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Abstract In this paper we propose a time-space economic model to control
the evolution and the spread of a disease. The underlying epidemiological
model is formulated as a reaction-diffusion integro-differential partial differen-
tial equation. This specific model formulation, supported by empirical data,
contains three different terms: a pure diffusion term, a linear growth term,
and an integral term. These three terms capture different diffusion channels
of a transmissible disease: a pure spatial diffusion effect, a local effect and a
global effect. The decision maker aims at deciding the optimal effort to be im-
plemented in order to control the number of infections and, at the same time,
minimize the cost of treatment. We analyze both the finite and the infinite
horizon cases, and provide the closed-form expression of the optimal policy to
be implemented to control the epidemic while sustaining economic growth.

Keywords Epidemics · Macroeconomic Outcomes · Mitigation Policies

1 Introduction

The economic literature has demonstrated the crucial role played by com-
municable diseases in shaping economic development and how they have im-
pacted on both industrialized and developing countries through a variety of
different channels. The impact and severity of communicable diseases on the
economy is amplified by the need to finance public health policies diverting
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resources from productive activities. Over the past years we have witnessed a
growing economic epidemiology literature that tries to understand the mech-
anisms through which health policies may be used to contrast the spread of
communicable diseases. COVID-19 is a recent example of highly contagious
virus-induced communicable disease, transmitted via droplets and contam-
inated objects during close unprotected contact between a healthy and an
infected person [25]. As infected people move away from the location in which
they were contaminated, uncontaminated locations farther and farther away
become centres of infection in their own right. Since the initial outbreak of the
disease in China in late 2019, COVID-19 has generated more than 275 million
cases and more than 5 million deaths at world level. A broad variety of policy
measures have been implemented everywhere in the world in order to contain
the spread of the disease, including lockdown, quarantines, social distancing,
limitations on mobility ([7,10]). COVID-19 has affected human activities, un-
dermined the economy, turned the lives of billions of people around the globe
upside down, and significantly affected the health, economic, environmental
and social domains [22]. COVID-19 pandemic poses unprecedented challenges
to the world health system, prompting academics and health professionals to
develop appropriate solutions.

The present paper proposes a theoretical economic model to explain the
evolution of a transmissible disease taking into account spatial diffusion, the
local effect, and the global effect that the society may have on local contam-
ination. Our proposal is not a merely theoretical abstract artifact. On the
contrary, we initially empirically show with the help of a dynamic heteroge-
neous spatial econometric model with common factors1 applied to data on the
evolution of the COVID-19 pandemic in Europe, that all three aforementioned
diffusion channels exist and represent distinct transmission mechanisms of the
disease. Hence, although challenging, our approach to modelling COVID-19
proves to be comprehensive and complete. COVID-19 spread has been mod-
elled by means of different classical compartmental epidemiological models
such as SIS, SIR, SEIR, etc. and different optimal control models have been
proposed to mitigate the spread of the virus while limiting the economic cost
associated with isolation and treatment ([4,14–16,13,17–21]). It has been ob-
served by different contributions in the literature and by clinical evidence that
recovered people becomes again susceptible after a relatively short period of
time. For this reason, in our model formulation we do not stress on a spe-
cific compartmental model while, instead, focusing on the spread of infectives
across space and time.

Our epidemiological model includes both diffusion and integral terms. The
epidemic growth term is, instead, assumed to be linear with a time-dependent
coefficient. This assumption encompasses two different phases of the epidemic
dynamics: From one side, it is well known that the outbreak of a new epidemic
does not generally translate in an immediate response from policymakers. Sev-
eral contributions in the literature of mathematical epidemiology report that

1 [11] describes this approach the ”most advanced model currently available’.
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in the early phase of an epidemic the number of infectives tends to grow at
a constant (or even decreasing) rate by showing an exponential (or even sub-
exponential) growth dynamics [8]. Let us also notice that, from a mathematical
point-of-view, the linearity assumption could also be intended to be the local
first-order approximation of any Susceptible-Infected epidemiological model.
The second justification of this assumption relies on the possibility of mod-
eling infection waves. The COVID-19 pandemic has been so far a series of
waves: surges in new cases followed by declines. Seasonal change in the inci-
dence of infectious diseases is a common phenomenon and it is mainly due
to significant seasonal variation in the transmission parameter [13]. There-
fore, to capture this variability, we assume a time-dependent coefficient whose
expression must be estimated from data.

