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Abstract—For interactivity and cost-efficiency purposes, both
biological and artificial agents (e.g., robots) usually rely on sets of
complementary sensors. Each sensor samples information from
only a subset of the environment, with both the subset and
the precision of signals varying through time depending on the
agent-environment configuration. Agents must therefore perform
multimodal fusion to select and filter relevant information by
contrasting the shortcomings and redundancies of different
modalities. For that purpose, we propose to combine a classical
off-the-shelf manifold learning algorithm with dynamic neural
fields (DNF), a training-free bio-inspired model of competition
amid topologically-encoded information. Through the adaptation
of DNF to irregular multimodal topologies, this coupling exhibits
interesting properties, promising reliable localizations enhanced
by the selection and attentional capabilities of DNF. In particular,
the application of our method to audiovisual datasets (with
direct ties to either psychophysics or robotics) shows merged
perceptions relying on the spatially-dependent precision of each
modality, and robustness to irrelevant features.

Index Terms—multimodal fusion, growing neural gas, manifold
learning, dynamic neural field, selective attention

I. INTRODUCTION

When it comes to information processing and behavioral
decision-making, the way we merge data coming from inputs
of mixed nature is becoming increasingly important. Let us
start with a toy example. A robot is given a task, for example:
“touch the alarm clock when it goes off”. At first, the robot
might be facing several objects resembling an alarm clock,
which it should have no difficulty distinguishing. When a
sound goes off, the robot should be able to locate its origin,
but it is usually achieved with a low precision. Before taking
an action, the robot has to select an object. Here, it should
be the one clock-looking object that coincides most with the
sound source localization. But how the modalities should be
weighted depends not only on the task (a clock visible on the
front has lower priority than sound coming from the side), but
also on the reliability of the sensors (room reverbation can
make sound orientation irrelevant).

The task in this example faces multiple challenges, start-
ing with two: the fusion of sensory modalities of different
availability and reliability, and the selection of (and attention
towards) a target. To tackle these problems, most of model
nowadays are based on deep learning. In this article, we
propose another approach based on dynamic neural fields
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(DNF), a bio-inspired model of neural activity [1]. It is
a topologically-grounded continuous-time recurrent network,
where weights are known and depend on the distance between
neurons. With a mixture of short-range excitation and long-
range inhibition, input stimuli are put in competition until
a bubble of activity emerges, which can be interpreted as
a decision of target selection and/or action. Additionally,
temporal dynamics allows the bubble to remain stable despite
input fluctuations and robust to potential distractors. DNF have
seen various applications, including in robotics. In particular,
the interaction properties of DNF make them very suitable for
multimodal fusion [2], [3].

One limit that previous DNF implementations have faced
lies in the nature of the manifold they evolve on. Most
applications in the literature assume the existence of an
underlying regular topology, most often 1D or 2D. But it is
hardly representative of the disparities in the sensory space,
disparities which become crucial when performing multimodal
fusion. Indeed, let us take a look at the shape of stimuli
perceived from the environment. The quantity of information
available is huge, and the data an agent receives from its
sensors is only a projection of it in a few given dimensions.
Equipped with a standard camera, a robot will receive a 2D
projection of the part of the environment it is facing. With one
microphone, it can detect sounds from anywhere around it, but
it can hardly locate them. Two microphones may enable some
1D sound localization along the axis on which they are aligned,
usually azimuthal (with interaural time/level difference), and
even a bit of 2D or 3D by exploiting the shape of pinnae
with a head-related transfer function (HRTF) [4]. We must first
account for the specificities of each sensory modality before
we create behaviors that exploit it at best. Additionally, we
must find a way to match complementary information from
different modalities, which usually boils down to projecting
stimuli onto a common manifold.

So, our first step will consist in learning unimodal mani-
folds. For this purpose, we will use growing neural gas (GNG)
[5], a standard manifold learning algorithm which is quite
parcimonious in light of the possible complexity of the sensory
space. Then, we will suggest an easy-to-implement solution
to create a multimodal manifold suitable for fusion. The main
novelty of our work is that we will run DNF directly on this
new topology, even though it lacks the regularity and low
dimensionality of classical implementations. We will show that



properties of DNF in selection and attention are compatible
with such fabricated manifolds, and that this coupling allows
new possibilities for multimodal fusion taking into account the
relative resolution of the modalities.

