resting in the corresponding set of minimizers. Since

the boundary ∂△ε corresponds to the set {(x, y) ∈ R
d × R

d : ||x − y|| = 2ε}, as ε is taken smaller and smaller, the

exit-cost would get closer to

inf
x

(
2V (x)− V (λ1)− V (λ2) + F (x− λ1) + F (x− λ2)

)
,

that is H0 = infH0, and exit-locations closer to the related minimizer, λ0. However, due to the a-priori lack of

stability of (Rd × R
d) \ △ε, this direct argument can not be applied and a rigorous demonstration of Theorem 1.3

requires a substantial detour. To circumvent the possible instability of (Rd×R
d)\△ε, we rather interpret Cε(σ) as the

first time X and Y are simultaneously found at an ε-neighborhood of any point λ of Rd. Precisely Cε(σ) can be written

as infλ βλ,ε(σ) for βλ,ε(σ) the first time X and Y both enter the ball of radius ε and centered in λ. Indeed, by triangular

inequality, Cε(σ) ≤ infλ βλ,ε(σ), meanwhile Cε(σ) ≥ βλε,σ ,ε(σ) ≥ infλ βλ,ε(σ), for λε,σ := 2−1(XCǫ(σ)+YCǫ(σ)).
As each βλ,ε(σ) approximates the first time X and Y meet at the point λ, these stopping times allow a parametrization

of the possible collision-location (for instance at λ). Subsequently, this parametrization enables us to lean against

Freidlin-Wentzell theory, provided some suitable preliminaries (which will be the subject of Section 2), and next, to

borrow and to adapt the coupling techniques from [T19], [T21].

This strategy further allows to derive similar asymptotics for Ci
ε,N (σ) defined in (5). The Kramers’ type law in

this case is given by the following theorem.



Theorem 1.5. Let H0 and λ0 be as in Theorem 1.3. Then, for N large enough, it holds: for any 1 ≤ i ≤ N , δ > 0,

lim
ε→0

lim
σ→0

P

{
exp

[
2

σ2
(H0 − δ)

]
< Ci

ε,N (σ) < exp

[
2

σ2
(H0 + δ)

]}
= 1 ,

and

lim
ε→0

lim
σ→0

P

{
max

( ∣∣∣
∣∣∣X i,N

Ci
ε,N

(σ)
− λ0

∣∣∣
∣∣∣ ,
∣∣∣
∣∣∣Y i,N

Ci
ε,N

(σ)
− λ0

∣∣∣
∣∣∣
)

≤ δ

}
= 1 .

1.4 Organization of the paper

The next section serves as a preliminary step as well as a guideline for treating self-stabilizing and particle diffusions.

In that section, we focus on establishing a Kramers’ type law for the first collision-time of two stochastic gradient

flows driven each by a different uniformly convex potential. Following this preliminary, and, as previously mentioned,

relying on a coupling argument, we demonstrate Theorem 1.3 in Section 3, and Theorem 1.5 in Section 4. The last

section, Section 5, focuses on the one-dimensional situation where the exact first collision-times

C(σ) = inf{t ≥ 0 : Xt = Yt}, Ci
N (σ) = inf{t ≥ 0 : X i,N

t = Y i,N
t } ,

can be defined. Analog for Theorems 1.3 and 1.5 (see Theorems 5.2 and 5.3) are established with more direct argu-

ments than in the multi-dimensional case.

1.5 Discussion on some extensions

As previously mentioned, our main results are presented in the simplest form of self-stabilization with F being given

by the quadratic form α
2 ||x||2 - with α satisfying the synchronization assumption (A) − (iii). The only crucial

assumption needed for Theorems 1.3 and 1.5 is the consequence of this synchronization condition which makes x 7→
V (x) +

∫
F (x − y) ν(dy) uniformly convex, independently of ν. The nonlinear McKean derive can be extended

into the more general form −
∫
∇F (x − y)µ(t, dy), provided this convexity property holds. This could be achieved

for F (x) = G(||x||) for an even polynomial function G, with a degree larger than 2, and such that G(0) = 0. This

setting has already been considered in [T20], and, with not too much effort, the coupling results, Lemma 3.1 and

Proposition 4.1, can be established in this weaker setting.

In addition to the extension of the interaction potential F , our setting can also be extended to the situation where

(1a)-(1b) start from random initial states. As long as (X0, Y0) is a.s. bounded (to ensure uniform moments control)

and as long as the marginal laws of X0 and Y0 have full support on different basins of attraction of V , our main results

still hold true.

The condition (A) − (ii) can also be weakened to take into account a multi-wells landscape. This means to con-

sider, in place of (A)− (ii), that V admits m (with m > 2) distinct minimizers located at distinct points, λ1, · · · , λm.

This generalization does not fundamentally alter the collision between two (self-stabilizing) diffusions and potentially

opens the door to consider collision between multiple diffusions. Heuristically, we expect that analogs to Theorems

1.3 and 1.5 should hold for the approximated first collision-time between the m self-stabilizing diffusions related to

the family of wells. The corresponding exit-cost should be

inf
λ

{
m∑

k=1

(
V (λ) − V (λk) + F (λ− λk)

)
}

,

and the collision-location should be found at the point:

( m∑

l=1

∇Ψl

)−1

(0), Ψl(x) := V (x) + F (x− λl) .



Assuming back (A)− (ii), this would mean

λ0 =
(
∇V + αId

)−1
(
αm−1

m∑

l=1

λl

)
.

The rigorous derivation of these heuristics are nonetheless non-trivial, and should be addressed carefully.

Finally, coming back to the assumption (A) − (iii), the synchronization can itself be weakened. While this

condition has been essential in our proof arguments, as pointed out in [T19, Corollary D] (for d = 1) and [T21,

Theorem 3.4] (for general d > 1), synchronization may also be weakened for coupling techniques albeit for the case

where ∇F is linear (i.e. F (x) = ||x||2/2). The weaker condition formulates there as: for i = 1, 2, there exists ρi > 0
such that, for x ∈ R

d

(x− λi) (∇V (x) + α(x− λi)) ≥ ρi||x− λi||2 .
Let us point out that this condition allows broadly a control of the proximity between the law of the self-stabilizing

diffusions and their assigned attractors (see again [T19] and [T21] for the precise statement). From this control, (27)

below may still deduced. However, coupling estimates will cease to hold true and obtaining Theorems 1.3 and 1.5

under this weaker condition will necessitate a complete new strategy, rather based on expanding [HIP08] into non-

(global) convex.

2 On the first collision of two independent stochastic gradient flows

In this section, we establish the zero-noise asymptotic of the approximated collision-time

cǫ(σ) := inf {t ≥ 0 : ||xσ
t − yσt || ≤ 2ǫ} , ǫ > 0, (11)

related to the two general stochastic gradient flows:

xσ
t = x0 + σBt −

∫ t

0

∇Ψ1 (x
σ
s ) ds, t ≥ 0, (12a)

and

yσt = y0 + σB̃t −
∫ t

0

∇Ψ2 (y
σ
s ) ds , t ≥ 0. (12b)

The starting points, x0 and y0, are assumed to be distinct, and the driving potentials, Ψ1 and Ψ2, to be uniformly

convex, of class C2, and to achieve their minimum in two different points, λ1 and λ2 respectively. Additionally, by

analogy with (A)− (iv), we assume the orbits:

ϕ1,−
t = x0 −

∫ t

0

∇Ψ1

(
ϕ1,−
s

)
ds, t ≥ 0,

and

ϕ2,−
t = y0 −

∫ t

0

∇Ψ2

(
ϕ2,−
s

)
ds, t ≥ 0,

never hit each other at any time t. This assumption does not impose the graphs Ψ1 and Ψ2 to be disjoints but ensures

that xσ and yσ are collision-free at σ = 0.

Following this last assumption, we set the radius ǫ in (11) to be strictly smaller than

ǫ0 := 2−1 inf
t≥0

∣∣∣
∣∣∣ϕ1,−

t − ϕ2,−
t

∣∣∣
∣∣∣ > 0 . (13)

This way, the initial states, x0 and y0, and the attracting points, λ1 and λ2, are separated by a distance strictly larger

than 2ǫ0. We finally assume from here on that ǫ < ǫ0, making as such cǫ(σ) non-trivial. (If ǫ was chosen larger than

ǫ0, then, in view of the LDP (7), there would exist σ0 > 0, T0 < ∞ such that P{cǫ(σ) ≤ T0} = 1 for any σ ≤ σ0 and

cǫ(σ) would be bounded a.s..)



The asymptotic of cǫ(σ) is brought by the interpretation cǫ(σ) = infλ∈Rd τλ,ǫ(σ) for τλ,ǫ defining the first time xσ

and yσ are simultaneously located at a ǫ-neighborhood of a given point λ of Rd; that is

τλ,ǫ(σ) := inf {t ≥ 0 : ||xσ
t − λ|| ≤ ǫ and ||yσt − λ|| ≤ ǫ} . (14)

From this interpretation, below we first establish a Kramers’ type law for the time τλ,ǫ(σ) and for the location (xσ
τǫ,λ(σ)

, yσ
τλ,ǫ(σ)

)

(see Lemma 2.3 below), deduce next a Kramers’ type law for cǫ(σ) and (xσ
cǫ(σ)

, yσ
cǫ(σ)

) for small enough ǫ > 0 (Propo-

sition 2.4), and finally conclude on the asymptotic behavior at the limit ǫ ↓ 0 (Theorem 2.5).

2.1 Asymptotic estimates for τλ,ǫ(σ)

According to its very definition, τλ,ǫ(σ) corresponds to the first time the diffusion (xσ, yσ) enters B(λ; ǫ) × B(λ; ǫ),
or equivalently exits from the domain

(
R

d × R
d
)
\
(
B(λ; ǫ)× B(λ; ǫ)

)
=:
(
B(λ; ǫ)× B(λ; ǫ)

)c
,

forB(λ; ǫ) denoting the closed ball centered in λ and of radius ǫ. Considering that the set
(
R

d × R
d
)
\
(
B(λ; ǫ)× B(λ; ǫ)

)

is not necessarily stable by (−∇Ψ1,−∇Ψ2), Theorem 1.2 can not yet be applied to deduce the asymptotics of τλ,ǫ(σ).

This technical difficulty can be bypassed by a two-steps modification of the exit-set
(
B(λ; ǫ) × B(λ; ǫ)

)c
to make it

suitable for applying Theorem 1.2.

As a first modification, let us consider the sets

D1
λ,ǫ :=

{
ϕ1,+
t (x) : t ≥ 0, x ∈ B (λ; ǫ)

}
,

and

D2
λ,ǫ :=

{
ϕ2,+
t (y) : t ≥ 0, y ∈ B (λ; ǫ)

}
,

for ϕ1,+(x) and ϕ2,+(y) corresponding to the ascending flows related to ∇Ψ1 and ∇Ψ2:

ϕ1,+
t (x) = x+

∫ t

0

∇Ψ1

(
ϕ1,+
s (x)

)
ds, t ≥ 0 ,

and

ϕ2,+
t (y) = y +

∫ t

0

∇Ψ2

(
ϕ2,+
s (y)

)
ds, t ≥ 0 .

