

Forming three-dimensional micro-objects using two-dimensional gradient printing

Aofei Mao, Peixun Fan, Loic Constantin, Nan Li, Xi Huang, Bai Cui, Jean-François Silvain, Xinwei Wang, Yong Feng Lu

▶ To cite this version:

Aofei Mao, Peixun Fan, Loic Constantin, Nan Li, Xi Huang, et al.. Forming three-dimensional micro-objects using two-dimensional gradient printing. Applied Materials Today, 2022, 28, pp.101538. 10.1016/j.apmt.2022.101538. hal-03693134

HAL Id: hal-03693134

https://hal.science/hal-03693134

Submitted on 10 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Forming three-dimensional micro-objects using two-dimensional gradient printing

2 3

1

- 4 Aofei Mao^{1,#}, Peixun Fan^{1,#}, Loic Constantin¹, Nan Li¹, Xi Huang¹, Bai Cui², Jean-Francois
- 5 Silvain³, Xinwei Wang⁴, Yong Feng Lu^{1,*}
- 6 Department of Electrical and Computer Engineering, University of Nebraska, Lincoln, NE 68588, USA.
- ²Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA.
- 8 ³CNRS, University of Bordeaux, Bordeaux I.N.P., ICMCB, UMR 5026, F-33608 Pessac, France.
- 9 ⁴Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
- 10 *These authors contributed equally to this work
- 11 *Corresponding authors.
- 12 E-mails: <u>ylu2@unl.edu</u>. (Yong Feng Lu); <u>fanpeixun@gmail.com</u>. (Peixun Fan)

13 14

15

16

17

18 19

20

21

22

23

2425

26

27

28

29

Abstract: Controllable transformations from two-dimensional (2D) patterns to threedimensional (3D) geometries independent of materials or external stimuli are being pursued in numerous fields. Here, we present an approach to forming various 3D structures through 2D printing using distributed stress inside a polymer. The key is to establish controlled stress fields by introducing composition and property gradients inside a photocurable polymer by femtosecond laser two-photon polymerization. Structural deformation induced by internal stress is a general bottleneck both in materials processing and 3D printing. In contrast to the significant efforts previously made to reduce stress and deformation, we use them to enable shape transformation to construct various 3D micro-objects through 2D printing with engineered stress fields inside. Multi-mode 2D-to-3D structural transformations, including bending, rolling, coiling, waving, spiraling, and out-of-plane distortions are realized in a shape- and locationspecific fashion. This strategy promises a unique way to fabricate delicate 3D objects not feasible through conventional techniques and to circumvent the intrinsic stepping limitations in direct 3D printing using two-photon polymerization. When combined with the standard 2D patterning techniques such as nanoimprint and photolithography, such a 2D-to-3D transformation approach will lay a foundation for high-throughput and cost-effective production of complex 3D nanostructures.

30 31 32

Keywords: controllable 2D-3D transformation, self-shaping, two-photon polymerization, femtosecond laser micro/nano manufacturing, anisotropic shrinkage, stress control

33 34

35	TPP	two-photon polymerization
36	fs	femtosecond
37	2D	two dimensional
38	3D	three dimensional
39	2D-3D	2D-to-3D
40	LP	laser power
41	SS	scan speed
42	HD	hatching distance
43	SD	slicing distance
44	DoC	degree of conversion

SEM

Introduction

Controllable structural transformation from two-dimensional (2D) patterns to three-dimensional (3D) geometries is being pursued in various fields including microelectromechanical systems [1,2], soft actuators [3], biomimics [4], and biomedical devices [5-7]. One traditional strategy is to utilize bi-/multi-layer structures composed of different materials, and the mismatches of their properties, such as thermal coefficient and solubility parameter [8,9]. Structural transformation has also been realized using the unique responses of specific materials (e.g., hydrogels [10], shape memory polymers [11], etc.) to external stimuli (e.g., light [12], temperature [13], chemicals [14], magnetic [15], etc.). Origami and kirigami methods have also been developed for structural transformation through the exquisite design of hinges and foldings [16], making use of surface tensions [17,18], cell traction [19], bucklings [20], etc., as the driving forces. However, general approaches capable of realizing controlled 2D-to-3D (2D-3D) transformation to construct 3D geometries with a single material in a single process have yet to be explored.

Direct laser writing via two-photon polymerization (TPP) has been known for maskless and programmable 3D printing at meso-micro-nano scales. However, TPP has primarily been used to directly print 3D designs with little control over the material properties and the subsequent structural transformation. Recent studies reported the reconfiguration and motion of 3D structures after printing by adding stimuli-sensitive compositions (e.g., hydrogels [21], graphene [22], carboxylic groups [23], gold nanorod [24], and bovine serum albumin [25], *etc.*) into the polymer resins. Spontaneous structural transformation from in-plane 2D patterns to out-of-plan 3D objects independent of specific material compositions can inspire broad interests in micro/nanofabrication but has seldom been achieved.