Our article is structured as follows. In section II, we will
review the existing literature on manifold learning and DNF,
and in particular their applications to multimodal fusion. Then
we will describe our model in section III, and demonstrate its
capabilities through three applications in section IV. We will
conclude and discuss additional perspectives in section V.

II. PREVIOUS WORK

A. Manifold Learning

Sensors provide high-dimensional samples of the environ-
ment, but sensory spaces can often be projected onto manifolds
of lower dimension. Deep learning methods are particularly
suited for learning such manifold (see [6] for a review).
For example, the last layers of a deep neural network have
been shown to contain an intrinsic dimensionality that is
smaller than the number of features in the data [7]. Dedicated
methods such as variational autoencoders [8] learn structured
embedding in an unsupervised manner. As our focus in this
article is the study of coupling between DNF and irregular
multimodal manifold, we will use simpler methods (i.e. self-
organizing neural networks) that will provide more control and
insight for the study.

In self-organizing maps (SOM), e.g. the Kohonen model
[9], each neuron represents a prototypical input in the high-
dimensional sensory space, so that the input space is projected
onto a neural lattice of fixed shape and size. In neural gas (NG)
[10], neurons are not arranged on a lattice, but are connected
following a Hebbian rule, thus neurons with close prototypes
are linked together. Eventually, the gas fills the input space in
a way that matches the stimulus distribution. Growing neural
gas (GNG) [5] is a derivative of NG, in which neurons are
added (or deleted) over time until a chosen condition is met,
thus adapting to the unknown input space spread.

Manifolds in multimodal fusion: Numerous articles have
shown promising results in multimodal fusion using deep
learning. Deep unsupervised learning can be used to project
multimodal data on a low-dimensional manifold for use in
robotics [11]. Inputs can be mixed during neural network
training to exploit the correlations between modalities [12].
Reference [13] proposes a new type of deep neural network
receiving multimodal inputs allocated through an attention
module. Unfortunately, most of these works make the as-
sumption that all multimodal data are related. Also, deep
architecture are dedicated to one specific task and no generic
architecture emerges [14].

We aim to create a new multimodal topology over
which new dynamic properties could be applied, and self-
organization offers solutions for a much lower cost [15]–[23].
SOM and their derivatives have long been used as models
of multimodal fusion, but the ways modalities are combined
can be very diverse. Map architectures can be divided in
two categories. In the first, one SOM is trained for each

modality, then all unimodal maps are connected depending
on a special learning rule [15]–[17]. In the second, unimodal
maps link to a new multimodal SOM [18], [19] or NG [20] that
combines all information. Additional layers of SOM can also
be considered to create a hierarchical flow of information [21]–
[23]. Additionally, models can be made more adaptive to time-
dependant tasks with the help of “growing when required”
maps [22], [23], an alternative to GNG designed for dynamic
input distributions [24]. Some of these models have already
been proof-tested for visual, auditory and/or proprioceptive
modalities on hardware setups [21], [23] and robots [17], [19].

After multimodal maps and/or interconnected unimodal
maps have been learned, we need a paradigm to dictate the
way perception will occur. Multimodal perception can be seen
as a form of decision pondering sensory inputs of different
reliability and relevance. We follow the architectural choice
made in [18] and [15], where dynamic neural fields (DNF)
are used as the paradigm that governs fusion or segregation of
stimuli in the multimodal topological space. DNF come with
many useful properties for multimodal perception.

B. Dynamic Neural Fields

Originally stemming from neuroscience, DNF have various
applications in robotics [25]. For example, visual attention
may be cumulated with motor control to make a robot au-
tonomously gaze at objects in its environment and learn a sen-
sorimotor map [26]. DNF rely on a population of topologically
connected units at a mesoscopic scale, where the apparent
activity (or average membrane potential over assemblies of
neurons) can be read to infer decisions at a behavioral level.
The activity evolves through time depending on a sum of
external stimulations and lateral interaction between neurons.
Stimulated neurons will send strong excitation to their nearest
neighbors, and moderate inhibition to neighbors located further
apart, leading to the emergence of a stable bubble of activity.
Depending on the parametrization, this can lead to several
types of behavior [25]. With strong local excitation, the bubble
can be self-sustaining, acting as long-term memory [26]. Long-
range inhibition will create a competition between conflicting
stimuli, until either one dominates the others, or they are
merged in a single bubble at an interpolated position [3],
[27]. Then, the self-maintaining bubble can be used for robust
selective attention, able to ignore noise and minor distractors
[28]. Ultimately, the output of DNF can be directly exploited
to generate motor command [26], [29].