We prove that there are important differences in the final state of the
disease depending on whether the policy maker faces the problem as an ev-
erlasting or a temporary event. Indeed, if the policy maker believes that the
disease will last forever, then it can be optimally eradicated if individuals are
patient enough, or if the society effect dominates impatience. This result can
have a great influence on the evolution of a pandemic, and it provides support
for government intervention. Indeed, if a policy maker believes that a given
epidemic has a chance to become endemic, then it can implement restrictive
policies (increase the role of the global diffusion channel) to eradicate the dis-
ease. If individuals are either extremely impatient or the local and global effects
are relative low, then the disease will affect an increasing share of individuals
with time, and reach an endemic steady state. However, nothing ensures that
this steady state is always stable. Indeed, if the long-term local effect is large
enough, meaning here larger than population growth, then this steady state is
unstable. We also consider the problem of a policy maker who considers the
problem over a finite time horizon, which corresponds to the case in which a
policy maker either believes that the disease is short-lived or he/she cannot
implement long-term policies. We prove that in this case eradication of the
disease is impossible. Besides, the disease could affect the entire population if
the policy maker does not care enough about the final number of diseased or,
if while considering a finite horizon problem, the horizon is far. Finally, let us
underline that independently on whether the time horizon is finite or not, the
amount devoted to treat the disease is the same at all locations and it can
be adjusted to time changes in local diffusion. Hence locations facing a higher
treatment cost will treat less diseased individuals.

The paper is organized as follows. In Section 2 we conduct an empirical
analysis which supports our model formulation. Section 3 is devoted to the
presentation of the model formulation. In this section, both the underlying
epidemiological model as well as the optimal decision making problem are
discussed in details. Section 4 presents the infinite horizon case as well as the
steady-state analysis while Section 5 analyzes the optimal control model in
finite time. As usual, Section 6 concludes the paper by providing some policy
recommendations.
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2 Econometric model, data, and results

2.1 Econometric model

The illustrative case of the COVID-19 pandemic in Spain provides an initial
motivation for the econometric model detailed below. As can be seen in Figure
1, the national pandemic path can be understood as the aggregation of the
51 regional pandemic paths.2 Some regions have had on average, due their in-
trinsic characteristics (e.g. demographic and socio-economic factors), greater
weekly cases than other regions. Each regional path appears to be relatively
smooth suggesting substantial correlation over time between present and past
infections. Weekly cases across regions also seems to fluctuate together over
time, possibly implying substantial correlation across space. This spatial de-
pendence may be the outcome of flows of infected people between regions but
could also be driven by national factors, such as anti-COVID-19 government
policies, or global factors at the European level, such as infections in other
countries or the emergence of a new variant.

Fig. 1 Regional COVID-19 cases in Spain
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Notes: Data transformed according to the inverse hyperbolic sine transformation (asinh).
Coloured lines: 51 provinces; spikes: two-week COVID-19 Government Response Stringency
Index (0-10); thick dashed line: average daily cases in all European regions.

These observations lead us to the estimation of the following spatial dy-
namic (fixed effects) model with common factors for regions r located in coun-

2 The COVID-19 European regional tracker provides data at the NUTS3 level for Spain,
that we call regions to be coherent with the other countries and the database itself, although
administratively speaking they are provinces.
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try i at time t:

asinh(cases)rit = λiasinh(cases)rit−1 + ρi
n∑

s=1

wrsasinh(cases)sit

δr(αr ∗ asinh(cases)t) + θiasinh(cum.cases)rit−1

+βiPit−2 + αr + ϵrit (1)

where cases is the number of reported Covid-19 in region r of country i at
time t,