Here, we use TPP to tailor the local cross-link gradients inside photocurable polymers with submicron resolutions and, thus, to establish spatially distributed stresses for achieving spontaneous, prespecified 2D-3D transformations (Video S1). Internal stresses usually cause undesired structural deformations and, hence, are considered as a common bottleneck both in materials processing and 3D printing. In contrast to the significant efforts previously made to reduce stresses and deformations, we demonstrated that internal stresses can be tailored to form 3D micro-objects instead of directly printing geometries exactly as designed. The printingcondition-determined degree of conversions (DoC) and shrinkage behaviors of polymers were investigated. This research clarifies the critical role of composition and property gradients inside a single material in enabling 2D-3D transformations. Multi-mode transformations were achieved either individually in different shapes or simultaneously in a single complex 3D structure in different photocurable polymers, revealing the universality of the 2D-3D transformation approach. This strategy opens up a new avenue to fabricate 3D micro-objects with complex geometries, reduces the production time cost, and circumvents the intrinsic stepping limitations in direct 3D printing. The fundamentals explored in this study promise new opportunities for addressing general challenges in the fabrication of 3D micro/nanoscale structures for different applications.

Results and discussion

1

13

14

15

16

17

18 19

20

2122

23

24

25

26

27

28

29

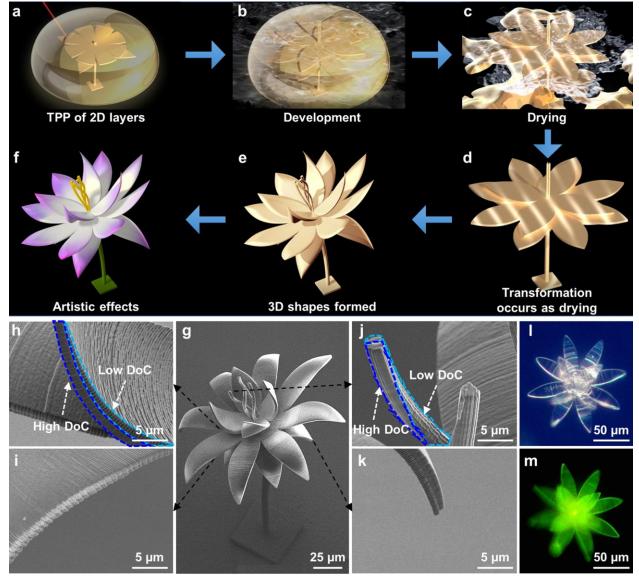
30

31

32

33

34


35

36 37

- 2 Conception of TPP-enabled 2D-3D transformation
- 3 **Figure 1**a-f illustrate the processes involved in the TPP-enabled 2D-3D transformation approach.
- 4 The 2D in-plane patterns unfolded from targeted 3D objects are printed via TPP. In TPP, photo-
- 5 initiators absorb two photons simultaneously in response to femtosecond (fs) laser exposures and
- 6 decompose into free radicals. The sp² carbons from monomers react with surrounding free
- 7 radicals to form polymer networks until termination occurs. Subsequently, the unreacted
- 8 initiators and monomers are replaced and removed by developing agents. As the developing
- 9 agents dry up, the polymer networks tend to shrink [26]. The key step in the TPP-enabled 2D-3D
- transformation approach is to introduce internal gradients in polymerization. Correspondingly,
- the level of shrinkage will be location-specific in the 2D patterns, building up stress fields when
- drying up and enabling the transformation of the 2D patterns to desired 3D objects [27].

As a nonlinear two-photon process, TPP occurs within a nanoscale ellipsoid around the fs laser focal spot (voxel). This enables flexible and accurate control over the stress fields. Specifically, the DoC from monomers to polymer networks directly determines the cross-link densities and, thus, the shrinkage at different locations [28,29]. Since the DoC is laser-dose dependent, the shrinkages and the consequent stress fields can be tailored voxel-by-voxel through tuning the TPP printing parameters, including the hatching distance (HD), slicing distance (SD), scan speed (SS), and laser power (LP). Therefore, the structural transformation from in-plane 2D patterns to out-of-plan 3D objects can be controlled. More details of the 2D-3D transformation approach and its mechanisms are shown in **Figs. S1-S3**.

As an example, **Fig. 1**g shows a 3D standing flower structure composed of a pedicle, multiple petals at three different height positions and several stamens, which was fabricated through the 2D-3D transformation. Different DoC gradients were introduced at different locations during TPP printing. Specifically, the pedicle was printed such that one side was polymerized to a higher degree than the other side. For the stamens, higher and lower DoC regions varied spirally during the printing. In the petals, the DoC gradients were set along both the thickness and the radial directions to achieve different curvatures. We succeeded in simultaneously realizing different types of spontaneous 2D-3D transformations in the pedicle, stamens and petals while keeping the entire flower free-standing. The stamens twisted to show different helical shapes (Fig. 1j). Meanwhile, some petals bent upwards while others bent downwards (Fig. 1h, I, k). The head of the pedicle bent towards the lower left together with the stamens and petals, which can be more clearly seen from the zoomed images in Fig. S4b. The dark-field and fluorescence images demonstrate that the 3D flower is intact and undamaged during the transformation (Fig. 11, m). Besides, Fig. S4a shows that an array of the 3D standing flower were identically fabricated in one batch, confirming the reproducibility of the 2D-3D transformation.

Figure 1. Overview of the spontaneous 2D-3D structural transformation. a-f) Schematics of the processes of the 2D-3D transformation approach. g) An overall SEM image of a standing flower after the 2D-3D transformation. h-k) Zoomed-in SEMs of the stamens (j) and petals at three different heights (h, i, k). l) Darkfield optical microscopy, and m), green-fluorescence images of the standing flower after transformation.