By definition, Di
λ,ǫ, for i = 1 or i = 2, defines a closed domain containing the set of points attainable by the flow

ϕi,+ starting from B(λ; ǫ). Subsequently, the complementary R
d \Di

λ,ǫ corresponds to the largest set stable by −∇Ψi

contained in B(λ; ǫ)
c
. The inherent stability properties further guarantee that the domain

(
R

d × R
d
)
\ (D1

λ,ǫ×D2
λ,ǫ) is

stable by (−∇Ψ1,−∇Ψ2). This statement can be simply checked as follows: for any (x′, y′) in
(
R

d × R
d
)
\ (D1

λ,ǫ ×
D2

λ,ǫ), either x′ lies in R
d \D1

λ,ǫ or y′ lies in R
d \D2

λ,ǫ, and, in each case, at least one of the marginal domain is stable.

Since
(
R

d × R
d
)
\ (D1

λ,ǫ × D2
λ,ǫ) can be rewritten as the union of stable sets

(
R

d ×
(
D2

λ,ǫ

)c)⋃((D1
λ,ǫ

)c
× R

d
)

,

where
(
Di

λ,ǫ

)c
:= R

d \ Di
λ,ǫ, the domain is necessarily stable by (−∇Ψ1,−∇Ψ2).

For any λ ∈ R
d and ǫ > 0, while D1

λ,ǫ × D2
λ,ǫ is larger than B(λ; ǫ) × B(λ; ǫ), the complementary of this

domain fulfills the condition of Theorem 1.2 and exit-costs are only computed along ∂(B(λ; ǫ)×B(λ; ǫ)), in two main

situations: (a) when λ is at a distance strictly larger than ǫ from both wells; (b) when λ lies in a ǫ-neighborhood of

one of the two wells.

• For (a): whenever mini=1,2(||λ− λi||) > ǫ, the ball B(λ; ǫ) and the domain
(
R

d × R
d
)
\ (D1

λ,ǫ ×D2
λ,ǫ) do not

contain any well. According to Theorem 1.2, the exit-cost related to (xσ, yσ) leaving the domain is given by

inf
(x,y)∈∂(D1

λ,ǫ
×D2

λ,ǫ
)

(
Ψ1(x) −Ψ1(λ1) + Ψ2(y)−Ψ2(λ2)

)
.



Since the minima of Ψ1 and Ψ2 are located outside B(λ; ǫ) - and so are outside D1
λ,ǫ and D2

λ,ǫ - the minimum of Ψ1

and the one of Ψ2 lie necessarily outside D1
λ,ǫ ×D2

λ,ǫ. Therefore

inf
(x,y)∈∂(D1

λ,ǫ
×D2

λ,ǫ
)

(
Ψ1(x)−Ψ1(λ1) + Ψ2(y)−Ψ2(λ2)

)

= inf
(x,y)∈D1

λ,ǫ
×D2

λ,ǫ

(
Ψ1(x)−Ψ1(λ1) + Ψ2(y)−Ψ2(λ2)

)

= inf
x∈D1

λ,ǫ

(
Ψ1(x) −Ψ1(λ1)

)
+ inf

y∈D2

λ,ǫ

(
Ψ2(y)−Ψ2(λ2)

)

= inf
x∈∂D1

λ,ǫ

(
Ψ1(x) −Ψ1(λ1)

)
+ inf

y∈∂D2

λ,ǫ

(
Ψ2(y)−Ψ2(λ2)

)
.

Additionally, we can observe that, for i ∈ {1, 2}, the quantity infx∈∂Di
λ,ǫ

(
Ψi(x)−Ψi(λi)

)
is identical to inf

x∈∂B(λ;ǫ)

(
Ψi(x)−

Ψi(λi)). This assertion can be checked, on one side, by observing that, as λi is outside B(λ; ǫ) [resp. Di
λ,ǫ], the infi-

mum ofΨi onB(λ; ǫ) [resp. Di
λ,ǫ] can only be achieved on the boundary∂B(λ; ǫ) [resp. ∂Di

λ,ǫ]. Since B(λ; ǫ) ⊂ Di
λ,ǫ,

inf
x∈∂Di

λ,ǫ

Ψi(x) = inf
x∈Di

λ,ǫ

Ψi(x) ≤ inf
x∈B(λ;ǫ)

Ψi(x) = inf
x∈∂B(λ;ǫ)

Ψi(x) .

On the other side, by definition, for any point x in Di
λ,ǫ, there exists x′ in B(λ; ǫ) such that x = ϕi,+

t (x′) for some t.

Since Ψi increases along the flow ϕi,+,

Ψi(x) = Ψi(ϕ
i,+
t (x′)) ≥ Ψi(x

′) ≥ inf
z∈B(λ;ǫ)

Ψi(z).

• For (b): In the case where λ is in a close neighborhood of one of the two wells, say ||λ − λ1|| = ε̃ for some

0 < ε̃ < ǫ, then B(λ; ǫ) is stable by −∇Ψ1 - by convexity of Ψ1 - and D1
λ,ǫ = R

d. Since ǫ < ǫ0, λ2 is then necessarily

located outside B(λ; ǫ). Since ϕ2,+
t (λ2) = λ2 for all t ≥ 0, necessarily λ2 /∈ D2

λ,ǫ and R
d \ D2

λ,ǫ is stable by −∇Ψ2.

In this case, the related exit-cost is given by

inf
y∈∂D2

λ,ǫ

(
Ψ2(y)−Ψ2(λ2)

)
= inf

y∈∂B(λ;ǫ)

(
Ψ2(y)−Ψ2(λ2)

)
.

The analog can be drawn in the case ||λ− λ2|| = ε̃ with the resulting exit-cost:

inf
x∈∂D1

λ,ǫ

(
Ψ1(x)−Ψ1(λ1)

)
= inf

x∈∂B(λ;ǫ)

(
Ψ1(x)−Ψ1(λ1)

)
.

The remaining case “(c): λ is exactly at a distance ǫ of λ1 or λ2” (that is: one of the wells is located at the boundary

of B(λ; ǫ)) is the only situation where the applicability of Theorem 1.2 of Rd \Di
λ,ǫ can not be simply identified. This

difficulty can be removed by slightly rescaling D1
λ,ǫ ×D2

λ,ǫ into

Oλ,ǫ,ρ :=





D1
λ,ρǫ ×D2

λ,ǫ if ||λ− λ1|| = ǫ,

D1
λ,ǫ ×D2

λ,ρǫ if ||λ− λ2|| = ǫ,

D1
λ,ǫ ×D2

λ,ǫ otherwise ,

for ρ arbitrarily chosen in the interval (0, 1). Rescaling ǫ to ρǫ whenever ||λ − λ1|| = ǫ or ||λ − λ2|| = ǫ ensures

Oλ,ǫ,ρ satisfies to the situation (a).
Distinguishing the cases ||λ− λi|| = ǫ, for i = 1, 2, and according to the discussion above, the set Oλ,ǫ,ρ is stable

by (−∇Ψ1,−∇Ψ2). The related exit-cost

ĥρ
ǫ (λ) := inf

(x,y)∈∂Oλ,ǫ,ρ

(
Ψ1(x) + Ψ2(y)−Ψ1(λ1)−Ψ2(λ2)

)



is equivalently given by

ĥρ
ǫ (λ) =





inf
x∈∂B(λ;ρǫ)

(Ψ1(x)−Ψ1(λ1)) + inf
y∈∂B(λ;ǫ)

(Ψ2(y)−Ψ2(λ2)) if ||λ− λ1|| = ǫ,

inf
x∈∂B(λ;ǫ)

(Ψ1(x) −Ψ1(λ1)) + inf
y∈∂B(λ;ρǫ)

(Ψ2(y)−Ψ2(λ2)) if ||λ− λ2|| = ǫ,

inf
x∈D1

λ,ǫ

(Ψ1(x)−Ψ1(λ1)) + inf
y∈D2

λ,ǫ

(Ψ2(y)−Ψ2(λ2)) otherwise .

(15)

Further, whenever λ is located outside the boundaries ∂B(λ1; ǫ) and ∂B(λ2; ǫ),

inf
x∈D1

λ,ǫ

(Ψ1(x)−Ψ1(λ1)) + inf
y∈D2

λ,ǫ

(Ψ2(y)−Ψ2(λ2))

=





inf
x∈∂B(λ;ǫ)

(Ψ1(x) −Ψ1(λ1)) + inf
y∈∂B(λ;ǫ)

(Ψ2(y)−Ψ2(λ2)) if min
i

||λ− λi|| > ǫ,

inf
y∈∂B(λ;ǫ)

(Ψ2(y)−Ψ2(λ2)) if ||λ− λ1|| < ǫ,

inf
x∈∂B(λ;ǫ)

(Ψ1(x) −Ψ1(λ1)) if ||λ− λ2|| < ǫ .

Applying Theorem 1.2, we derive the Kramers’ type law for the first exit-time

τ̂ρλ,ǫ(σ) := inf
{
t ≥ 0 : (xσ

t , y
σ
t ) /∈ (Rd × R

d) \ Oλ,ǫ,ρ

}
.

Lemma 2.1. For any λ in R
d, 0 < ǫ < ǫ0, 0 < ρ < 1 and for any δ > 0,

lim
σ→0

P

{
exp

[
2

σ2

(
ĥρ
ǫ (λ)− δ

)]
< τ̂ρλ,ǫ(σ) < exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]}
= 1 . (16)

Moreover, we have:

lim
σ→0

P

{
dist

(
(xσ

τ̂
ρ

λ,ǫ
(σ), y

σ
τ̂
ρ

λ,ǫ
(σ)),B(λ; ǫ) × B(λ; ǫ)

)
≤ δ
}
= 1 , (17)

for dist((x, y),B(λ; η) × B(λ; η)) standing for the distance from (x, y) to B(λ; η) × B(λ; η).

Proof. The asymptotic (16) is a direct consequence of Theorem 1.2-(8). The estimate (17) characterizing the persis-

tence of the first exit-location of (xσ , yσ) on B(λ; ǫ) × B(λ; ǫ) follows from Theorem 1.2-(2). Precisely, as σ ↓ 0,

(xσ
τ̂
ρ

λ,ǫ
(σ), y

σ
τ̂
ρ

λ,ǫ
(σ)) concentrates on the points on the boundary ∂Oλ,ǫ,ρ where the potential

(x, y) 7→ Ψ1(x) −Ψ1(λ1) + Ψ2(y)−Ψ2(λ2)

is minimal. In view of (15), these minimizers are located on ∂B(λ; ǫ) or ∂B(λ; ρǫ). And so the exit-location has to

persist on B(λ; ǫ) × B(λ; ǫ).

From Lemma 2.1, we gradually derive a Kramers’ type law for τλ,ǫ(σ) through the two following lemmas.

Lemma 2.2. Define

τρλ,ǫ(σ) =





inf {t ≥ 0 : (xσ
t , y

σ
t ) ∈ B(λ; ρǫ)× B(λ; ǫ)} if ||λ− λ1|| = ǫ,

inf {t ≥ 0 : (xσ
t , y

σ
t ) ∈ B(λ; ǫ)× B(λ; ρǫ)} if ||λ− λ2|| = ǫ,

inf {t ≥ 0 : (xσ
t , y

σ
t ) ∈ B(λ; ǫ)× B(λ; ǫ)} otherwise .