∑n
j=1 wrsasinh(cases)sit is a measure of ‘average’ outbreaks in other re-

gions s, (cum.cases) is a measure of cumulative cases, Pit−2 is a lagged measure
of the Covid-19 Government Response Stringency Index, αr are time-invariant
region fixed effects, αr ∗ asinh(cases)t are the products of the interaction be-
tween region fixed effects and the average value of the incidence rate in all
European countries, and ϵrit is the error term. Asinh(·) is the inverse hyper-
bolic sine transformation, which behaves similarly to a log transformation but
allows retaining zero-valued observations [6,23]. In line with our observations,
equation 1 describes a rich model in which we allow for local regional effects
through temporal dependence on lagged cases (λ) and lagged cumulative cases
(θ), a spatial regional effect (ρ), a country-level policy effect which influ-
ences all regions (β1), global time-varying shocks which have heterogeneous
local impacts on each region (δr). More specifically, δr = δ+ ξr can be under-
stood as composed of a common time-effect δi and a region-specific deviation
ξir. Equation 1 is estimated separately for each country i. Given that spatial
dependence induces a simultaneity bias (cases in one region r depend on cases
on other regions and vice-versa), estimation is achieved through a maximum
likelihood (ML) estimator which accounts for the endogenous nature of the
spatial lag term [1].3 Standard errors are clustered at the region level.

The pattern of regional spatial dependence is defined by the spatial weight
matrix

∑n
s=1 wrs. We follow [9] by considering that population movements

between regions r and s (Mij) can be modelled, and its volume approximated
in the absence of comprehensive data, using a ‘gravity equation’: Mrs =
POP θ1

r POP θ2
s

DISTα , where POP is population and DIST is distance. The (row-

normalised) spatial weights can then be wrs =
Mrs∑n

s=1 Mrs
. As [9] in the context

of international migration, we assume that θ1 ≈ θ2 ≈ 0.70 and α ≈ −1.5.4

Following [24] and [11], global cross-sectional dependence can be captured

3 The ML approach to estimate cross-sectional spatial models is easily extended to the
estimation of fixed effects panel data models [12]. For example, prior to the estimation
of a non-dynamic spatial fixed effects model, a within transformation (e.g. y∗it = yit −
1
T

∑T
t=1 yit) is applied to eliminate the fixed effects from the regression equation. The log-

likelihood function is then: logL = −NT
2

log(2πσ2)+T log|In−ρW |− 1
2σ2

∑N
i=1

∑T
t=1(yit−

ρ
∑n

j=1 wijyjt − xitβ)
2. Note the presence of the Jacobian term log|In − ρW |. It is the

correction included, relative to a non-spatial model to deal with the endogeneity issue created
by spatial simultaneity. We use the command for dynamic spatial fixed effects models -xsmle-
coded by [2] in Stata.

4 Our results are robust to alternative values.
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through the interaction of region fixed effects (αr) with the cross-sectional
average of the dependent variable (asinh(cases)t). In that way, global time-
varying shocks (e.g. seasonality or emergence of a new COVID-19 variant) is
allowed to influence all European regions simultaneously (a ‘common factor’)
but heterogeneously, depending on the intrinsic characteristics of each region.
The measure of the COVID-19 Government Response Stringency Index P is a
time-varying national effect which is assumed to influence simultaneously and
uniformly all regions in a given country. In many countries, the strength of
this policy response has been determined by economy-wide disease conditions.
Hence, we lag this index by two periods to reduce a simultaneity bias and
to ensure by the same token that variations in this index determines, and is
not caused, by variations in the contemporaneous number of cases. Note that
the region fixed effects (αr) control for all time-invariant regional factors (e.g.
initial population size) which may determine the number of cases observed in
a given region.

2.2 Data

Our COVID-19 data come from the COVID-19 European regional tracker
which provides homogenised data on daily cases in 25 European countries
at the lowest standardised administrative regional level available (NUTS3 or
NUTS2) from January 2020 to November 2021.5 Values of the 2020 regional
population are also provided. To smooth daily fluctuations, we take weekly
averages. Data on the stringency index come from the Oxford COVID-19 Gov-
ernment Response Tracker.6 This index indicates the strictness of containment
and closure policies (e.g. stay at home requirements). For the United Kingdom,
regional index values have been used for Scotland and England.

Spatial ML estimators require the use of balanced panel data. We use
the algorithm implemented by the Stata command -xtbalance2- to create a
balanced subsample which maximises the number of observations across both
time and units. Table 1 provides the list of countries in the sample, the number
of regions involved for each country, and the periods covered.