Engineering stress field for directional 2D-3D transformation

By printing individual cubic blocks with different TPP parameters, the "laser dose-DoC-shrinkage" relationships were systematically analyzed. The DoC can be determined by measuring the ratio of the C=C to C=O bonds before and after TPP using Raman spectroscopy [30]. The volume shrinkage (S_v) was estimated by measuring the volume difference between the printed and designed cubes and calculated as:

$$S_{v} = \frac{V_0 - V}{V_0},\tag{1}$$

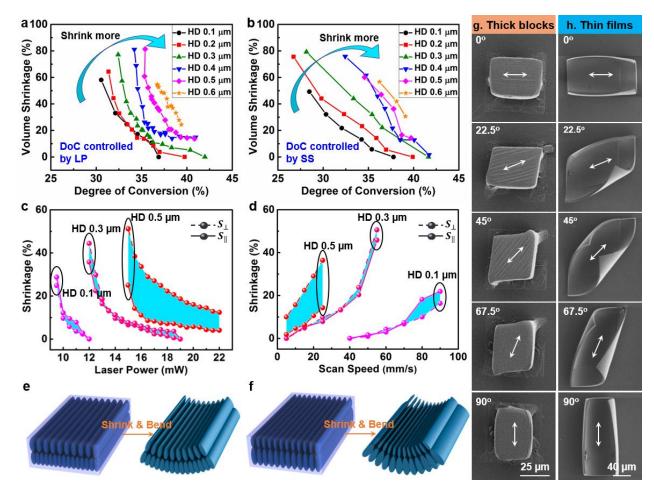
where V_0 is the cube volume designed (i.e., $50 \times 50 \times 50 \mu m^3$ here), and V is the cube volume measured after development. When the HD and SD are fixed, a higher laser dose (e.g., a higher

LP or a lower SS) results in a lower shrinkage and a higher DoC (**Figs. S5-S7**). Therefore, a negative correlation between the shrinkage and DoC is revealed, no matter either the LP or SS was used as the controlling factor (**Fig. 2**a-b). Besides, larger HDs result in higher shrinkages even that similar DoCs are reached, which becomes more obvious at lower DoC regions.

It was reported that the DoC of the IP-Dip resin (used in this research) can be correlated to the TPP parameters as [31]:

$$DoC = c_1 \rho_0 \left(1 - e^{-\delta_{2,eff} C_0 \frac{LP^2}{SS} D_v} \right) + c_2, \tag{2}$$

where $c_1\rho_0=0.62$, $c_2=-0.15$, $\delta_{2,eff}=3\times10^{-55}$ cm⁴s, c_0 is a constant representing the relevant optical parameters used in TPP, and $D_v=c_3$ / HDⁿ with $c_3=1.5e^4$ µm^{-2.36} and n=0.64. Using the TPP parameters—DoC and DoC—shrinkage correlations as a parameter-window indicator, the shrinkage of TPP samples can be controlled via controlling DoCs under different TPP printing conditions. Further, the shrinkage differences among different portions of the TPP samples can be designed and used to establish programmed stress fields. Through this effort, the stress fields can be utilized to control 2D-3D transformation rather than a detrimental factor that usually causes undesired deformations in TPP.


For 2D-3D structural transformation, anisotropic shrinkages are favored to gain directional control, which is essential for producing complex 3D structures from 2D patterns [16, 32-34]. Our experimental results show that the HD plays a key role in the shrinkage anisotropy (**Figs. 2c**-d, **S8** and **S9**). When small HDs (e.g., 0.1-0.3 μ m) are used, the shrinkages are similar in both crossing directions, i.e., parallel (S_{\parallel}) and perpendicular (S_{\perp}) to the hatching direction. In contrast, using a large HD (e.g., \geq 0.4 μ m) results in obviously higher shrinkages in the direction perpendicular to the hatching lines. Moreover, the shrinkage anisotropy can be tuned by the TPP parameters, e.g., LP and SS. When the HD is above 0.3 μ m, the shrinkage anisotropy becomes more obvious with lower laser doses (e.g., lower LP or higher SS).

The anisotropic shrinkage originates from the Gaussian profile of the fs laser used, which results in DoC gradients along the radial direction in the cross-section of each polymer line (**Fig. S10**). During the overlap of TPP lines to cover a volume, the DoCs in the overlap regions between adjacent lines significantly determine the shrinkage behaviors. Using large HDs, lower DoCs are generated in the overlap regions than in the center of each line, making the overlap regions shrink more (**Fig. 2**e). Using lower LP or higher SS, polymer lines with smaller cross-sections are printed, which also causes lower DoCs in the overlap regions (**Fig. 2**f). Both conditions can make the whole printed volume inhomogeneous, with more shrinkage in the direction perpendicular to the TPP lines. When multiple layers are printed with different HDs, LPs or SSs, directional stress fields with controlled magnitudes can be established to enable 2D-3D transformation.