Then, for any λ ∈ R
d, 0 < ǫ < ǫ0, 0 < ρ < 1 and for any δ > 0:

lim
σ→0

P

{
exp

[
2

σ2

(
ĥρ
ǫ (λ)− δ

)]
< τρλ,ǫ(σ) < exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]}
= 1 . (18)

Moreover (17) still holds true with (xτ
ρ

λ,ǫ
(σ), yτρ

λ,ǫ
(σ)) in place of (xτ̂

ρ

λ,ǫ
(σ), yτ̂ρ

λ,ǫ
(σ)).



Proof. Since B(λ; ǫ) and B(λ; ρǫ) are contained in each Di
λ,ǫ, necessarily the inequality τρλ,ǫ(σ) ≥ τ̂ρλ,ǫ(σ) holds

almost surely. Since (16) ensures that

lim
σ→0

P

{
τ̂ρλ,ǫ(σ) ≤ exp

[
2

σ2

(
ĥρ
ǫ (λ)− δ

)]}
= 0 ,

the lower tail in (18) follows. To establish the upper-tail

lim
σ→0

P

{
τρλ,ǫ(σ) < exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]}
= 1 ,

fix δ > 0, let ξ > 0 be smaller than ρ and use the inequality:

P

{
τρλ,ǫ(σ) ≥ exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]}

≤ P

{
τ̂ξλ,ǫ(σ) ≥ exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]}

+ P

{
τρλ,ǫ(σ) ≥ exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]
, τ̂ξλ,ǫ(σ) < τρλ,ǫ(σ)

}

≤ P

{
τ̂ξλ,ǫ(σ) ≥ exp

[
2

σ2

(
ĥρ
ǫ (λ) + δ

)]}
+ P

{
τ̂ξλ,ǫ(σ) < τρλ,ǫ(σ)

}
.

Observing that η 7→ ĥη
ǫ (λ) is continuous, we can choose ξ close enough to ρ so that ĥρ

ǫ (λ) > ĥξ
ǫ(λ) − δ/2. This

way, the event
{
τ̂ξλ,ǫ(σ) ≥ exp

[
2
σ2

(
ĥρ
ǫ (λ) + δ

)]}
is included into the event

{
τ̂ξλ,ǫ(σ) ≥ exp

[
2
σ2

(
ĥξ
ǫ(λ) +

δ
2

)]}

and the upper-tail estimate for τ̂ξλ,ǫ(σ) in (16) ensures that P
{
τ̂ξλ,ǫ(σ) ≥ exp

[
2
σ2

(
ĥρ
ǫ (λ) + δ

)]}
vanishes as σ tends

to 0. For the remaining component, the event {τ̂ξλ,ǫ(σ) < τρλ,ǫ(σ)} implies that the vector
(
xσ

τ̂
ξ

λ,ǫ
(σ)

, yσ
τ̂
ξ

λ,ǫ
(σ)

)
does

not belong to B(λ; ǫ) × B(λ; ǫ). Recalling (17) from Lemma 2.1, this event becomes negligible as σ ↓ 0 and so

P

{
τ̂ξλ,ǫ(σ) < τρλ,ǫ(σ)

}
vanishes as σ tends to 0.

The persistence of the first collision-location (xτ
ρ

λ,ǫ
(σ), yτρ

λ,ǫ
(σ)) is a straightforward consequence of the very defi-

nition of τρλ,ǫ(σ).

Lemma 2.3. Let τλ,ǫ(σ) be defined as in (14). For any λ ∈ R
d and 0 < ǫ < ǫ0, it holds: for any δ > 0,

lim
σ→0

P

{
exp

[
2

σ2

(
ĥǫ(λ)− δ

)]
< τλ,ǫ(σ) < exp

[
2

σ2

(
ĥǫ(λ) + δ

)]}
= 1 , (19)

for ĥǫ given by

ĥǫ(λ) := lim
ρ→1

ĥρ
ǫ (λ)

=





inf
y∈∂B(λ;ǫ)

(
Ψ2(y)−Ψ2(λ2)

)
if ||λ− λ1|| < ǫ ,

inf
x∈∂B(λ;ǫ)

(
Ψ1(x) −Ψ1(λ1)

)
if ||λ− λ2|| < ǫ

inf
x∈∂B(λ;ǫ)

(
Ψ1(x) −Ψ1(λ1)

)
+ inf

y∈∂B(λ;ǫ)

(
Ψ2(y)−Ψ2(λ2)

)
if min

i=1,2
||λ− λi|| ≥ ǫ .

(20)

Additionally,

lim
σ→0

P

{
dist

(
(xσ

τλ,ǫ(σ)
, yστλ,ǫ(σ)

),B(λ; ǫ) × B(λ; ǫ)
)
≤ δ
}
= 1 . (21)



Proof. The estimate (21) is again straightforward.

By definition, τλ,ǫ(σ) ≤ τρλ,ǫ(σ) almost surely, and so, for any δ′ > 0,

lim
σ→0

P

{
τλ,ǫ(σ) < exp

[
2

σ2
(hρ

ǫ (λ) + δ′)

]}
= 1 .

Also as limρ→1 ĥ
ρ
ǫ (λ) = ĥǫ(λ), taking δ > 0 arbitrary, and choosing ρ, δ′ small enough so that ĥρ

ǫ (λ)+δ′ ≤ ĥǫ(λ)+δ
yields the upper-tail:

lim
σ→0

P

{
τλ,ǫ(σ) < exp

[
2

σ2
(ĥǫ(λ) + δ)

]}
= 1 .

For the lower-tail:

lim
σ→0

P

{
τλ,ǫ(σ) > exp

[
2

σ2
(ĥǫ(λ)− δ)

]}
= 1 ,

let us consider the situation ||λ− λ1|| = ǫ which implies that ||λ− λ2|| > ǫ, Rd \ D2
λ,ǫ is stable by −∇Ψ2 and ĥǫ(λ)

reduces to infy∈∂B(λ;ǫ)

(
Ψ2(y)−Ψ2(λ2)

)
. Observing that τλ,ǫ(σ) is greater or equal to τ̃λ,ǫ(σ) := inf{t ≥ 0 : yσt ∈

B(λ; ǫ)}, the lower-tail estimate follows from the inequality

P

{
τλ,ǫ(σ) > exp

[
2

σ2
(ĥǫ(λ)− δ)

]}

≥ P

{
τ̃λ,ǫ(σ) > exp

[
2

σ2

(
inf

y∈∂B(λ;ǫ)
(Ψ2(y)−Ψ2(λ2))− δ

)]}

and, by applying Theorem 1.2 to τ̃λ,ǫ(σ).
Following the same reasoning in the case ||λ − λ2|| = ǫ, the claim follows. Finally, whenever ||λ − λ1|| 6= ǫ and

||λ− λ2|| 6= ǫ, τλ,ǫ(σ) simply reduces to τ̂ρλ,ǫ(σ).

2.2 Asymptotic estimates for cǫ(σ)

Following Lemma 2.3, the characteristics for the Kramers’ type law of cǫ(σ) can be drawn heuristically: assuming that

(19) and (21) are stable by minimization over the intermediate points λ, the exit-cost governing the asymptotic σ ↓ 0

would be given by infλ ĥǫ(λ) and the exit-location (xσ
cǫ(σ)

, yσ
cǫ(σ)

) would concentrate on the domains B(λǫ; ǫ) ×
B(λǫ; ǫ) where λǫ belongs to the set of minimizers of ĥǫ. This set possibly contains multiple elements and, in view of

(20) can be split into three main subsets: the family of minimizers belonging to B(λ1; ǫ) or to B(λ2; ǫ) - the respective

minima of ĥǫ being given by

m1,ǫ := inf
λ∈B(λ1;ǫ)

inf
y∈∂B(λ;ǫ)

(
Ψ2(y)−Ψ2(λ2)

)
, m2,ǫ := inf

λ∈B(λ2;ǫ)
inf

x∈∂B(λ;ǫ)

(
Ψ1(x) −Ψ1(λ1)

)
,

and the family of minimizers belonging to R
d \
(
B(λ1; ǫ) ∪ B(λ2; ǫ)

)
- the corresponding minima being given by

mǫ := inf{λ : infi ||λ−λi||≥ǫ} hǫ(λ) for hǫ being itself given by

hǫ(λ) := inf
x∈∂B(λ;ǫ)

(
Ψ1(x) −Ψ1(λ1)

)
+ inf

y∈∂B(λ;ǫ)

(
Ψ2(y)−Ψ2(λ2)

)
.

Provided that ǫ is small enough, the latter will predominate over the two others and will specifically drive the persis-

tence of (xσ
cǫ(σ)

, yσ
cǫ(σ)

). Indeed, as ǫ ↓ 0, ĥǫ converges, on any compact, to the function

h0(λ) := (Ψ1(λ)−Ψ1(λ1)) + (Ψ2(λ) −Ψ2(λ2)) ,

The potentials Ψ1 and Ψ2 being uniformly convex, h0 is uniformly convex as well. As such, limǫ→0 infλ ĥǫ(λ) =

infλ h0(λ). Additionally, the set of minimizers of ĥǫ converges to a unique point, argminh0, which as Ψ1 and Ψ2



are of class C2, is explicitly given by (∇Ψ1 + ∇Ψ2)
−1(0). Observing further that infλ h0 is strictly smaller than

limǫ→0 m1,ǫ = Ψ1(λ2)−Ψ1(λ1) and than limǫ→0 m2,ǫ = Ψ2(λ1)−Ψ2(λ2), we can introduce the (positive) threshold

ǫc := inf

{
ǫ ∈ (0, ǫ0) : mi,ǫ = inf

λ
hǫ(λ), i ∈ {1, 2}

}

which corresponds to the smallest radius for which the exit-cost infλ ĥǫ(λ) reduces into infλ hǫ(λ). Let us also notice

for any ǫ < ǫc, infλ hǫ(λ) = inf{λ : infi ||λ−λi||≥ǫ} hǫ(λ).
Following this preliminary discussion, we can state the two main results of this section.

Proposition 2.4. For ǫ < ǫc and for hǫ = infλ∈Rd hǫ(λ), for any δ > 0, we have:

lim
σ→0

P

{
exp

[
2

σ2
(hǫ − δ)

]
< cǫ(σ) < exp

[
2

σ2
(hǫ + δ)

]}
= 1 . (22)

In addition, for Mǫ the set of minimizers of λ 7→ hǫ(λ), it holds:

lim
σ→0

P

{
inf

λǫ∈Mǫ

max

(
dist

(
xσ
cǫ(σ)

,B(λǫ; ǫ)
)
, dist

(
yσcǫ(σ),B(λǫ; ǫ)

))
≥ δ

}
= 0 . (23)

Proof. Since cǫ(σ) is the minimum of the possible stopping-times τλ,ǫ(σ) over all λ, the upper-tail estimate in (22)

follows immediately from the upper-tail (19) in Lemma 2.3 applied to τλǫ,ǫ(σ) for λǫ a minimizer of the function hǫ.