The properties of DNF can benefit greatly to multimodal
fusion. It provides the tools not only to enhance robust
decisions when modalities are congruent [2], but also to solve
conflicts between modalities [3]. This is where the choice of
the underlying manifold can be very important.

The vast majority of works using DNF assume the dynamics
take place on a completely regular topology, e.g. a 2D lattice in
the case of vision. However, there is no clear way of projecting
two or more modalities onto the same lattice. In [2] and [3],
strong assumptions are made on the shape of stimuli in a
modality so that they fit in the topology of the other. To



tackle this issue, [15] proposes using separate manifolds for
each modality, each learned by SOM, and apply DNF on each
of them. Communication between modalities is ensured by a
specific set of topographic connections.

The latter reference is actually one of the first to suggest
using a learned manifold as the theater of neural dynamics.
Otherwise, some attempts to alter the projection of inputs
into the manifold have lead to satisfying results: [27] and [3]
successfully reproduce biological behaviors after applying a
logpolar transformation to visual stimuli, which models the
discrepancies in the resolution of the human retina [30]. In
[15], the projections received by neurons are altered, although
they are still organized in a rectangular lattice. Since DNF
are strongly dependant to the topography, and rely on a
symmetrical interaction kernel1, one may fear that breaking
the regularity of the underlying topology may make DNF
completely unpredictable.

An ensuing question would be how far from regular and/or
rectangular can the underlying topology be for DNF to remain
viable. If DNF could be made to operate on manifolds of
unconstrained shape or dimension (easily accessible through
GNG), then this would open the door to adding the properties
of DNF to a new range of applications, starting with new
capabilities in multimodal fusion like the ability to take into
account the different resolution and reliability of all modalities.
To our knowledge, this has not been tested. At best, sug-
gestions have been made to approximate DNF activity using
gaussian mixtures, sparsifying the space on which they operate
to make them applicable in more complex topologies [33]. Yet,
this latter approach still relies on a continuous regular space
on which the lateral connectivity kernel function and Gaussian
mixtures can be defined, which remains a strong limitation
when processing high dimensional inputs.

III. MODEL

In this article, we use GNG to learn manifolds of the
sensory space in each modality. We then assemble them
into one multimodal graph, on which we use a DNF to
produce behaviors that have, to our knowledge, never been
implemented on this kind of manifold. These three steps are
summarized in figure 1 and explained below.

A. Unimodal Topology Learning

In this part, we process modalities separately. As our focus
in this article is not on tuning the unimodal topology learning
on a specific task, we use the standard GNG algorithm with its
original parameter values, as described in [5]. To summarize,
GNG are trained by receiving a succession of randomly se-
lected stimuli. Every time, the two neurons whose prototypical
input match the stimulus best get a fresh connection. Then the
best-matching unit (BMU) and its direct topological neighbors
have their prototype moved towards the stimulus. Connections
that have not been updated in a long time are removed, and

1There have been suggestions to break the symmetry from the DNF side,
either through asymmetrical kernels [31] or through distortions of the topology
by predictive reinforcements [32], but both require an additional learning step.
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Fig. 1. Recap of the steps taken in this article. 1. Learn a growing neural
gas in each modality. 2. Assemble them into one single graph by creating
multimodal connections. 3. Present stimuli and compute multimodal activity.

isolated neurons as well. Then at fixed intervals, a new neuron
is inserted. Its prototypical input is placed at the middle of the
most activated connection.