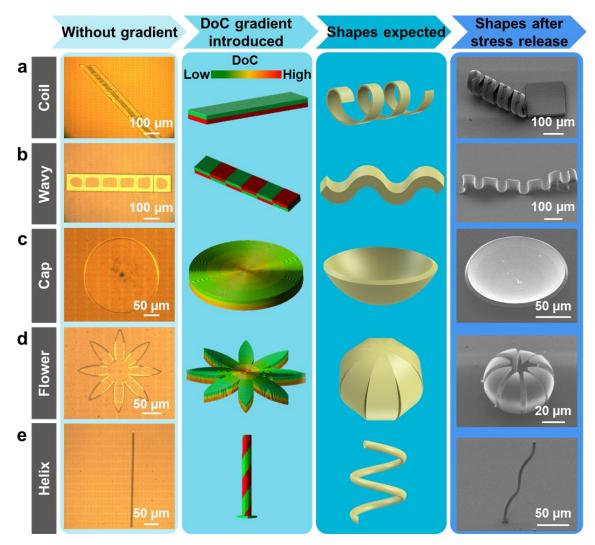
As a quantitative demonstration, **Fig. 2**g shows the SEMs of blocks $(50\times50\times50~\mu\text{m}^3)$ printed with all the parameters fixed (LP = 19.5 Mw, SS = 10 mm/s, HD = 0.6 μ m, and SD / HD = 2) other than the hatching direction rotated from horizontal (0°) to vertical (90°). The shrinkages are anisotropic and depend on the hatch direction. Further, taking the bending transformation as an example, the anisotropic shrinkage in thin films $(160\times160\times6~\mu\text{m}^3)$ with DoC gradients intentionally introduced along the thickness direction was investigated (three layers were printed by setting HD/SD at 0.4/0.8, 0.3/0.6, and 0.15/0.3 μ m, respectively, in the top, middle, and bottom layers). Theoretically, if the low DoC layers shrink isotropically, the thin films would

bend spherically because the second-moment inertia along both directions parallel and perpendicular to the hatching direction are equal due to identical geometries. However, the films rolled up with their axes parallel to the hatching directions (**Fig. 2**h), which indicates that the shrinkages of the low-DoC layers mainly occur in the direction perpendicular to the hatching direction. **Figure 2**h also verifies that the bending direction of the polymer films can be precisely and continuously tuned by simply changing the hatching direction. Therefore, the hatching direction can be used to control the path of the 2D-3D structural transformation provided that large HDs introduce sufficient DoC gradients (**Fig. S11**).

In addition to the bending directions, bending curvatures can also be controlled by tuning the anisotropy in shrinkage and the shrinkage difference between the adjacent TPP layers. To gain a deeper understanding of the 2D-3D transformation, we developed a simplified model to evaluate the bending trend of the TPP 2D films, where the 2D patterns can be equivalent to a series of local pairs of high- and low-DoC layers (**Fig. S12**a-b). It appears that the DoC differences in two adjacent layers determine the bending curvatures of the TPP films with the same thickness. Larger DoC differences result in sharper bending (**Fig. S12**c-g). The bending-DoC relation can guide the design of local bending to eventually control the overall 2D-3D transformations.

Figure 2. Controlled anisotropic shrinkage through programmed DoC and directional 2D-3D transformation. a, b) Relationships between volume shrinkages and DoC with LP (a) and SS (b) as the controlling factors. c, d) Evolution of shrinkages with LP (c) and SS (d) at different HDs in both crossing directions. e, f) Schematics of anisotropic shrinkage and the consequent bending transformation perpendicular to the voxel lines through

controlling the line distance I and line width (f). g, h) Controlled anisotropic shrinkage of thick blocks (g) and controlled bending of thin films (h) by tuning the hatching directions.


3 4 2D-3D transformations to form diverse 3D structures

With the programmable anisotropic shrinkage and stress fields, we can flexibly engineer the polymer shrinkage by TPP and achieve diverse 3D structures transformed from 2D patterns. In addition to the basic single-direction bending (namely rolling) in **Fig. 2**h, we have also realized coiling transformation by generating DoC gradients in a 2D parallelogram pattern, forming a microcoil with an even pitch and diameter (**Fig. 3**a). The hatching lines were made parallel to the short edges of the parallelogram and the HDs increased from 0.2 µm at the bottom to 0.6 µm at the top. In contrast, the same 2D pattern without DoC gradients remained flat after drying. The advantages of free design in TPP can be applied to fabricate most complex structures. For instance, by alternately reversing the DoC gradients at different lateral positions in a 2D pattern, waving transformation was realized, producing a bi-curvature structure, such as a wavy strip (**Fig. 3**b).

Since the shrinkage is primarily determined by DoC, the DoC gradients can also be used to generate out-of-plane distortions and even freeform transformations, leading to 3D structures with dual-curvatures and ultimately spherical geometries. This is beyond what can be achieved by simply bending and folding polymer films using conventional 2D-3D transformation routines [35,36]. For example, we set the laser scan paths to concentric rings when printing a 2D circular pattern and created DoC gradients along both the thickness and radial directions by changing the HD and SD (**Fig. 3**c). After drying, the flat pattern was spontaneously transformed into a cap shape. In comparison, the 2D circular pattern remained flat when no gradients were introduced.