To obtain the lower-tail estimate and the estimate (23), it is sufficient to show that the barycenter zσ of xσ and yσ,

defined by zσt := (xσ
t + yσt )/2, satisfies the exit-property:

lim
σ→0

P

{
zσcǫ(σ) ∈ Mǫ,δ

}
= 1, (24)

where Mǫ,δ := {z ∈ R
d : dist(z,Mǫ) < δ} for δ arbitrary positive. Indeed, since ||xσ

cǫ(σ)
− yσ

cǫ(σ)
|| = 2ǫ, (23) and

(24) are equivalent. Additionally, since

P

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]}

≤ P

{
zσcǫ(σ) /∈ Mǫ,δ

}
+ P

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]
, zσcǫ(σ) ∈ Mǫ,δ

}
,

the limit (24) reduces the proof of the lower tail in (22) to establish that

lim
σ→0

P

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]
, zσcǫ(σ) ∈ Mǫ,δ

}
= 0 .

For δ > 0, since Mǫ,δ is compact (this property being a consequence of the compactness of Mǫ which follows from

the convexity of Ψ1 and of Ψ2), one can construct a finite covering∪L
l=1B(λ

l; r) ⊃ Mǫ,δ - where r, aimed to be small,

will be chosen later on - and for which the event

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]
, zσcǫ(σ) ∈ Mǫ,δ

}

is embedded in the union
L⋃

l=1

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]
, zσcǫ(σ) ∈ B(λl; r)

}
.

For any l, the event {zσ
cǫ(σ)

∈ B(λl; r)} implies that the events
{
||xσ

cǫ(σ)
− λl|| ≤ ǫ+ r

}
and

{
||yσ

cǫ(σ)
− λl|| ≤ ǫ+ r

}

occur simultaneously, and so does {cǫ(σ) ≥ τλl,ǫ+r(σ)}. Choosing r small enough so that hǫ+r(λ
l) − δ′ ≥ hǫ − δ



for δ′ > 0, Lemma 2.3 yields, for any l,

lim
σ→0

P

{
τλl,ǫ+r(σ) ≤ exp

[
2

σ2

(
hǫ − δ

)]}

≤ lim
σ→0

P

{
τλl,ǫ+r(σ) ≤ exp

[
2

σ2

(
hǫ+r(λ

l)− δ′
)]}

= 0 .

Therefore

L∑

l=1

P

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]
, zσcǫ(σ) ∈ B(λl; r)

}

vanishes as σ tends to 0, yielding

lim
σ→0

P

{
cǫ(σ) ≤ exp

[
2

σ2
(hǫ − δ)

]}
= 0 .

Let us now establish (24). To this aim, for ξ > 0, define the level set

Sǫ,ξ =
{
λ ∈ R

d : Ψ1(λ)−Ψ1(λ1) ≥ hǫ + 3ξ
}
.

Since ǫ < ǫc ensures that λ1 /∈ Mǫ, Sǫ,ξ is necessarily non-empty. Define next, Mǫ,ξ a minimal radius, strictly larger

than ǫ and such that Rd \ B(λ1;Mǫ,ξ − ǫ) lies in Sǫ,ξ. Equivalently, for any λ ∈ R
d such that ||λ− λ1|| > Mǫ,ξ − ǫ,

the difference Ψ1(λ) −Ψ1(λ1) is larger than hǫ + 3ξ. From this, one can derive the bound:

P

{
zσcǫ(σ) /∈ Mǫ,δ

}

≤ P

{
zσcǫ(σ) /∈ B(λ1;Mǫ,ξ)

}
+ P

{
zσcǫ(σ) ∈ B(λ1;Mǫ,ξ) \Mǫ,δ

}
=: I1(σ) + I2(σ) ,

and check that limσ→0 Ii(σ) = 0 for i = 1, 2.

For the limit of I1(σ): using again the fact that ||xσ
cǫ(σ)

− yσcǫ(σ)|| = 2ǫ, the distance between xσ
cǫ(σ)

and λ1 is

larger than ||zσ
cǫ(σ)

− λ1|| − ǫ. Introducing the first time xσ exits the ball B(λ1;Mǫ,ξ − ǫ):

τ̃Mǫ,ξ−ǫ(σ) := inf {t ≥ 0 : ||xσ
t − λ1|| ≥ Mǫ,ξ − ǫ} ,

we have

P

{
zσcǫ(σ) /∈ B(λ1;Mǫ,ξ)

}
≤ P

{
xσ
cǫ(σ)

/∈ B(λ1;Mǫ,ξ − ǫ)
}
≤ P

{
τ̃Mǫ,ξ−ǫ ≤ cǫ(σ)

}
.

Since B(λ1;Mǫ,ξ − ǫ) is stable by −∇Ψ1 - (again) by the convexity of Ψ1 -, Theorem 1.2 applies for τ̃Mǫ,ξ−ǫ with the

exit-cost

h̃ǫ := inf
x∈∂B(λ1;Mǫ,ξ−ǫ)

{Ψ1(x)−Ψ1(λ1)} ≥ hǫ + 3ξ .

In addition, since, for any δ′ > 0,

P
{
τ̃Mǫ,ξ−ǫ(σ) ≤ cǫ(σ)

}
≤ P

{
τ̃Mǫ,ξ−ǫ(σ) ≤ exp

[
2

σ2
(hǫ + δ′)

]}

+ P

{
cǫ(σ) > exp

[
2

σ2
(hǫ + δ′)

]}
,

choosing δ′ < 3ξ so that hǫ + δ′ ≤ h̃ǫ − δ′′ for δ′′ > 0 yields

lim
σ→0

P

{
τ̃Mǫ,ξ−ǫ ≤ exp

[
2

σ2
(hǫ + δ′)

]}
≤ lim

σ→0
P

{
τ̃Mǫ,ξ−ǫ ≤ exp

[
2

σ2
(h̃ǫ − δ′′)

]}
= 0 .



Owing to the upper-tail of cǫ(σ) established at the beginning of the proof, we deduce that

lim
σ→0

P

{
zσcǫ(σ) /∈ B(λ1;Mǫ,ξ)

}

≤ lim
σ→0

P

{
τ̃Mǫ,ξ−ǫ ≤ exp

[
2

σ2
(hǫ + δ′)

]}
+ lim

σ→0
P

{
cǫ(σ) > exp

[
2

σ2
(hǫ + δ′)

]}
= 0 .

For the limit of I2(σ): introducing a new covering ∪L̂
l=1B(λ̂

l; r̂) ⊃ B(λ1;Mǫ,ξ) \ Mǫ,δ - where r̂ will be again

chosen later on - we derive the upper-bound

P

{
zσcǫ(σ) ∈ B(λ1;Mǫ,ξ) \Mǫ,δ

}
≤

L̂∑

l=1

P

{
zσcǫ(σ) ∈ B(λ̂l; r̂)

}
.

For any l, we also have

P

{
zσcǫ(σ) ∈ B(λ̂l; r̂)

}
≤ P

{
xσ
cǫ(σ)

∈ B(λ̂l; r̂ + ǫ), yσcǫ(σ) ∈ B(λ̂l; r̂ + ǫ)

}

≤ P

{
τ
λ̂l,ǫ+r̂

(σ) ≤ cǫ(σ)

}
.

According to Lemma 2.3, for any δ > 0,

lim
σ→0

P

{
τ
λ̂l,ǫ+r̂

(σ) ≤ exp

[
2

σ2
(hǫ+r̂(λ̂

l)− δ)

]}
= 0 .

Choosing r̂ and δ so that, for some δ̂ > 0, hǫ+r̂(λ̂
l)− δ̂ ≥ hǫ + δ then gives

lim
σ→0

P

{
τ
λ̂l,ǫ+r̂

(σ) ≤ exp

[
2

σ2
(hǫ + δ)

]}

≤ lim
σ→0

P

{
τ
λ̂l,ǫ+r̂

(σ) ≤ exp

[
2

σ2
(hǫ+r̂(λ̂

l)− δ̂)

]}
= 0.

Therefore, using the inequality

P

{
τ
λ̂l,ǫ+r̂

(σ) ≤ cǫ(σ)
}
≤ P

{
τ
λ̂l,ǫ+r̂

(σ) ≤ exp

[
2

σ2
(hǫ + δ)

]}

+ P

{
cǫ(σ) ≥ exp

[
2

σ2
(hǫ + δ)

]}
,

and again Lemma 2.3 and the upper-tail of cǫ(σ) yields to

lim
σ→0

L̂∑

l=1

P

{
zσcǫ(σ) ∈ B(λ̂l; r̂)

}
= 0 .

This immediately implies that limσ→0 I2(σ) = 0 and ends the proof of (24).

Theorem 2.5. For λ0 the minimizer of h0 and h0 := h0(λ0), for any δ > 0, we have:

lim
ǫ→0

lim
σ→0

P

{
exp

[
2

σ2
(h0 − δ)

]
< cǫ(σ) < exp

[
2

σ2
(h0 + δ)

]}
= 1

and

lim
ǫ→0

lim
σ→0

P

{
max

( ∣∣∣
∣∣∣xσ

cǫ(σ)
− λ0

∣∣∣
∣∣∣ ,
∣∣∣
∣∣∣yσcǫ(σ) − λ0

∣∣∣
∣∣∣
)

≤ δ

}
= 1 .



Theorem 2.5 provides an analog of Theorem 1.3 and is a straightforward consequence of Proposition 2.4 and of

the limit limǫ→0 hǫ = h0.

Remark 2.6. Let us briefly comment on the set of minimizers Mǫ and highlight the possible collision-locations

λǫ ∈ Mǫ in Proposition 2.4. To this aim, observe

inf
λ

hǫ(λ) = inf
λ

inf
(x,y)∈∂B(0;ǫ)×∂B(0;ǫ)

(
Ψ1(λ+ x)−Ψ1(λ1) + Ψ2(λ + y)−Ψ2(λ2)

)

= inf
(x,y)∈∂B(0;ǫ)×∂B(0;ǫ)

inf
λ

(
Ψ1(λ+ x)−Ψ1(λ1) + Ψ2(λ + y)−Ψ2(λ2)

)
,

the first equality following from shifting the minimization over (x, y) ∈ ∂B(λ; ǫ) × ∂B(λ; ǫ) to the set of points

(x+λ, y+λ) for (x, y) ∈ ∂B(0; ǫ)× ∂B(0; ε) and the second equality by a simple min-min principle. The potentials

Ψ1 and Ψ2 being uniformly convex, the minimizers of λ 7→ Ψ1(λ+ x)−Ψ1(λ1)+Ψ2(λ+ y)−Ψ2(λ2) are explicitly

given by

λ(x, y) =
(
∇Ψ1(·+ x) +∇Ψ2(·+ y)

)−1

(0) ,

independently of (x, y). As such, infλ Hε(λ) rewrites as

inf
(x,y)∈∂B(0;ǫ)×∂B(0;ǫ)

(
Ψ1(λ(x, y) + x) −Ψ1(λ1) + Ψ2(λ(x, y) + y)−Ψ2(λ2)

)
,

and, subsequently, any λǫ of Mǫ corresponds to a point λε(x
∗
ǫ , y

∗
ǫ ) where (x∗

ǫ , y
∗
ǫ ) achieves the above minimum.