B. Multimodal Topology Learning

For a first milestone, we will focus on bimodal architectures
in the rest of this article. As a reminder, bimodal architectures
in self-organization literature often merge data in one of two
ways: a multimodal map is created that receives information
from the unimodal ones, or new connections are added be-
tween the unimodal maps, each having its own processing
unit. We propose an intermediate solution that is the most
economical of all: we create a new bimodal graph that contains
all nodes and edges from one modality, and all nodes and
edges from the other. To create the crossmodal edges, we
connect neurons of the two modalities that fire together,
which is similar to an Hebbian learning. More precisely, the
algorithm is: We draw a random multimodal input. If it lies in
the sensory range of both modalities, we find the BMU in each
GNG and connect them (if they are not already connected).
We repeat until a certain proportion of nodes have at least one
crossmodal edge.

C. Selection of Activity

Once the bimodal graph is created, its associated neurons
can be stimulated by sensory inputs (through their respective
modality), and we can use DNF to select and attend to a
stimulus. DNF are usually expressed as an integro-differential
equation in a continuous field of neurons, that is later dis-
cretized and computed using the Euler method. The integration
of DNF is comparable to the simulation of continuous-time
recurrent neural networks. In DNF, the distance between
neurons plays an important role, as it determines whether they
will excite or inhibit one another. Our model differs from
others in the literature in that all neurons do not share a



common coordinate system. So, we need to adapt the DNF
equation, so that the distances are defined on the graph, and
only that. We rely on the standard distance from graph theory,
i.e. the number of edges on the shortest path between any two
vertices.

In our model, each neuron is tied to a specific modality.
So, the external input received individually will be modality-
specific (although the rest of DNF operations will not be).
To ensure that the total amount of external stimulation is
independant from the local resolution of a modality, we will
order all neurons of a modality by their proximity to the
stimulus (using the euclidian distance in the coordinate system
of that modality), and stimulate them descendingly according
to their rank. For each neuron indexed k, given a stimulus
indexed i, we note rk,i the rank of proximity between the
prototypical input of k and the coordinates of i. The external
stimulation Ik received by k is given by:

Ik = λm,i e

−r2k,i
2σ2
I (1)

where λm,i is the intensity of stimulus i with regards to k’s
modality m. A neuron can only receive external inputs from
its own modality.

Next, we compute the evolution of activity in the graph
over time. The following is completely modality-agnostic.
The potential Uk of neuron k is initialized as 0 and updated
incrementally by2:

∆Uk =
∆t

τ

(
−Uk + Ik +

∑
k′

W (<k, k′>) f(Uk′) + h

)
(2)

where ∆t is the simulated time between steps, τ a time
constant that determines the speed of DNF updates, f an
activation function (ReLU), and h a negative resting level.
< ·, · > designates the minimal distance in number of edges
between two nodes in the bimodal neural gas, and W is a
weight function expressed as:

W (δ) = λ+ e
−δ2

2σ2
+ − λ− e

−δ2

2σ2− (3)

with amplitudes λ+ > λ− > 0 and widths σ+ < σ−. W can
be seen as a kernel shaped like a mexican hat [1].

One possible way to interpret the outcome is to read the
output f(U). It is common to take a barycenter of the output
as an estimator of the position targeted by the model. While
we are not supposed to know an euclidian topology in which
the positions of GNG nodes can be averaged, we can still
use the input data to interpolate a corresponding location in a
2D euclidian space for each neuron. We will do that for our
experimentations, but please note that this interpolation will
not always be possible. Similarly, for the GNG, we will plot
them by putting all nodes to their asserted location, only for
visualization purposes.

2In this equation, only Uk is incremented over time, and the inputs Ik are
static. However, none of our hypotheses prevent the inputs from being updated
over time. We make this choice because dynamic inputs are not necessary for
the results presented in this paper. Otherwise, equation (2) could be written
by expressing Uk(t) as a function of U∗(t−∆t) and Ik(t).

TABLE I
RANGES OF INPUTS IN THE EXTERNAL ENVIRONMENT

Section Modality X-range Y -range Z-range

IV-A vis. [0, 90] [−45, 45] –
aud. [0, 90] [−45, 45] –

IV-B vis. [−45, 45] [−45, 45] –
aud. [−90, 90] [−45, 85] –

IV-C vis. [−45, 45] [−45, 45] [0, 45]
aud. [−90, 90] [−45, 85] –

IV. RESULTS

Our results will be divided in three parts, with a common
protocol for all. For this article, we will consider two modali-
ties, vision and audition. That can correspond for example to a
robot asked to locate a visual and/or audible stimulus. We test
three setups that take into account challenges that might hap-
pen in the robot perception: differences of resolution within the
same sensory space (section IV-A), high-dimensional feature
space (IV-B), and non-relevant features (IV-C).