To further demonstrate the capability of the 2D-3D transformation, microflowers were also achieved by introducing DoC gradients along both the thickness and radial directions (**Fig. 3**d). As a more general demonstration, we printed a microfiber with a diameter of 6 μ m and a height of 200 μ m with the DoCs designed to have a spiral-like distribution (**Fig. 3**e). The straight fiber was transformed to a helical shape after drying. We further explored the possibility of integrating different types of transformations in a single complex structure and succeeded in producing an entire standing flower(**Fig. 1**g), verifying the flexibility of the 2D-3D transformation to fabricate objects with structurally complex components.

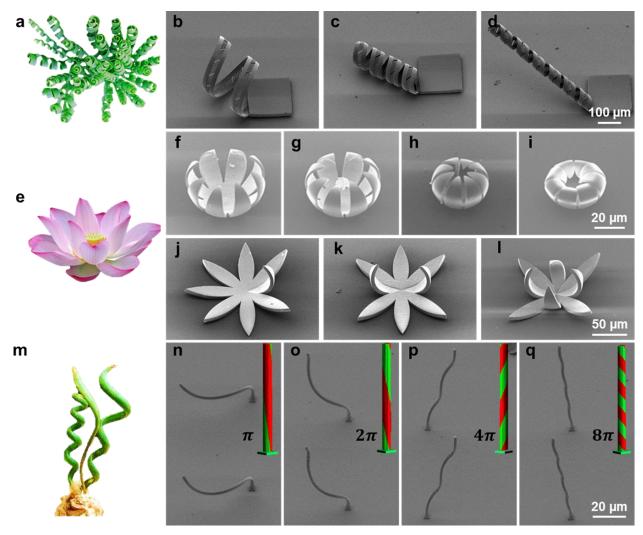

Besides, by adding specific features on the TPP 2D films, 3D micro-objects having applications in different fields can be fabricated via the 2D-3D transformation. For example, we have achieved a closed 3D microstent transformed from a 2D grid pattern by precisely tuning the DoC gradients along the thickness direction, and a 3D micro-origami structure from a 2D threepointed-star plate by creating DoC gradients in the hinge regions (Fig. S13). The 3D microstent micro-origami structures have potential applications in biomedicine microelectromechanics, respectively. Additionally, a 3D curved truss structure was formed through the transformation of a 2D flat pattern composed of multiple hexagon cells (Fig. S14). The spaces within and among the cells provide more tunability on the 2D-3D structural transformation.

Figure 3. Diverse structures achieved through multi-mode 2D-3D transformations. a) A coil structure formed by creating DoC gradients along the thickness direction. b) A wavy structure formed by creating periodic DoC gradients along the lateral direction. c, d) A cap I and a flower structure (d) formed by creating DoC gradients along both the radial and thickness directions. e) A helical structure formed by manipulating DoC gradients.

Shape- and location-specific 2D-3D transformation

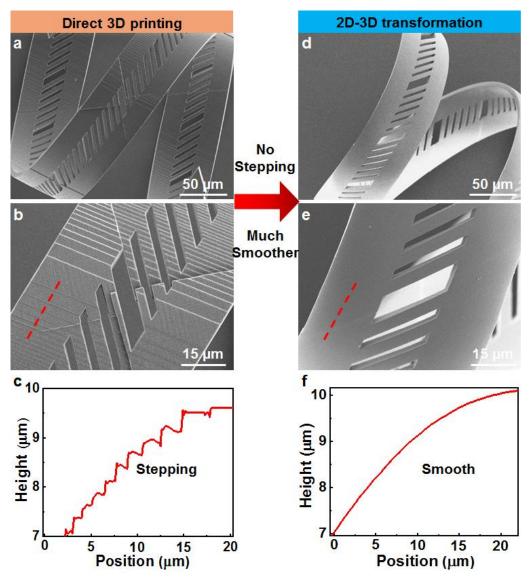

 Furthermore, the 2D-3D transformation is quantitively controllable, making shape- and location-specific transformations possible. The shape- and location- specific transformation can be used to mimic unique morphologies and different growing stages of natural plants. For example, microcoils with two to six turns and diameters of 60-240 μ m were formed from 2D patterns of the same size (**Fig. 4**b-d), mimicking the curls of the albuca namaquensis grass (**Fig. 4**a). Different bending effects were also realized through gradually increasing the DoC gradients along the radial direction (**Fig. 4**f-i), mimicking the lotus flowers in different blooming stages (**Fig. 4**e). The 2D-3D transformation can also tailor a specific one or more petals of the flower structure (**Fig. 4**j-l) and occur to different degrees at each of the eight petals (**Fig. S15**). Moreover, microhelices with different spins were fabricated by manipulating the DoC gradients in periodicities of π , 2π , 4π , and 8π at a fixed height (**Fig. 4**n-q), mimicking the spiraling stems of the juncus effuses grass (**Fig. 4**m).

Figure 4. Shape- and location-specific 2D-3D transformation. a) Albuca namaquensis grass. b-d) Microcoils with different pitches and diameters achieved by varying DoC along the thickness direction. e) Lotus flower. f-i) Microflowers at different blooming stages achieved by varying DoC along both the thickness and radial directions. j-l) Targeted transformations at one, two, and four petals. m) Juncus effusus spiralis grass. n-q) Microhelices with different spins achieved by manipulating the 3D gradient of DoC periodically.