Compared to the limit collision-location, λ0 = (∇Ψ1 + ∇Ψ2)
−1(0), the minimizers λε are so perturbations of λ0

in a direction of magnitude ε. As ε decreases to 0, the regularity of Ψ1 and Ψ2 guarantees that Mε concentrates

on the single point {λ0} and infλ hε converges naturally to infλ h0 respectively as ǫ ↓ 0. Illustratively, consider the

case where Ψ1 and Ψ2 are quadratic potentials of the form Ψi(z) = γi||z − λi||2/2 for γi > 0. The first collision-

location λ0 is then explicitly given by γ1λ1+γ2λ2

γ1+γ2

and the exit-cost of the first collision by h0 = γ1γ2

2(γ1+γ2)
||λ2 − λ1||2.

Meanwhile, for any (x, y), λ(x, y) is given by
γ1(λ1−x)+γ2(λ2−y)

γ1+γ2

.

3 On the first collision of two self-stabilizing processes

Throughout this section, we consider the pair of self-stabilizing processes (1a) and (1b), which under (A) formulates

as

Xt = x1 + σBt −
∫ t

0

∇V (Xs)ds− α

∫ t

0

(Xs − E[Xs]) ds, t ≥ 0, (25a)

Yt = x2 + σB̃t −
∫ t

0

∇V (Ys)ds− α

∫ t

0

(Ys − E[Ys]) ds, t ≥ 0, (25b)

and establish Theorem 1.3. A first step towards this aim consists in obtaining a coupling estimate between (25a) and

(25b), and the “linearized” flows:

xσ
T,t = XT + σ

(
Bt −BT

)
−
∫ t

T

∇V (xσ
T,s)ds− α

∫ t

T

(xσ
T,s − λ1)ds , t ≥ T, (26a)

and

yσT,t = YT + σ
(
B̃t − B̃T

)
−
∫ t

T

∇V (yσT,s)ds− α

∫ t

T

(
yσT,s − λ2

)
ds , t ≥ T. (26b)

The starting time T from which the coupling is constructed will be specified in a few lines.



Following [T21, Theorem 3.4], the condition of synchronization (A)−(iii) ensures that the mean vector (E[Xt],E[Yt])
and (λ1, λ2) can be found arbitrarily close at large time t. Specifically: for any κ > 0, there exist Tκ, finite and inde-

pendent of σ, and 0 < σκ < ∞ such that:

sup
σ<σκ

sup
t≥Tκ

||E[Xt]− λ1||+ sup
σ<σκ

sup
t≥Tκ

||E[Yt]− λ2|| ≤ κ . (27)

This successively leads to the following coupling lemma:

Lemma 3.1. For any ξ > 0, there exists Tξ ∈ (0,∞), depending only on α, θ and ξ such that

P

{
sup
t≥Tξ

||Xt − xσ
Tξ,t

|| ≥ ξ

}
= 0 = P

{
sup
t≥Tξ

||Yt − yσTξ,t
|| ≥ ξ

}
.

Remark 3.2. This statement slightly extends the coupling estimate previously obtained in [T18, Lemma 4.6]. There,

the coupling between X and xσ was established on an interval of the form [Tκ, T
s
κ(σ)] where T s

κ(σ) is the first time

such that P{τD ≤ T s
κ(σ)} = κ for D a stable set by x 7→ −∇V (x) − α(x − λ1) containing λ1 in its interior. Here,

τD does correspond to the first exit-time of the sole diffusion X from D. The absence of a limiting upper-time horizon

in Lemma 3.1 is justified by additionally following the arguments of [T21, Lemma 4.1].

As a preliminary step for the proof of Lemma 3.1, we should recall the following key result:

Lemma 3.3 ([BRTV98], Lemma 3.7). Let f : R+ → R be a continuous and differentiable function. Assuming that

there exists l > 0 such that {t > 0 : f(t) > l} ⊂ {t > 0 : f ′(t) < 0}, then f(t) ≤ max(f(0), l) for all t.

Proof of Lemma 3.1. We only focus the demonstration on the pair X and xσ , the coupling between Y and yσ being

handled in the exact same way. Fix ξ > 0 and, given κ > 0 - to be chosen later - and σ > 0, let Tκ be given by (27).

For any t ≥ Tκ,

d||Xt − xσ
Tκ,t

||2 = −2
(
Xt − xσ

Tκ,t

)(
∇Wµt

(Xt)−∇Wλ1

(
xσ
Tκ,t

))
dt ,

recalling that µt = L (Xt) and setting Wµ(x) := V (x) + F ∗ µ(x) and Wλ1
(x) := Wδλ1

(x) where δλ1
is the Dirac

measure in λ1. Adding and subtracting ∇Wλ1
(Xt), the above yields

d||Xt − xσ
Tκ,t

||2

= −2
(
Xt − xσ

Tκ,t

) (
∇Wλ1

(Xt)−∇Wλ1

(
xσ
Tκ,t

))
dt

− 2
(
Xt − xσ

Tκ,t

)
(∇Wµt

(Xt)−∇Wλ1
(Xt)) dt ,

= −2
(
Xt − xσ

Tκ,t

) (
∇Wλ1

(Xt)−∇Wλ1

(
xσ
Tκ,t

))
dt− 2α

(
Xt − xσ

Tκ,t

)
(λ1 − E[Xt]) dt .

As (A) − (iii) implies x 7→ Wλ1
(x) = V (x) + F (x − λ) is (α + θ)-convex, ζt := ||Xt − xσ

Tκ,t
||2 is differentiable

and satisfies:
d

dt
ζt ≤ −2(α+ θ)ζt + 2α

√
ζt||λ1 − E[Xt]|| .

As (27) implies ||λ1 − E[Xt]|| ≤
√
E[||λ1 −Xt||2] ≤ κ, it follows that

d

dt
ζt ≤ −2(α+ θ)ζt + 2α

√
κ
√
ζt .

Applying Lemma 3.3 and since ζTκ
= 0, it follows that ζt ≤

(
α

α+θ
κ
)2

. Taking next κ < α+θ
α

ξ gives the claim.

Since the potentials

Ψ1(x) := V (x) +
α

2
||x− λ1||2, Ψ2(y) := V (y) +

α

2
||y − λ2||2 , (28)



driving (26a) and (26b) are uniformly convex, applying Lemma 2.3 in Section 2 - up to a time shift, allowed by the

Markov property of (xσ , yσ) - yields to the Kramers’ type law:

lim
σ→0

P

{
exp

[
2

σ2

(
Ĥε(λ)− δ

)]
< τλ,ε(σ) < exp

[
2

σ2

(
Ĥε(λ) + δ

)]}
= 1 , (29)

where

τλ,ε(σ) := inf
{
t ≥ Tξ : (xσ

Tξ ,t
, yσTξ,t

) ∈ B (λ; ε)× B (λ; ε)
}
.

Here, Tξ is given as in Lemma 3.1, and

Ĥε(λ) =





inf
y∈∂B(λ;ǫ)

(
V (y)− V (λ2) +

α

2
||y − λ2||2

)
if ||λ− λ1|| < ǫ ,

inf
x∈∂B(λ;ǫ)

(
V (x)− V (λ1) +

α

2
||x− λ1||2

)
if ||λ− λ2|| < ǫ ,

inf
x,y∈∂B(λ;ε)

(
V (x)− V (λ1) + V (y)− V (λ2) +

α

2
||x− λ1||2 +

α

2
||y − λ2||2

)

if min
i

||λ− λi|| > ǫ .

The asymptotic (29) and the collision-location property stated in Lemma 2.3 - taking also into account the suc-

ceeding discussion on the simplification of the minimizer sets - both shift to the McKean-Vlasov system (X,Y ) and

leads to the following result:

Proposition 3.4. The first entering-time of (X,Y ) in the domain B(λ; ε)× B (λ; ε):

βλ,ε(σ) := inf {t ≥ 0 : (Xt, Yt) ∈ B (λ; ε)× B (λ; ε)} ,

satisfies, for any λ ∈ R
d and any δ > 0,

lim
σ→0

P

{
exp

[
2

σ2

(
Ĥε(λ)− δ

)]
< βλ,ε(σ) < exp

[
2

σ2

(
Ĥε(λ) + δ

)]}
= 1 , (30)

and

lim
σ→0

P

{
dist

(
(X

β̂λ,ε(σ)
, Y

β̂λ,ε(σ)
),B(λ; ε) × B(λ; ε)

)
≤ δ

}
= 1 .

Proof. Fix δ > 0 and let σ and ξ be small enough so that Tξ given in (27) is smaller than exp{ 2
σ2 (Ĥε(λ) − δ)}. As

limσ→0 βλ,ε(σ) = ∞ a.s., the event {Tξ > βλ,ε(σ)} becomes negligible at the limit σ ↓ 0. On the remaining event

{Tξ ≤ βλ,ε(σ)}, according to Lemma 3.1, (Xt, Yt) and (xσ
Tξ,t

, yσTξ,t
) are at distance of at most ξ from each others.

This way, for ξ < ε, β̂λ,ε(σ) necessarily lies in the interval [τλ,ε+ξ(σ), τλ,ε−ξ(σ)]. As η 7→ Ĥη(λ) is continuous, we

can further choose ξ again small enough so that Hε(λ) + δ ≥ Ĥε−ξ(λ) + δ′ and Ĥε(λ) − δ ≤ Ĥε+ξ(λ) − δ′′, for

some δ′, δ′′ > 0. The Kramers’ type law (29) then ensures

lim
σ→0

P

{
exp

[
2

σ2

(
Ĥε(λ) − δ

)]
< βλ,ε(σ)

}

≥ lim
σ→0

P

{
exp

[
2

σ2

(
Ĥε+ξ(λ) − δ′′

)]
< τλ,ε+ξ(σ)

}
= 1 .

and

lim
σ→0

P

{
βλ,ε(σ) < exp

[
2

σ2

(
Ĥε(λ) + δ

)]}

≥ lim
σ→0

P

{
τλ,ε−ξ(σ) < exp

[
2

σ2

(
Ĥε−ξ(λ) + δ′

)]}
= 1 .

The asymptotic of (Xβλ,ε(σ), Yβλ,ε(σ)) is an immediate consequence of the very definition of βλ,ε(σ).



As a consequence of the above, we immediately deduce the asymptotic of the first time that the diffusions X and

Y are at a distance 2ε.

Proposition 3.5. For Ψ1 and Ψ2 as in (28), define

Hε(λ) := inf
x∈∂B(λ;ε)

(
Ψ1(x)−Ψ1(λ1)

)
+ inf

y∈∂B(λ;ε)

(
Ψ2(y)−Ψ2(λ2)

)
, (31)

and the threshold

εc = inf

{
ε ≤ ε0 : inf

λ∈B(λi;ε)
inf

z∈∂B(λ;ε)

(
Ψj(z)−Ψj(λj)

)
= inf

λ
Hε(λ), i 6= j ∈ {1, 2}

}
. (32)

Let Cε(σ) be as in (3), ε ∈ (0, εc), Hε = minHε and let Mε be the set of minimizer of Hε. Then, for any δ > 0,

lim
σ→0

P

{
exp

[
2

σ2
(Hε − δ)

]
< Cε(σ) < exp

[
2

σ2
(Hε + δ)

]}
= 1 ,

and

lim
σ→0

P

{
inf

λε∈Mε

max

(
dist

(
XCε(σ),B(λε; ε)

)
, dist

(
YCε(σ),B(λε; ε)

))
≥ δ

}
= 0 .