So, the main difference between the setups will be in the first
step of our model, the generation of the unimodal manifolds
(described in section III-A). For the GNG training, a stimulus
location will be drawn within the subspace of the environment
that is accessible to the appropriate sensors. For example, a
robot’s visual perception might be restricted to the space in
front of them, while their auditory range might be all around
them. Input ranges are listed in table I. Then, we simulate
the information that would be received from the sensors if a
real stimulus was sent from this position. The way they are
preprocessed will be defined in each subsection.

We have set an upper limit to the number of neurons in
the GNG. Otherwise, the resolution could become excessively
high, increasing the computational cost for no valid reason.
Once the limit is reached, the GNG is trained like a regular
NG, except that nodes that have become irrelevant can still be
removed and replaced. This is still more efficient than starting
with all neurons and training a NG from the beginning.

The creation of a bimodal manifold is roughly the same in
all setups. For the DNF, input stimuli will be specified in each
scenario, depending on the properties to showcase. For the
same reasons, parameters might need to be adjusted slightly
from one setup to the next. All values are given in table II.

A. Bio-inspired Model of Audiovisual Processing

Our first experimentation is inspired from observations in
neurophysiology. Human visual perception is affected by the
heterogeneous distribution of sensors in the retina, giving a
higher resolution in the center of the field of view (the fovea)
than in its periphery. This disparity can be observed in brain
regions processing visual information, such as the superior
colliculus [30]. A mathematical model of the disparity between
fovea and periphery, using a logpolar transformation, has been
suggested by [30], and previous works have coupled it with
DNF for visual [27] and audiovisual processing [3].



TABLE II
PARAMETERS USED IN OUR DNF IMPLEMENTATION. SPREAD

PARAMETERS ARE EXPRESSED IN ARBITRARY UNIT THAT DENOTES THE
MINIMAL NUMBER OF EDGES THAT SEPARATE TWO NEURONS.

Parameter Value Meaning

IV-A IV-B & IV-C

Simulation settings

∆t 0.01 0.01 Time step
σI 2.5 2.5 Spread of stimulus
λvis, A 2 2 Strength of visual bottom stimulus
λvis, B 2.4 2.02 Strength of visual top stimulus
λaud, A 2.4 1.5 Strength of audio bottom stimulus
λaud, B 2 0 Strength of audio top stimulus

DNF parameters

τ 0.1 0.1 Time constant
λ+ 0.4 0.55 Amplitude of lateral excitation
σ+ 2.5/3/3.5 1.5 Spread of lateral excitation
λ− 0.3 0.3 Amplitude of lateral inhibition
σ− +∞ 10 Spread of lateral inhibition
h −1 −1 Resting level

0 5 10 15 20 25 30 35 40 45
Azimuth

−10

−5

0

5

10

El
ev
at
io
n

Fig. 2. Sample representation of a bimodal graph. Edges are colored
depending on the modalities of the neurones they connect. Visual-visual:
black. Auditory-auditory: cyan. Visual-auditory: red.

Models of the superior colliculus are not only useful for
computational neuroscience. While cameras used by robots
are supposed to have a homogeneous resolution, they might
happen to have blurry spots because of dirt or wear. Other
modalities may also have a high variance in resolution. The
logpolar transformation is a straightforward way of testing
these variations in a controlled setting. Additionally, even
when the camera sensory space is perfectly regular, it has been
suggested that adding a logpolar transformation on top of it
could improve gaze control in robots [34].

1) Sensory space: In light of the aforementioned hypoth-
esis, we take coordinates of a visual stimulus in a regular
2D visual hemifield, and displace them following the logpolar
transformation in [30]. The new 2D coordinates are used
as inputs for the visual GNG. Since we study the effect of
variable resolutions in one modality, the other modality, audio,
will be modeled as a regular 2D space as in [3], with the same
range as vision (table I), so that it does not interfere with the
analysis. Both GNG are given 1000 nodes maximum.