Advantages of 2D-3D transformation over direct 3D printing

 Additionally, 2D-3D transformation can fabricate complicated and delicate 3D objects which easily collapse, are flawed, or require special protocols in direct 3D printing [37]. **Figure 5** shows that the 2D-3D transformation achieves microcoils with obviously smoother surfaces and improved integrity, while the directly printed 3D structures show obvious stepping features. The intrinsic layer-by-layer manner in direct 3D printing leads to inevitable stepping features on curved surfaces. The unpredictable instability of over-hanging features during direct 3D printing causes failure in fabrication, imperfect stitching of adjacent parts, and more surface roughness (**Fig. S16**). Both intrinsic limitations in direct 3D printing are circumvented using the 2D-3D transformation. Furthermore, the 2D-3D transformation fabricates complex objects in shorter times, e.g., microcoils and microstents are fabricated three to four times faster than direct 3D printing (**Fig. S17**).

Figure 5. Advantages of the 2D-3D transformation approach over direct 3D printing. a, b) and d, e) SEM images of the same microcoil structure fabricated through direct 3D printing and 2D-3D transformation, respectively. b) and e) are the magnified images of a) and d), respectively. c) and f) are profiling results at the surface areas marked by red dashed lines in b) and e), respectively.

 All results above were achieved using the IP-Dip resin. Also, we have tested implementing our approach with other photoresists, including the IP-S resin and, more generally, the SU-8 resin. Both resins have higher Young's modules than the IP-Dip resin, making the structural transformations more difficult. Nevertheless, we succeeded in using both resins to fabricate the entire standing flowers (**Fig. S18**), verifying the material independency of our approach. Besides, we believe that the concepts demonstrated in this study can be important for addressing general challenges (e.g., deformation) in the fabrication of 3D micro/nanoscale structures designed for different devices and functions [38]. One representative example is the fabrication of 3D curved lattice structures which are major components of architectured metamaterials and micromachines [39, 40]. Usually, such 3D lattice structures can only be fabricated via 3D printing. We further demonstrated the capability to flexibly control their curved orientations and spatial topologies

which are challenging in direct 3D printing (**Fig. S19**). By setting appropriate DoC gradients during printing, the lattice structure transformed to a bridge-shaped geometry with all lattice features well maintained. The capability to control the spatial orientations and topologies of the 3D lattice structures can inspire new insights and designs of novel architectured metamaterials and micromachines for various functionalities. In addition, when combined with advanced beam focusing and scanning systems, such as micro-lens arrays, spatial light modulators, and other multi-foci techniques, the throughput of this approach can be significantly improved to meet the needs in practical applications [41].

Conclusions

In this research, we present a general, controllable, and flexible strategy for 2D-3D structural transformation at the microscale, which lays a foundation for constructing diverse, complex 3D objects from 2D patterns. We succeeded in establishing spatially distributed stresses by tailoring the spatial gradients of cross-links in photocurable polymers via TPP. The relationships among the polymerization conditions, polymer shrinkages, and internal stresses were investigated. Multi-mode 2D-3D transformations, including bending, rolling, coiling, waving, spiraling, and out-of-plane distortions, were realized either individually or simultaneously in a single process. Various 3D geometries, such as micro coils, waves, caps, flowers, helices, and micro-origamis, were demonstrated with their transformation states and geometries being controlled precisely, mimicking unique morphologies and different growing stages of natural plants. Such a 2D-3D transformation approach also circumvents the intrinsic limitations of stepping and stitching in direct 3D printing via TPP, achieving 3D objects with much smoother surfaces and improved integrity.

Materials and methods

Two-photon lithography of 2D layered patterns: Two-dimensional polymer layered patterns were fabricated using a commercial TPP system (Photonic Professional GT from Nanoscribe GmbH) with three commercial photoresists: the IP-Dip and IP-S resins from Nanoscribe GmbH, and the SU-8 resin (SU-8 2005) from MicroChem. The dip-in laser lithography (DiLL) configuration was used for printing with the IP-Dip resin, while the oil immersion configuration was used for printing with both the IP-S and SU-8 resins. The fs laser was focused by a Carl Zeiss Plan-Apochromat objective lens (63× NA1.4 Oil DIC M27) and scanned by a computer-controlled galvo in the resins to prepare arbitrary 2D layered patterns with designed DoC gradients. The specific printing conditions for bulk shrinkage tests with the IP-Dip resin are summarized in the **Supplemental Table**. For the SU-8 resin, prebaking (sequentially at 50 °C for 5 min, 65 °C for 30 min, and 95 °C for 75 min) was applied, followed by cooling down naturally to room temperature before TPP printing.