Proof. The assumption ε < εc immediately ensures infλ Ĥǫ(λ) = infλ Hǫ(λ), and the proof is readily similar to the

one of Proposition 2.4 replacing zσt by the barycenter Zt := 2−1(Xt + Yt).

In the same way Proposition 2.4 yielded Theorem 2.5, Proposition 3.5 yields to Theorem 1.3.

4 On the first collision of the particle systems

In this section, we establish the Kramers’ type law driven the asymptotic of the first collision-time of the mean-field

interacting particle systems :

X i,N
t = x1 + σBi

t −
∫ t

0

∇V (X i,N
s ) ds− α

N

N∑

j=1

∫ t

0

(X i,N
s −Xj,N

s ) ds , t ≥ 0, (33a)

and

Y i,N
t = x2 + σB̃i

t −
∫ t

0

∇V (Y i,N
s ) ds− α

N

N∑

j=1

∫ t

0

(Y i,N
s − Y j,N

s ) ds . t ≥ 0. (33b)

The assumption (A)− (iv) imposes that each pair of particles, X i,N and Y i,N , is attracted to the two wells of V . As

in Section 3, we also still assume that x1 and x2, as well as λ1 and λ2, are at a distance at least 2ε0 from each others.

As a preliminary remark, let us point out that the systems (33a) and (33b) can also be equivalently formulated in

the form of stochastic gradients flows, by setting XN
t := (X1,N

t , · · · , XN,N
t ) and YN

t := (Y 1,N
t , · · · , Y N,N

t ):

XN
t = xN

1 + σBt −
∫ t

0

∇ΥN (XN
s ) ds, t ≥ 0 ,

YN
t = xN

2 + σB̃t −
∫ t

0

∇ΥN (YN
s ) ds, t ≥ 0 ,

where B := (B1, · · · , BN ) and B̃ := (B̃1, · · · , B̃N ) define independent RdN -Brownian motions and the driving

potential is given by

ΥN : xN = (x1, · · · , xN ) ∈ R
dN 7→ ΥN (xN ) =

N∑

i=1

V (xi) +
α

4N

N∑

i,j=1

||xi − xj ||2.



For xN := 1
N

∑N
j=1 xj the empirical mean of xN , one can easily check that ΥN rewrites into

ΥN(xN ) =

N∑

i=1

V (xi) +
α

2N

N∑

i=1

||xi − xN ||2 .

Roughly, the proof steps to establish Theorem 1.5 are similar to the ones leading to Theorem 1.3. Namely, observing

that Ci
ε,N (σ) can be equivalently reformulated into

Ci
ε,N (σ) = inf

λ∈Rd
βi
λ,ε,N (σ) ,

βi
λ,ε,N (σ) = inf{t > 0 : (X i,N

t , Y i,N
t ) ∈ B(λ; ǫ) × B(λ; ǫ)},

after establishing a coupling estimate between the interacting particles, and their “linear” versions (see (34a) and (34b)

below), we extract a first Kramers’ type law for βi
λ,ε,N (σ). At this step, the related exit-cost is given by

inf
xN∈∂Bi,N (λ;ε)

ΥN(xN )−ΥN(λ1, · · · , λ1) + inf
yN∈∂Bi,N (λ;ε)

ΥN(yN )−ΥN(λ2, · · · , λ2),

for

Bi,N (λ; ε) =
{
xN = (x1, ..., xN ) ∈ R

dN ; xi ∈ B(λ; ε)
}
.

Following, we will derive the Kramers’ type law of infλ∈Rd βi
λ,ε,N (σ), replicating the proof arguments of Proposi-

tion 2.4 and next deducing Theorem 1.5. The inherent difficulty here relies on establishing coupling estimates which,

for the case of self-stabilizing diffusions, was essentially a consequence of establishing (27). For the particle sys-

tems (33a)-(33b), we need to establish an analog of (27), dealing with the empirical means X
N

t = 1
N

∑N
j=1 X

j,N
t

and Y
N

t = 1
N

∑N
j=1 Y

j,N
t , in place of the continuous averages. One may argue that the coupling could be achieved by

using some propagation of chaos properties of (33a)-(33b) towards (25a)-(25b). This argument could be executed if

uniform-in-time propagation of chaos was holding true. However, under our current assumptions, this is not the case.

Indeed, the uniform convexity stated in (A) − (i) implies −∇V is “contractively” one-sided Lipschitz at infinity,

namely: for some R′′ > 0 large enough

− (∇V (x)−∇V (y)) (x− y) ≤ −λ||x− y||2, ∀x, y ∈ R
d such that ||x||, ||y|| ≥ R′′ .

Combined with its local Lipschitz property, −∇V is so globally one-sided Lipschitz continuous, and, by classical

coupling arguments (e.g. [BRTV98]), we recover the propagation of chaos property: for any finite time-horizon T ,

and, for (X i, Y i) the copies of (25a) and (25b) generated by (Bi, B̃i),

sup
0≤t≤T

E

{
||X i

t −X i,N
t ||2

}
+ sup

0≤t≤T

E

{
||Y i

t − Y i,N
t ||2

}
≤ C(T )

N
.

Without further assumption on the convexity of V , the constant C(T ) depends exponentially on T . If V was further as-

sumed to be globally convex, the constant would not depend anymore on T (e.g. [CGM08]) and, owing to Lemma 3.1,

the asymptotics obtained in Proposition 3.4 would apply to βi
λ,ε,N (σ), for N large enough. The non-(global) convexity

of V provides some technical difficulties, which prevent to rely on the asymptotics previously obtained for (X,Y ),
and rather impose to exhibit analog arguments to the self-stabilizing case.

Given 0 < T < ∞, define the diffusions xi,σ
T and yi,σT as:

xi,σ
T,t = X i,N

T + σ(Bi
t −Bi

T )−
∫ t

T

∇V (xi,σ
T,s)ds− α

∫ t

T

(xi,σ
T,s − λ1)ds , t ≥ T , (34a)

and

yi,σT,t = Y i,N
T + σ(B̃i

t − B̃i
T )−

∫ t

T

∇V (yi,σT,s)ds− α

∫ t

T

(yi,σT,s − λ2)ds , t ≥ T , (34b)

and establish a weaker analog to Lemma 3.1, with



Proposition 4.1. For ε ∈ (0, εc), let Hε be as in (31) and Hε its minima. Then, for any λ ∈ R
d and any ξ > 0,

provided ξ > 0 is small enough, there exists Nε,ξ and Tε,ξ, both positive, finite and independent of σ, such that, for

any N ≥ Nε,ξ,

lim
σ→0

P

{
max

Tξ,N≤t≤exp[ 2

σ2
(Hε+2)]

||X i,N
t − xi,σ

Tξ,N ,t|| ≥ ξ

}

= lim
σ→0

P

{
max

Tξ,N≤t≤exp[ 2

σ2
(Hε+2)]

||Y i,N
t − yi,σTξ,N ,t|| ≥ ξ

}
= 0 .

Compared to Lemma 3.1, Proposition 4.1 only ensures the coupling between (X i,N , Y i,N ) and (xi,σ
T , yi,σT ) is

effective almost surely at the limit σ ↓ 0 and over an interval restrained by a referential right-hand limit exp[ 2
σ2 (Hε +

2)]. While this is enough to carry the same procedure as in Section 3 and derive the Kramers’ type law for Ci
ε,N (σ),

the reason for these limitations are rather intuitive. As the empirical means in (33a)-(33b) are not deterministic, for

σ > 0 arbitrary, X
N

and Y
N

wander far away from λ1 and λ2 at large (but finite) time. As the noises elapse, these

events become negligible. This is why we need to restrict ourselves to a characteristic finite time interval where X
N

and Y
N

are arbitrarily close to λ1 and λ2. Since it is sufficient for this time to be strictly larger than exp[2Hε/σ
2], we

choose exp[2(Hε + 2)/σ2] as a possible upper-bound.

Lemma 4.2. For κ > 0, let τNκ (σ) be the first time the diffusion (XN ,YN ) exits the domain BN(λN
1 ;κ)×BN(λN

2 ;κ)
for

BN(λN
i ;κ) := {xN ∈ R

dN : || 1
N

N∑

j=1

xj − λi|| < κ}, λN
i := (λi, · · · , λi) .

Therefore, for any κ > 0 and for any ε ∈ (0, ε0), there exists Nε,κ such that for N ≥ Nε,κ,

lim
σ→0

P

{
τNκ (σ) ≤ exp

[ 2
σ2

(Hε + 2)
]}

= 0 .

Proof. As a preliminary stage, let us establish some properties on the exit-cost related to τNκ (σ) with: in Step 1, we

check that ΥN achieves its minimum either on (λ1, · · · , λ1) or on (λ2, · · · , λ2); in Step 2, we show that the exit-cost

related to BN(λN
i ;κ), explicitly given by

inf
xN∈∂BN (λN

i
;κ)

(
ΥN(xN )−ΥN(λN

i )
)
,

grows to ∞ as N ↑ ∞. The third step finally consists in showing that these properties imply the claim.

Step 1: Let xN,⋆ = (x⋆
1, ..., x

⋆
N ) be an arbitrary minimizer of ΥN . Then, for any 1 ≤ i ≤ N ,

∇xi
ΥN (xN,⋆) = ∇V (x⋆

i ) + α

(
x⋆
i −

1

N

N∑

j=1

x⋆
j

)
= 0.

The synchronization condition (A)− (iii) ensuring that, for any m ∈ R
d, x ∈ R

d 7→ V (x) +F (x−m) is uniformly

convex, the components x⋆
i are identically given by

x⋆
i =

(
∇V + αId

)−1
(

α

N

N∑

j=1

x⋆
j

)
.

Necessarily 1
N

∑N
j=1 x

⋆
j = x⋆

1 and ∇ΥN (xN,⋆) reduces to
(
∇V (x⋆

1), ...,∇V (x⋆
1)
)
. Consequently, the minimizers of

ΥN correspond either to (λ1, · · · , λ1) or (λ2, · · · , λ2).



Step 2: Let us establish that, for any κ such that κ < ||λ1 − λ2||,

lim
N→∞

inf
zN∈∂BN (λN

i
;κ)

(
ΥN(zN )−ΥN(λi

N )
)
= +∞ . (35)

Take λ as either λ1 or λ2, define λN = (λ, · · · , λ), and let λN,∗ be a minimizer of zN 7→ ΥN (zN )−ΥN (λN) under

the constraint zN ∈ ∂BN(λN;κ). Then, λN,∗ is characterized by the RdN differential equation:

∇λN
ΥN(λN,∗) + LN,κ∇λN

(∣∣∣
∣∣∣ 1
N

N∑

j=1

λN,∗
j − λ

∣∣∣
∣∣∣
2

− κ2

)
= 0,

where LN,κ ∈ R is the Lagrangian multiplier related to the constraint. Component by component, the equation yields:

for all 1 ≤ i ≤ N ,

∇V (λN,∗
i ) + α

(
λN,∗
i − 1

N

N∑

j=1

λN,∗
j

)
+

2LN,κ

N

(
1

N

N∑

j=1

λN,∗
j − λ

)
= 0.