2) Produced manifolds: A sample of the bimodal graph is
shown in figure 2. For visualization, visual nodes are placed
according to a reverse logpolar transformation of their features,

and auditory nodes according to their raw coordinates. The
unimodal GNG are superposed with different colors.

As expected, the visual GNG has a much higher resolution
around the fovea (0°), as can be presumed by the high density
of nodes. It gradually decreases as the azimuth augments. On
the contrary, the auditory GNG has roughly the same reso-
lution everywhere. Connections between neurons of different
modalities are shown in red3. For azimuths between 0° and
approximately 30°, vision has a better resolution than audition:
most nodes from the audio GNG are connected to multiple
visual nodes. The trend is reversed for higher azimuths.

3) Resulting properties: After the bimodal manifold is
created, we are interested in seeing what a DNF would select
when confronted to conflicting bimodal stimulus. It is expected
that near the fovea, vision is more reliable, so it should have a
bigger weight in the fusion than audition. To test this, we put
two conflicting stimuli A and B at a common azimuth x, and
elevations −5° and 5° respectively. Both stimuli can be both
seen and heard, but A is 20% more auditively salient than B,
and B is 20% more visually salient than A.

When tested on a unimodal manifold, the DNF has no
trouble selecting either A or B. Every time, the most salient
stimulus in its respective modality has a higher chance of being
selected. Occasionally, the DNF forms a bubble in-between the
stimuli. This is mostly visible for higher azimuths in the visual
GNG. The reason is that the resolution is so low that A and
B are separated by only a few edges. The DNF does not have
access to the corresponding inputs of its neurons viewed from
the exterior. Thus, when viewed from inside the model, they
are topologically very close to each other. So, the DNF treats
the stimuli as if they were right next to each other, and merges
them into a bubble of activity located at their center of mass.

In the bimodal manifold, the stochasticity in the creation
of the GNG starts having an impact, as it may seemingly
give a locally higher resolution to a modality when it is not
expected. A might be selected instead of B, when B is more
salient, just because B stimulates a region with fewer neurons
or connections than average. To separate the random effect
caused by the creation of the GNG, we create 50 bimodal
manifolds, and test a run of DNF on 90 different azimuths for
each of them. The results are aggregated in figure 3. As we
suspect that the distance at which stimuli are merged depends
on the width of the DNF kernel, we couple in our analysis
the effect of resolution with the value of σ+. We test three
different values of σ+, represented by three different colors:
green, red, blue from thinnest to widest.

The curves represent the outcome of two mixed logistic
regressions. The fit of the black curve is obtained after

3For this model, we initially observed that a lot of visual neurons close to
the fovea were never connected to auditory ones. Because there are so many
of them in a very close space, a huge number of random draws is required
before they are all visited. To ensure that the merging task would not be
hindered by a lack of connectivity, we biased the draw of external stimuli so
that the prototypical input of every neuron was drafted. We found that this
manual bias has no effect on the graph connectivity outside the fovea. This
draw method is not applicable to most scenarios, since we are not supposed
to know the actual coordinates of the neurons in the external environment.
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Fig. 3. Statistical model of the modality priority change (in black) and the
stimulus merging. One point represents the barycenter of the output of one
of the 3 differently parametrized DNF (green: σ+ = 2.5, red: σ+ = 3,
blue: σ+ = 3.5), on one of the 50 randomized GNG, with two bimodal
stimuli A and B at azimuth x and elevations ±5°. The black curve shows
a logistic regression of the switch between preferred stimuli. Colored curve
show logisitic regressions of the stimulus merging effect depending on values
of σ+.

cancelling the merging effect, and shows a clear switch of
preference from B to A centered on 32°. B is more likely to be
selected than A when the visual modality is the most reliable,
and vice versa. Logically, this effect is independant of σ+
variations. This amounts to the DNF automatically selecting a
stimulus according to the most reliable sensor.

The fit of the colored curves are obtained by canceling
the switch effect. We can see a convergence from ±5° to 0°
elevations, although for lower values of σ+, the limit at 0° is
not reached before the end of the field of view. Only the lower
curves are displayed but the effect is symmetrical.