2.3 Results

Our results are summarised, for ease of interpretation, in Figure 2. Across
countries, we find strong evidence of local (γ̂) and spatial (ρ̂) regional effects.
A high number of cases in the past tends to have a persistent positive effect
over time while a high contemporaneous number of cases in ‘neighbouring’ re-
gions tends to increase the number of cases in a given region. In most countries,

5 https://github.com/asjadnaqvi/COVID19-European-Regional-Tracker
6 https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-

tracker
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Table 1 Countries in the sample

Country Number First Last
regions week week

Austria 35 8 99
Belgium 35 10 91
Croatia 21 12 99
CzechR 14 9 99
Denmark 11 8 99
Estonia 5 10 99
Finland 19 4 99
France 96 10 99
Germany 401 9 99
Greece 13 8 99
Hungary 20 13 99
Ireland 8 9 99
Italy 106 8 99
Latvia 6 11 78
Netherlands 40 9 99
Norway 18 12 99
Poland 17 11 99
Portugal 14 12 98
Romania 18 15 99
SlovakR 6 10 90
Slovenia 12 9 99
Spain 51 3 99
Sweden 21 5 99
Switzerland 14 12 74
UK 156 10 92
Week 3 starts on 19/01/2020 and week 99 starts on

21/11/2021.

we also observe that strict anti-COVID-19 government policies are associated
with a lower number of cases in all regions two periods later (β̂). Figure 2 also
reveals that the magnitude of these effects varies across countries. Interestingly,
there is a negative relationship between the strength of the (autoregressive)

local effect and that of the spatial effect. Values of δ̂r are jointly statistically
significant and vary within (as well as across) countries, indicating that the
interaction between region-specific characteristics and global shocks generate
time-varying fluctuations in local infections. Lastly, in the majority of coun-
tries, but not all, we observe that the number of cases tend to decrease as the
cumulative number of people infected rises (θ̂).

Having empirically shown that COVID-19 cases depend on regional, spa-
tial, and global factors, we propose in the next Section a theoretical model
which encompasses all these disease determinants.
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Fig. 2 Spatio-temporal estimates including cumulative cases
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3 Model set-up

3.1 The epidemiological model

We study the transmission of a disease over time and space. Time runs from
0 to T ≤ ∞ and space is the unit circle, that we denote by T. Population is
uniformly distributed along the circle, and it grows with time at a constant rate
n ∈ R+ at all locations. Then, denoting by N(t, θ) population at location θ at
time t, we assume that population is homogeneously distributed in space, that
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is, that N(t, θ) = N(t) for all θ ∈ T, and that Ṅ(t) = nN(t) with n ∈ R+. As
a consequence, the population distribution function is N(θ, t) = N0e

nt, where
N0 denotes the initial distribution of population. Without loss of generality,
let us normalize N0 to 1.

Note that aggregated population N(t) also grows at the constant rate n.
Hence, if total initial population is N0 =

∫
T
N0dθ = 2π, then N(t) = 2πent.

Let I(t, θ) denote the amount of infected individuals at time t and location
θ, for (t, θ) ∈ [0,∞)×T. Then:

I(t, θ) ≤ N(t, θ).

Three factors explain the evolution a disease in time and space. First, a
local channel: the larger the number of infected individuals at a given location,
the stronger is the disease transmission. Then, there is the infection local
diffusion. Local diffusion captures the negative effect that encounters with
infected individuals around a given location has on the total number of infected
individuals at that specific location. And third, a global channel: individuals
at each location can be influenced by the amount of infected population in the
economy. This effect will be referred to as the global effect, and it is measured
as a weighted integral on ill individuals. Namely, the society effect on each
location θ is captured by the term

∫
T
ϕ(θ−ω)I(ω, t)dω, where function ϕ is a

real function of space such that∫
T

ϕ(ω)dω = 1.

Function ϕ characterizes the type and extent of exchanges in the economy.
If ϕ(ω) = 1

2π for all ω ∈ T, then all locations are connected with the same
strength. If instead we had that ϕ(ω) = 1

ξ for ω < ξ, and zero elsewhere, then
each location in this economy interacts only with a small circle of locations.

The evolution of the number of infected individuals and its distribution in
space and time is described by

∂I(θ, t)

∂t
= d1

∂2I(θ, t)

∂θ2
+ d2(t)I(θ, t) + d3

∫
T

ϕ(θ − ω)I(ω, t)dω −M(θ, t), (2)

where d1 ∈ R measures local diffusion, function d2(t) measures the local
effect in time, and d3 ∈ Rmeasures the strength of society, respectively.M(θ, t)
is the number of treated individuals at each location θ and time t. The initial
distribution of I, I0 = I(0, θ) is a known function, I0 : T −→ R

+.