As z 7→ ∇2V (z) + αId is positive definite, z 7→
(
∇V (z) + αz

)
is invertible. Therefore the λN,∗

i are all equals to a

common value λ∗ satisfying ∇V (λ∗) = − 2LN,κ

N
(λ∗ − λ). Consequently, the barycenter 1

N

∑N
j=1 λ

∗,N
j reduces to λ∗

and so

ΥN (λ∗,N)−ΥN(λN ) =

N∑

i=1

(
V (λ∗,N

j )− V (λ)
)
= N

(
V (λ∗)− V (λ)

)
.

Since the constraint || 1
N

∑N
j=1 λ

N,∗
j − λ||2 = κ2 also reduces to ||λ∗ − λ||2 = κ2, this leads to the lower-bound

inf
zN∈∂BN (λN;κ)

(
ΥN (zN )−ΥN (λN )

)
≥ N inf

z∈Rd : ||z−λ||=κ

(
V (z)− V (λ)

)
.

As long as κ > 0, (35) follows immediately.

Final step: We remark that τNκ (σ) is a.s. smaller than the first time that one particle, say X1,N , exits from B(λ1;N ×
κ). The latter being finite a.s., the same holds for τNκ (σ). Define next the (descending) flows:

Φ
N,−
t (xN ) = xN −

∫ t

0

∇ΥN(ΦN,−
s (xN )) ds, t ≥ 0, xN ∈ R

dN ,

and the (truncated) basin of attraction:

DN = {xN ∈ R
dN : ΥN(xN )−ΥN(λN

1 ) ≤ Hε + 2 and lim
t→+∞

Φ
N,−
t (xN ) = λN

1 } .

By construction, the basinDN is stable by−∇ΥN , contains λN
1 , and has a related exit-cost given by infzN∈∂DN ΥN (zN )−

ΥN (λN
1 ) which is simply Hε + 2. Choosing N large enough, DN can be forced to lie within BN(λN

1 ;κ). Indeed,

assume that xN is in DN \ BN(λN
1 ;κ). Since λN

1 is in BN(λN
1 ;κ), there exists t > 0 such that yN := Φ

N,−
t (xN )

lies in the boundary ∂BN(λN
1 ;κ). According to Step 2, there exists Nǫ,κ such that for any N ≥ Nǫ,κ,

inf
zN∈∂BN (λN;κ)

ΥN(zN )−ΥN(λN
1 ) > Hε + 2 .

Subsequently, ΥN (yN ) − ΥN(λN
1 ) > Hε + 2 implying that yN can not lie in ∂BN(λN

1 ;κ). By extension, xN can

not lie in DN \ BN(λN
1 ;κ).

Define now τ̃Nκ = inf{t ≥ 0 : XN
t ∈ DN}. As DN ⊂ BN(λN

1 ;κ), τ̃Nκ ≤ τNκ . By Theorem 1.2,

lim
σ→0

P

{
τNκ (σ) ≤ exp

[
2

σ2
(Hε + 2)

]}
≤ lim

σ→0
P

{
τ̃Nκ (σ) ≤ exp

[
2

σ2
(Hε + 2)

]}
= 0 .

This ends the proof.



Owing to Lemma 4.2 and adapting some proof arguments from the proof of Lemma 3.1, the proof of Proposi-

tion 4.1 can be carried on.

Proof of Proposition 4.1. For N fixed, and given κ > 0, let Tκ,N be the first time the gradient flows Ψt(x) = x −∫ t

0 ∇V (Ψs(x)) ds and Ψt(y) = y −
∫ t

0 ∇V (Ψs(y)) ds are simultaneously at a κ-neighborhood of their respective

attractors, λ1 and λ2. Owing to the large deviations principle (7) applied to (XN,YN), for all 1 ≤ i ≤ N ,

lim
σ→0

P

{
min

(
||X i,N

Tκ,N
−ΨTκ,N

(x1)||, ||Y i,N
Tκ,N

−ΨTκ,N
(x2)||

)
≥ κ

}
= 0 ,

which, owing to the exchangeability of the particle systems and applying Jensen’s inequality, yields

lim
σ→0

P

{
min

(
||Xi,N

Tκ,N
− λ1||, ||Y

i,N

Tκ,N
− λ2||

)
≥ κ

}
= 0 .

With κ still arbitrarily positive, choose next Nε,κ as in Lemma 4.2 and σ small enough so that Tε,κ := Tκ,Nε,κ

given as above satisfies Tε,κ < 2−1 exp
[

2
σ2 (Hε + 2)]. Up to a time shift, Lemma 4.2 yields, for any N ≥ Nε,κ,

lim
σ→0

P



 max

t∈
[
Tε,κ,exp[

2

σ2
(Hε+2)]

]
(
||XN

t − λ1||+ ||Y N

t − λ2||
)
≥ 2κ



 = 0 .

As such, we can consider the comparison between X i,N and
(
xi,σ
Tε,κ,t

)
t≥Tε,κ

under the event
{
maxt∈[Tε,κ,exp[

2

σ2
(Hε+2)]] ||X

N

t − λ1|| < κ
}

. Observe next that, for all t ≥ Tε,κ, the path difference between X i,N

and
(
xi,σ
Tε,κ,t

)
t≥Tε,κ

is given by

X i,N
t − xσ,i

Tε,κ,t
= −

∫ t

Tε,κ

(
∇V (X i,N

s ) + αX i,N
s −∇V (xσ,i

Tε,κ,s
) + αxσ,i

Tε,κ,s

)
ds

+ α

∫ t

Tε,κ

(
X

N

s − λ1

)
ds .

Consequently, by (A)− (iii),

d

dt
||X i,N

t − xi,σ
Tε,κ,t

||2

= −2
(
X i,N

t − xi,σ
Tε,κ,t

) (
∇V (X i,N

t ) + αX i,N
t −∇V (xi,σ

Tε,κ,t
) + αxi,σ

Tε,κ,t

)

+ 2α
(
X i,N

t − xi,σ
Tε,κ,t

)
(X

N

t − λ1)

≤ −2(α+ θ)||X i,N
t − xi,σ

Tε,κ,t
||2 + 2α

(
X i,N

t − xi,σ
Tε,κ,t

)
(X

N

t − λ1) .

On the event
{
maxt∈[Tε,κ,exp[

2

σ2
(Hε+2)]] ||X

N

t − λ1|| < κ
}

, the above yields

d

dt
||X i,N

t − xi,σ
Tε,κ,t

||2 ≤ 2||X i,N
t − xi,σ

Tε,κ,t
||
(
ακ− (α+ θ)||X i,N

t − xi,σ
Tε,κ,t

||
)
.

Applying Lemma 3.3, it follows that ||X i,N
t −xi,σ

Tε,κ,t
|| ≤ ακ

α+θ
and, taking κ < α+θ

α
ξ yields that ||X i,N

t −xi,σ
Tε,κ,t

|| ≤ ξ.

Indeed, at time Tε,κ, the two processes are equal.

Applying the same reasoning to ||Y i,N
t − yi,σTε,κ,t

||, the claim follows.

According to Lemma 2.3, and choosing ε < εc with εc as in (32), and given (X i,N
Tε,κ

, Y i,N
Tε,κ

), the hitting-times

β̂i
λ,ε,N (σ) = inf

{
t ≥ Tε,κ : (xi,σ

Tε,κ,t
, yi,σTε,κ,t

) ∈ B(λ; ε)× B(λ; ε)
}
, 1 ≤ i ≤ N,



all satisfy the Kramers’ type law with the exit-cost Hε(λ) as in (30) and the exit-property:

lim
σ→0

P
i,N

Tε,κ;(x,y)

{
dist

((
xi,σ

Tε,κ,β̂
i
λ,ε,N

(σ)
, yi,σ

Tε,κ,β̂
i
λ,ε,N

(σ)

)
,B(λ; ε)× B(λ; ε)

)
≤ δ

}
= 1 .

for P
i,N

Tε,κ;(x,y)
the conditional probability given {(X i,N

Tε,κ
, Y i,N

Tε,κ
) = (x, y)}.

Following the same proof arguments as for Proposition 3.4, we obtain

Proposition 4.3. For any ε ∈ (0, εc) and λ ∈ R
d, provided N is large enough, we have: for any δ > 0 and any

1 ≤ i ≤ N ,

lim
σ→0

P

{
exp

[
2

σ2
(Hε(λ)− δ)

]
< β̂i

λ,ε,N (σ) < exp

[
2

σ2
(Hε(λ) + δ)

]}
= 1 ,

and

lim
σ→0

P

{
dist

((
X i,N

β̂i
λ,ε,N

(σ)
, Y i,N

β̂i
λ,ε,N

(σ)

)
,B(λ; ε)× B(λ; ε)

)
< δ

}
= 1 .

From this, we can next derive the analog of Proposition 3.5 which enables to conclude Theorem 1.5.

Proposition 4.4. Let Hε, Hε, Mε and εc be as in Proposition 3.5. For any ε ∈ (0, εc) and assuming that N is large

enough, it holds: for any δ > 0,

lim
σ→0

P

{
exp

[
2

σ2
(Hε − δ)

]
< Ci

ε,N (σ) < exp

[
2

σ2
(Hε + δ)

]}
= 1 .

Moreover, the collision-location persists near Mε with: for any δ > 0, 1 ≤ i ≤ N ,

lim
σ→0

P

{
inf

λε∈Mε

max

(
dist

(
X i,N

Ci
ε,N(σ)

,B(λε; ε)
)
, dist

(
Y i,N

Ci
ε,N (σ)

,B(λε; ε)
))

≥ δ

}
= 0 .

5 One-dimensional case

As we briefly mentioned in the introduction of the paper, the one-dimensional case provides a framework which allows

to consider the exact first collision-time between the self-stabilizing systems (1a)-(1b):

C(σ) := inf {t ≥ 0 : Xt = Yt} ,

and the exact first collision-time between the particle systems (2a) and (2b):

Ci
N (σ) = inf

{
t ≥ 0 : X i,N

t = Y i,N
t

}
.

The reduction to d = 1 first ensures that these collision-times are finite, almost surely. Additionally, while the method-

ology to derive Kramers’ type laws still require a re-interpretation of the collision-times and a coupling argument

relating (X,Y ) and (X i,N , Y i,N ) - with the diffusion (xσ , yσ) defined in (26a) - (26b), the one-dimensional setting

enables to significantly simplify the proof arguments exhibited in Sections 2, 3 and 4. Coupling lemmas are notably

less significant and the design of suitable enlargements of the collision set, as in Section 2.1 are not necessary. Such

simplifications are allowed by the a priori location of the first collision-location. Indeed, assuming the wells are

ordered such that λ1 < λ2, necessarily, by (A) − (iv), x1 < x2, and C(σ) simply corresponds to the first time t
where Xt ≥ Yt. As the reciprocal case, λ1 > λ2, a similar interpretation holds (the ordering between X and Y being

simply reversed), in addition to the assumptions (A) and without loss of generality, λ1 < λ2 is set in force from now

on. Following this observation, we can formulate the interpretation C(σ) = infz∈R Cz,z(σ) for

Cz1,z2(σ) := inf {t ≥ 0 : Xt ≥ z1, Yt ≤ z2} , z1, z2 ∈ R. (36)



By analogy with Section 2, we define the domains D1
z1

:= [z1; +∞) and D2
z2

:= (−∞; z2], so that

Cz1,z2(σ) = inf
{
t ≥ 0 : (Xt, Yt) /∈

(
R× R

)
\
(
D1

z1
×D2

z2

)}
.