The results show two trends. First, from the higher con-
centration of points at the 5° elevation in the leftmost part of
the figure, we can see that B (visually stronger) is more often
selected in lower azimuths than A. Then A is preferred for
higher azimuths. Second, we see that the probability of A and
B being merged (manifesting as an increasing concentration of
points around 0°) increases with the azimuths. As we expected,
the distance at which they are merged depends a lot on the
value of σ+. The larger the interaction kernel, the sooner the
merging seems to happen.

B. Real-world Robotic Sensory Data

In the previous section, we used manufactured data to
showcase DNF selection properties in manifolds of variable
resolution, favoring the most reliable modality. In this section,
we will partly use real experimental data and show that these
properties are still available in more complex sensory spaces.
Our main change will be on auditory preprocessing. One
way of performing sound source localization for robots is to
compute a HRTF, a function that associates spectral features
(caused by interferences on the signal by the head and pinnae)
to source orientations [4]. Meanwhile, vision is less of a
challenge nowadays, as extracting the position of an object
from an image is easily achievable, and one can reasonably
expect to have a homogeneous resolution in most cases.

1) Sensory space: Data provided by [35] includes head-
related impulse responses of a robot equipped with artifi-
cial pinnae, to a sound located at different angles. Given
an external stimulus position in 2D, we can interpolate the
responses received by the two robotic ears within a specific
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Fig. 4. Sample of the auditory graph obtained from HRTF data. The 2D
location of neurons is not known by the GNG, it has been interpolated from
their prototypical input in HRTF space, for visualization purposes only. Note
that the x-axis and y-axis have different scales.

range (table I). We then compute their Fourier transform and
make the difference between the ears to obtain a HRTF. In the
end, each audio input is 100-dimensional.

For vision, we will consider a robot with an intact camera
and assume it can roughly estimate the 2D coordinates of
an object in front of it. We do not need visual and auditory
perception to have the same range. Realistically, stimuli can be
heard from more orientations than they can be seen. To keep
resolutions approximately balanced, we will use respectively
maximum 500 and 200 nodes for auditory and visual GNG.

2) Produced manifolds: The visual GNG is very similar to
the auditory GNG in the previous section, which also directly
received stimuli drawn from a regular 2D space. The new
auditory one, however, has a distinct shape. Figure 4 shows
what the GNG looks like after placing each node at the source
location that would match its audio (100D) coordinates best.
The graph appears to be stretched vertically.

3) Resulting properties: Like in the previous scenario, we
test the DNF with two stimuli A and B. This time, they
are separated both horizontally and vertically. Stimulus A has
congruent audio and visual components, while B is not audible
but visually more salient by 1%. It is expected that A should
be selected over B, as A is consistent over modalities. Results
are synthesized in figure 5.

In the visual-only manifold, B largely takes precedence.
A is mostly inhibited, with some (negative) residual activity
left. This is expected, as B is more visibly salient, but it is
worth noting that the 1% difference between λvis, A and λvis, B
matters. While not shown here, we have tested swapping the
intensity values, and A does take precedence in that inverted
case. We are in a situation where both stimuli are considered
equally by the DNF, and a very small difference in intensity is
enough to bias the competition towards one or the other. This
is a very standard observation in DNF literature, but it is still
worth noting considering the topology is not entirely regular.

In the audio-only manifold, A is trivially selected, but we
can see some loss of precision in elevation: the barycenter
is found 7° higher than the actual stimulus. This is very
consistent with the general lack of elevation-wise precision
in auditory perception.

The precision is improved in the bimodal manifold. As
would be expected, audiovisual congruent stimulus A is se-
lected over visual-only B. But the barycenter is also closer
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Fig. 5. Results of stimulus selection by DNF unimodal and bimodal GNG.
These 2D depictions use neuron positions interpolated from the source data
(for visualization). Shades of gray reflect neuron potential U . Red crosses
indicate the barycenter of output activation f(U) in the reconstructed 2D
projection. (a) Visual-only neural gas with two stimuli located at A and B,
with B slightly more salient. Nodes are represented by Voronoi cells, edges
connecting nodes are not shown. (b) Auditory-only neural gas, with only one
input at A. (c) Bimodal neural gas. Its input is the sum of the ones used for
(a) and (b). (d) Zoom on (c) around A, where all nodes and edges are shown.

to the actual stimulus position than in the audio-only case,
meaning the visual elevation-wide better precision had a
positive impact. Again, the enhanced multimodal precision
is a classical observation in either neuroscience or machine
learning, but it is worth noting that it persists when working
with a complex underlying topology.