Sample development: Both entire standing-flower structures printed with the IP-Dip and IP-S resins were immersed in propylene glycol monomethyl ether acetate (PGMEA) (3M Company) for 1 h to thoroughly dissolve the unreacted resin after the TPP printing, followed by a rinse in 2-propanol (Sigma-Aldrich) for 20 min. The entire standing flower printed with the SU-8 resin was rinsed in PGMEA for 12 h and then in acetone (Sigma-Aldrich) for 20 min. To prevent the collapse of their structures due to capillary forces, the standing-flowers were subsequently dried using a critical-point dryer (Tousimis Autosamdri 931) with slow-fill pressure, fill time, purge time, post purge time, critical point time, and vent pressure set at 700 PSI, 150 s, 10 min, 90 s,

- 1 120 s, and 550 PSI, respectively [42]. The other structures printed with the IP-Dip resin were
- 2 also immersed in PGMEA for 1 h at first before immersed in NOVEC-7100 engineering fluidics
- 3 (3M Company) for 10 min and left to dry naturally under the ambient condition.
- 4 Sample characterization and shrinkage measurement: A Hitachi S4700 field-emission scanning
- 5 electron microscope (FE-SEM) was used to observe the shapes and morphologies of the 3D
- 6 structures after the transformation. The dark-field and green-fluorescence images in Fig. 1 were
- 7 collected using an Olympus AX70 microscope with either a $20\times$ or $40\times$ objective lens. The
- 8 excitation wavelength of ~550-570 nm and the emission of fluorescent light in a wavelength
- 9 range of ~580-600 nm were used for fluorescence imaging [43]. The dimensions of the printed
- samples were measured by ImageJ software on their SEM images, through which their volume
- and directional shrinkages were calculated.
- 12 Doc measurement: Raman spectroscopy was used to determine the DoC of the TPP reaction.
- Raman spectra were acquired by a Renishaw inVia H 18415 Raman microscope. The excitation
- source was an argon laser with a wavelength of 785 nm and a power of 50 mW. The excitation
- and signal collections were carried out using a 50× objective lens with a numerical aperture of
- 16 0.50. Raman spectra were recorded using an accumulation time of 15 s. The DoC values were
- calculated from the Raman peak intensities of C=C and C=O as:

18
$$DoC = 1 - \left(\frac{A_{C=C}/A_{C=O}}{A'_{C=C}/A'_{C=O}}\right), \tag{3}$$

- where $A_{C=C}$, $A_{C=O}$ and $A'_{C=C}$, $A'_{C=O}$ are the integrated intensities of the corresponding peaks in the
- 20 TPP structures and the unpolymerized resin, respectively. Besides, a Nikon A1R confocal
- 21 fluorescence microscope was used for mapping DoC under different laser doses using the Nikon
- NIS-Elements imaging acquisition and analysis program.
- 23 Profile measurement: The structural profiles were measured by a Keyence laser scanning
- 24 microscope (VK-X200K) which works at a laser wavelength of 408 nm. A Nikon objective lens
- 25 (CF Plan Apo, 150×, NA 0.95) was used to capture the fine details on the structure surfaces.

Supplementary data

28 Supplementary data to this article can be found online.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

- 34 Aofei Mao and Peixun Fan contributed equally to this work. The research was partially
- 35 supported by the National Science Foundation (under Award CMMI 1826392) and Nebraska
- 36 Center for Energy Sciences Research (NCESR), The research was performed in part in the
- 37 Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and the
- 38 Nebraska Center for Materials and Nanoscience (and/or NERCF), which are supported by the
- 39 National Science Foundation under Award ECCS: 2025298, and the Nebraska Research
- 40 Initiative.

42

41

2627

29 30

31

3233

1 Data Availability

- 2 The raw/processed data required to reproduce these findings cannot be shared at this time due to
- 3 technical or time limitations. However, most materials and processing parameters and conditions
 - are provided in the Supplementary Materials.

5 6

4

References

- 7 [1] Q. Liu, W. Wang, M.F. Reynolds, M.C. Cao, M.Z. Miskin, T.A. Arias, D.A. Muller, P.L. McEuen, I. Cohen, Sci. Robot. 6 (2021) eabe6663.
- 9 [2] D. Rus, M.T. Tolley, Nat. Rev. Mater. 3 (2018) 101–112.
- 10 [3] M. del Pozo, C. Delaney, C.W.M. Bastiaansen, D. Diamond, A.P.H.J. Schenning, L. Florea, ACS Nano 14 (2020) 9832–9839.
- 12 [4] M. Wang, B.-P. Lin, H. Yang, Nat. Commun. 7 (2016) 13981.
- 13 [5] S. Miao, N. Castro, M. Nowicki, L. Xia, H. Cui, X. Zhou, W. Zhu, S. Lee, K. Sarkar, G. Vozzi, Y. Tabata, J. Fisher, L.G. Zhang, Mater. Today 20 (2017) 577–591.
- 15 [6] R. Fernandes, D.H. Gracias, Adv. Drug Deliv. Rev. 64 (2012) 1579–1589.
- 16 [7] C. Cui, D.-O. Kim, M.Y. Pack, B. Han, L. Han, Y. Sun, L.-H. Han, Biofabrication 12 (2020) 045018.
- 18 [8] Y. Zhou, A.W. Hauser, N.P. Bende, M.G. Kuzyk, R.C. Hayward, Adv. Funct. Mater. 26 (2016) 5447–5452.
- 20 [9] Y.-L. Zhang, Y. Tian, H. Wang, Z.-C. Ma, D.-D. Han, L.-G. Niu, Q.-D. Chen, H.-B. Sun, ACS Nano 13 (2019) 4041–4048.
- 22 [10] L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Nature 442 (2006) 551–554.
- 23 [11] T. Xie, Nature 464 (2010) 267–270.
- 24 [12] Y.-Y. Gao, Y.-L. Zhang, B. Han, L. Zhu, B. Dong, H.-B. Sun, ACS Appl. Mater. Interfaces 11 (2019) 37130–37138.
- Y.-F. Zhang, N. Zhang, H. Hingorani, N. Ding, D. Wang, C. Yuan, B. Zhang, G. Gu, Q.
 Ge, Adv. Funct. Mater. 29 (2019) 1806698.
- 28 [14] L. Hines, K. Petersen, G.Z. Lum, M. Sitti, Adv. Mater. 29 (2017) 1603483.
- 29 [15] Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Nature 558 (2018) 274–279.
- 30 [16] N. Bassik, G.M. Stern, D.H. Gracias, Appl. Phys. Lett. 95 (2009).
- 31 [17] C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, C.N. Baroud, Phys. Rev. Lett. 98 (2007) 156103.
- 33 [18] T.G. Leong, P.A. Lester, T.L. Koh, E.K. Call, D.H. Gracias, Langmuir 23 (2007) 8747–34 8751.
- Q. He, T. Okajima, H. Onoe, A. Subagyo, K. Sueoka, K. Kuribayashi-Shigetomi, Sci. Rep. 8 (2018) 4556.
- 37 [20] S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R.
- Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H.U. Chung, H. Cheng, W. Ren, A.
- 39 Banks, X. Li, U. Paik, R.G. Nuzzo, Y. Huang, Y. Zhang, J.A. Rogers, Science 347 (2015) 40 154–159.
- 41 [21] T. Watanabe, M. Akiyama, K. Totani, S.M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S.R. Marder, J.W. Perry, Adv. Funct. Mater. 12 (2002) 611–614.
- 43 [22] B. Han, Y.-L. Zhang, L. Zhu, Y. Li, Z.-C. Ma, Y.-Q. Liu, X.-L. Zhang, X.-W. Cao, Q.-D. Chen, C.-W. Qiu, H.-B. Sun, Adv. Mater. 31 (2019) 1806386.
- 45 [23] D. Jin, Q. Chen, T.-Y. Huang, J. Huang, L. Zhang, H. Duan, Mater. Today 32 (2020) 19–46 25.