As it will become obvious in our proof arguments, only the situation z1 > λ1 and z2 < λ2 is relevant, the situations

where either z1 ≤ λ1 or z2 ≥ λ2, having no any particular interest.

Under this simplification, the domain R \ Di
zi

is stable by x 7→ −V ′(x) − F ′(x− λi) and Theorem 1.2 applies to

cz1,z2(σ) := inf
{
t ≥ 0 : (xσ

t , y
σ
t ) /∈

(
R× R

)
\
(
D1

z1
×D2

z2

)}
,

for

xσ
t = x1 + σBt −

∫ t

0

∇Ψ1(x
σ
s ) ds, t ≥ 0 ,

and

yσt = x2 + σB̃t −
∫ t

0

∇Ψ2(y
σ
s ) ds, t ≥ 0 ,

where Ψ1(x) := V (x)+F (x−λ1) and Ψ2(y) := V (y)+F (y−λ2). This yields to a Kramers’ type law for cz1,z2(σ)
with the exit-cost:

H̃0(z1, z2) := (Ψ1(z1)−Ψ1(λ1)) + (Ψ2(z2)−Ψ2(λ2)) .

Adapting the proof arguments of Proposition 3.4, the asymptotic of cz1,z2(σ) transfers to Cz1,z2(σ), yielding to:

Lemma 5.1. For any z1 ≥ λ1 and z2 ≤ λ2 and for any δ > 0, it holds:

lim
σ→0

P

{
exp

[ 2

σ2
(H̃0(z1, z2)− δ)

]
< Cz1,z2(σ) < exp

[ 2

σ2
(H̃0(z1, z2) + δ)

]}
= 1 , (37)

and

lim
σ→0

P

{
max

(
|Xcz1,z2(σ)

− z1|, |Ycz1,z2
(σ) − z2|

)
≤ δ

}
= 1 .

From this preparatory lemma, we derive the following Kramers’ type law for C(σ).

Theorem 5.2. Let λ0 be the unique minimizer of H0 given by (10). Then, for any δ > 0,

lim
σ→0

P

{
exp

[
2

σ2
(H0(λ0)− δ)

]
< C(σ) < exp

[
2

σ2
(H0(λ0) + δ)

]}
= 1 , (38)

and

lim
σ→0

P
{∣∣XC(σ) − λ0

∣∣ ≤ δ
}
= 1 . (39)

Proof. Step 1. Let us first prove the upper-tail estimate in (41), starting with the inequality

P

{
C(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}
≤ P

{
Cλ0,λ0

(σ) ≥ exp
[ 2

σ2
(H0(λ0) + δ)

]}
,

with Cλ0,λ0
(σ) defined as in (36). This inequality simply results from Lemma 5.1; due to the convexity of Ψ1 and Ψ2,

the function z 7→ Ψ1(z) + Ψ2(z) − Ψ1(λ1) − Ψ2(λ2) is decreasing on (−∞;λ1] and increasing on [λ2; +∞), the

unique minimizer of H̃0 is necessarily achieved in (λ1;λ2). As H̃0(z, z) = H0(z), λ0 lies in (λ1;λ2). For any ρ > 0
sufficiently small, as x1 < x2 we know that the first time the diffusion (X,Y ) reaches the point (λ0, λ0) necessarily

occurs before (X,Y ) enters the region [λ0 + ρ;∞)× (−∞;λ0 − ρ]. Therefore,

P

{
Cλ0,λ0

(σ) ≥ exp
[ 2

σ2
(H0(λ0) + δ)

]}

≤ P

{
Cλ0+ρ,λ0−ρ(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}
.



As Ψ1(λ0+ρ)+Ψ2(λ0−ρ) converges to H0(λ0) as ρ ↓ 0, taking ρ sufficiently small so that Ψ1(λ0+ρ)+Ψ2(λ0−ρ) ≤
H0(λ0) +

δ
2 implies, by (37),

lim
σ→0

P

{
Cλ0+ρ,λ0−ρ(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}
= 0 ,

and so

lim
σ→0

P

{
C(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}
= 0 . (40)

Step 2. For the collision-location estimate (39), let us check that limσ→0 P{|XC(σ) − λ0| > ρ} = 0 for any ρ > 0.

To this aim, we will show that the collision does not persist outside [λ1;λ2] then, by a compactness argument, we will

show that it necessarily occurs within (λ0 − ρ;λ0 + ρ).
Step 2.1. Start with the following inequality:

P
{
XC(σ) /∈ [λ1;λ2]

}
≤ P

{
XC(σ) /∈ [λ1;λ2], C(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}

+ P

{
C(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}
,

for some δ > 0. Due to (40), the second term in the r.h.s. tends to 0 as σ ↓ 0. Defining β̃1(σ) := inf {t ≥ 0 : Yt ≤ λ1}
and β̃2(σ) := inf {t ≥ 0 : Xt ≥ λ2}, we have

P

{
XC(σ) /∈ [λ1;λ2], C(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}

≤ P

{
β̃1(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}
+ P

{
β̃2(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}
.

Choosing δ small enough so that min {Ψ1(λ2)−Ψ1(λ1); Ψ2(λ1)−Ψ2(λ2)} > H0(λ0) + δ, Theorem 1.2 yields, for

k = 1, 2,

lim
σ→0

P

{
β̃k(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}
= 0 .

We immediately deduce

lim
σ→0

P
{
XC(σ) /∈ [λ1;λ2]

}
= 0 .

Step 2.2. Given Step 2.1, we can focus our claim on showing XC(σ) does not persist on ]λ0 − ρ;λ0+ ρ[c∩[λ1;λ2] =
[λ1;λ0−ρ]∪[λ0+ρ;λ2]. It is further sufficient to check this assertion for the interval [λ0+ρ;λ2], the reasoning for the

case [λ1;λ0−ρ] being similar. As [λ0+ρ;λ2] is a compact interval, we can write [λ0+ρ;λ2] ⊂ ∪L
k=1]ηk − r; ηk + r[

- where r > 0 will be chosen sufficiently small later on. Observe that

P
{
XC(σ) ∈ [ηk − r; ηk + r]

}
≤ P

{
C(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}

+ P

{
XC(σ) ∈ [ηk − r; ηk + r], C(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}
=: I1(σ) + I2(σ) .

According to (40),

lim
σ→0

I1(σ) = lim
σ→0

P

{
C(σ) ≥ exp

[ 2

σ2
(H0(λ0) + δ)

]}
= 0 .

The second term, I2(σ), can be estimated with the upper-bound:

P

{
XC(σ) ∈ [ηk − r; ηk + r], C(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}

≤ P

{
Cηk−r,ηk+r(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}
.



Since H̃0(ηk − r, ηk + r) > H0(λ0), by taking δ sufficiently small,

P

{
Cηk−r,ηk+r(σ) ≤ exp

[ 2

σ2
(H0(λ0) + δ)

]}

≤ P

{
Cηk−r,ηk+r(σ) ≤ exp

[ 2

σ2

(
H̃0(ηk − r, ηk + r)− δ

) ]}
.

Applying Lemma 5.1, it follows that limσ→0 I2(σ) = 0, and so:

lim
σ→0

P
{
XC(σ) ∈ [ηk − r; ηk + r]

}
= 0 .

As such,

lim
σ→0

P
{
XC(σ) ∈ [λ1;λ2] \ [λ0 − ρ;λ0 + ρ]

}
= 0.

Step 3. We complete the proof with the lower-tail estimate in (38). For ρ > 0, given the event {|XC(σ) − λ0| ≤ ρ},

remark that the following inclusion:

{
C(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
⊂
{
Cλ0+y,λ0+y(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
,

holds for any y lying in the interval (−ρ, ρ). Therefore, for any ρ > 0,

P

{
C(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
≤ P

{
|XC(σ) − λ0| ≥ ρ

}

+ P

{
inf

y∈[−ρ,ρ]
Cλ0+y,λ0+y(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
.

According to Step 2, the first upper-bound vanishes as σ ↓ 0. The second upper-bound can be estimated by

P

{
inf

y∈[−ρ,ρ]
Cλ0+y,λ0+y(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}

≤ P

{
Cλ0−ρ,λ0+ρ(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
.

As limρ→0 Ψ1(λ0−ρ)+Ψ2(λ0+ρ) = H0(λ0), ρ can be chosen sufficiently small so that Ψ1(λ0−ρ)+Ψ2(λ0+ρ) ≥
H0(λ0)− δ

2 . Thus, the limit (37) implies

lim
σ→0

P

{
Cλ0−ρ,λ0+ρ(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
= 0 ,

and so

lim
σ→0

P

{
C(σ) ≤ exp

[ 2

σ2
(H0(λ0)− δ)

]}
= 0 .

The analog of Theorem 5.2 for the particle systems (X1,N , Y 1,N ), · · · , (XN,N , Y N,N) is given by the following:

Theorem 5.3. For N sufficiently large, it holds: for any δ > 0, 1 ≤ i ≤ N ,

lim
σ→0

P

{
exp

[
2

σ2
(H0(λ0)− δ)

]
< Ci

N (σ) < exp

[
2

σ2
(H0(λ0) + δ)

]}
= 1 , (41)

and

lim
σ→0

P

{
|X i,N

Ci
N
(σ)

− λ0| ≤ δ
}
= 1 .



Proof. The proof readily follows the main steps of Theorem 5.2: owing to Proposition 4.1, Lemma 5.1 still holds true

for

Ci
N,z1,z2

(σ) := inf{t ≥ 0 : (X i,N
t , Y i,N

t ) /∈ (R× R) \ Dz1 ×Dz2}
in place of Cz1,z2(σ). From this, since the proof arguments of Theorem 5.2 essentially rely on the regularity of H0,

one can replicate each argument replacing C(σ) by Ci
N (σ).

Remark 5.4. Although we left aside the linear case considered in Section 2, let us point out that, following the same

proof arguments, an analog to Theorem 5.2 can be established for (xσ, yσ): assuming that Ψ1 and Ψ2 are uniformly

convex, of class C2 and such that (13) holds, and that, for λi = argminΨi, λ1 < λ2, then, given

c(σ) = inf {t ≥ 0 : xσ
t = yσt } ,

and z0 the (unique) minimizer of h0(z) = Ψ1(z) + Ψ2(z)−Ψ1(λ1)−Ψ1(λ2), for any δ > 0, we have

lim
σ→0

P

{
exp

[
2

σ2
(h0(z0)− δ)

]
< c(σ) < exp

[
2

σ2
(h0(z0) + δ)

]}
= 1 ,

and

lim
σ→0

P

{∣∣∣xσ
c(σ) − z0

∣∣∣ ≤ δ
}
= 1 .
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