When we look more closely at the nodes around A, we can
see than despite there being a lot of edges in all directions, a
few neurons form a discernable bubble. It is interesting that
these neurons come indiscriminately from both modalities.
One could have feared an outcome where only visual neurons
interact with each other, and auditory neurons, less regularly
distributed, only serve to transmit a little bit of auditory
stimulation. On the contrary, the crossmodal connections play
an important part, so that the DNF does not leave out one
modality for the other. When both are useful, both are used.

C. Dealing with a Superfluous Dimension

1) Sensory space: This setup is similar to the previous
one, except the visual sensory space is now 3D. We add a
dimension that is not relevant to the task, e.g. color when a
robot is asked to select an object designated by shape only.
Since the visual space expands, and GNG are not advanced
enough to reduce the dimensionality when the amount of
possible inputs increases brutally, we also increase the number
of neurons in the visual GNG to 3000. The rest of the setup
remains the same.

2) Resulting properties: We did the same experiments as in
section IV-B. Stimuli A and B are given the same color, so that
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Fig. 6. Same as figure 5 with a supplementary dimension in the visual
modality. The third dimension is orthogonal to the plane used in this
representation.

their distance in the external environment remains the same
as before. According to our preliminary tests, the conclusion
would be the same with stimuli of different colors. Results
are displayed in figure 6. Only the visual-only and audiovisual
conditions are shown, since the auditory-only condition is the
same as before, and the zoom-in picture with edges is hardly
readable. As a reminder, the visualizations are still made using
x- and y-axes, meaning the new color axis is completely
flattened. These presentations are akin to looking at a cube
from a side, hence the dense Voronoi tessellation and the
scattered activity.

We find that the outputs are strikingly similar, i.e. a pref-
erence for multimodal consistent inputs and improving audio
precision, despite a big increase in the number of neurons and
edges, many of which are irrelevant to the task. This shows
robustness of the model to distracting dimensions.

V. CONCLUSION AND PERSPECTIVES

Our model consists in two unimodal GNG, trained using
the standard algorithm by [5], then connected to form one
new multimodal manifold with a simple Hebbian rule. This
manifold is used as a support for neural dynamics that are
implemented by adapting the DNF paradigm [1]. Our model
was tested on multiple setups, including real data. The main
novelties of our work are twofold. First is the use of neural
dynamics in a multimodal manifold of unspecified dimen-
sionality or regularity, a capability of DNF that has not been
showcased before. The field applies on a learned manifold that
is faithful to each unimodal sensory space, and is not hindered
by irrelevant dimensions. Second is the combination of the
multimodal topology with DNF to obtain interesting properties
such as the contribution of different modalities that depends on
their respective learned resolution, the selection of the most
relevant multimodal stimulus by using the best information
each modality had to offer, and the filtering of irrelevant
informations. These results are scalable to applications with
more than two modalities.

As we have seen when adding a dimension, the number of
neurons in the GNG necessary to keep the same resolution,
and consequently the computational cost of the model, may
increase drastically when the sensory space is broadened. This
would not be an issue with deep neural networks, that are very



effective at finding intrinsic dimensions in data [7]. It would be
interesting to see whether manifolds created by deep learning
are also suitable vectors of neural dynamics. This would be
complementary to existing approaches to encode topological
maps with neural networks [36], [37].

In our model, learning of the multimodal topologies and
their use for multimodal fusion are decoupled. An interesting
perspective would be to perform them simultaneously, which
raises some challenges like making the model robust to the
temporal dynamics and to the detection of relevant features
for learning and fusion. Another perspective is to study multi-
modal active perception, where the internal perception will be
related to motor actions to explore the environment. DNF are
well suited to model saccades [29]. This raises open questions
related to multimodal attention and active perception.
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