- 1 [24] A. Nishiguchi, H. Zhang, S. Schweizerhof, M.F. Schulte, A. Mourran, M. Möller, ACS Appl. Mater. Interfaces 12 (2020) 12176–12185.
- 3 [25] C.L. Lay, M.R. Lee, H.K. Lee, I.Y. Phang, X.Y. Ling, ACS Nano 9 (2015) 9708–9717.
- 4 [26] Q. Sun, K. Ueno, H. Misawa, Opt. Lett. 37 (2012) 710.
- 5 [27] A.A. Bauhofer, S. Krödel, J. Rys, O.R. Bilal, A. Constantinescu, C. Daraio, Adv. Mater. 29 (2017) 1703024.
- 7 [28] L.J. Jiang, Y.S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, Y.F. Lu, Opt. Lett. 39 (2014) 3034.
- 9 [29] M. Jamal, A.M. Zarafshar, D.H. Gracias, Nat. Commun. 2 (2011) 527.
- 10 [30] T. Baldacchini, M. Zimmerley, C.-H. Kuo, E.O. Potma, R. Zadoyan, J. Phys. Chem. B 113 (2009) 12663–12668.
- 12 [31] J. Bauer, A.G. Izard, Y. Zhang, T. Baldacchini, L. Valdevit, Adv. Mater. Technol. 4 (2019) 1900146.
- 14 [32] C. Lv, X.-C. Sun, Y.-S. Xu, W.-Y. Zhang, P. Li, Q. Shi, L. Wang, G. Wang, X.-W. Cao, S.-X. Li, Y.-Z. Dai, H. Xia, H.-B. Sun, IEEE Sens. J. 18 (2018) 8796–8802.
- 16 [33] A. Sydney Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Nat. 17 Mater. 15 (2016) 413–418.
- 18 [34] Y. Tao, Y.-C. Lee, H. Liu, X. Zhang, J. Cui, C. Mondoa, M. Babaei, J. Santillan, G. Wang, D. Luo, D. Liu, H. Yang, Y. Do, L. Sun, W. Wang, T. Zhang, L. Yao, Sci. Adv. 7 (2021) eabf4098.
- 21 [35] O.G. Schmidt, K. Eberl, Nature 410 (2001) 168–168.
- 22 [36] Y. Mei, G. Huang, A.A. Solovev, E.B. Ureña, I. Mönch, F. Ding, T. Reindl, R.K.Y. Fu, P.K. Chu, O.G. Schmidt, Adv. Mater. 20 (2008) 4085–4090.
- 24 [37] A.J. Gross, K. Bertoldi, Small 15 (2019) 1902370.
- [38] D. Karnaushenko, T. Kang, V. K. Bandari, F. Zhu, O. G. Schmidt, Adv. Mater. 32 (2020)
 1902994.
- 27 [39] L.R. Meza, S. Das, J.R. Greer, Science (2014).
- 28 [40] T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Science 334 (2011) 962–965.
- 30 [41] C. N. Saggau, F. Gabler, D. D. Karnaushenko, D. Karnaushenko, L. Ma, O. G. Schmidt, Adv. Mater. 32 (2020) 2003252.
- 32 [42] A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Nat. Commun. 9 (2018) 593.
- 34 [43] A. Accardo, M.C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, C. Vieu, Small 13 (2017) 1700621.