3.2 The firm and the policy maker problem

There is a unique final good in the economy that can be used either for con-
sumption or to treat infected individuals. Let us assume that only susceptible
(healthy) individuals N(θ, t)− I(θ, t) are productive, and that the production
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function is linear in labor. Then, production Y of the final good at location
θ ∈ T and time t ≥ 0 can be expressed as

Y (θ, t) = A [N(θ, t)− I(θ, t)] , (3)

where A ∈ R+ is a scale parameter that describes the level of technology.
Let us write the number of treated individuals M as M(θ, t) = m(θ, t)N(t)

with m(θ, t) number of treated individuals per capita at location θ and time
t.

We assume that the cost of curing M individuals is quadratic in m, that
is c(θ)m(θ, t)2N(t), where c(·) is a positive, twice differentiable function in T
that models the treatment cost on the infected population resident at location
θ. That is, we assume that the cost of treating one individual may vary across
locations.

In this economy there exists a policy maker aiming at maximizing over-
all welfare. In turn, instantaneous utility depends uniquely on consumption,
which equals production minus the cost of treatment: A [N(θ, t)− I(θ, t)] −
c(θ)m2(t, θ).

We address the policy maker problem restricting our analysis to regular
enough functions i(·, ·) and m(·, ·). Here regular enough means that for t ≥ 0,
the space functions i(t, ·) and m(t, ·) are elements of the Hilbert space L2(T).

L2(T) is the set of functions f : T −→ R such that
∫ 2π

0
| f(θ) |2 dθ < ∞.

Working in this space allows to use Dynamic Programming techniques and
invoke classical results. Very briefly, we will define and solve the Hamilton-
Jacobi-Bellman equation associated, to the policy maker problem, and use its
solution to obtain the optimal control m∗(t, ·).

4 The infinite horizon problem

We begin our analysis with the problem of a policy maker who believes that
the epidemic will become endemic and last forever. Accordingly, we set T = ∞.
The policy maker solves an infinite time horizon problem and her objective is
to maximize aggregated discounted profits, that is, to solve

max
m

∫ ∞

0

∫
T

(
A [N(t)− I(θ, t)]− c(θ)m2(t, θ)N(t)

)
e−ρtdθdt, (4)

subject to


∂I(θ,t)

∂t = d1
∂2I(θ,t)

∂θ2 + d2(t)I(θ, t) + d3
∫
T
ϕ(θ − ω)I(ω, t)dω −m(θ, t)N(t),

I(θ, t) ≤ N(θ, t),∀θ ∈ T, and t ≥ 0.
,

where e−ρt is the policy maker time discount function, with ρ ≥ 0.
Since population grows at the same constant rate n ∈ R at all locations,

we can detrend the number of infected, I, and write the problem in per capita
terms. The detrended problem reads as
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max
m

∫ ∞

0

∫
T

(
A [1− i(θ, t)]− c(θ)m2(t, θ)

)
e−(ρ−n)tdθdt, (5)

subject to

∂i(θ, t)

∂t
= d1

∂2i(θ, t)

∂θ2
+[d2(t)− n] i(θ, t)+d3

∫
T

ϕ(θ−ω)i(ω, t)dω−m(θ, t), (6)

where i(θ, t) = I(θ,t)
N(t) , i(θ, t) ≤ 1 and the initial distribution of i, i0, is a

known function on T.
Let us make the following assumption on d2(t)

Assumption 1. Local transmission is measured by a real function d2(t) :
[0,∞) −→ R, which reaches a constant value when time tends to infinite,
limt→∞ d2(t) = d̄2.

The following assumption is required in order to ensure the convergence of
the objective function:

Assumption 2. n ≤ ρ.

Following [3] and [5], and using Dynamic Programming techniques in Hilbert
spaces, we obtain the following result:

Theorem 1 Under Assumptions 1 and 2, and if additionally n < d2(t) + d3
and n + ρ < 2 [d2(t) + d3] for all t ≥ 0, then there exists an optimal solution
m∗ to problem (5)-(6)

m∗(θ, t) =
A

2c(θ)

1

d2(t) + d3 − n
+

1

c(θ)

2 [d2(t) + d3]− n− ρ

< 1
c ,1 >

i(t), (7)

where i(t) denotes the spatial average of the share of infected individuals and
< 1

c ,1 >=
∫
T

1
c(θ)dθ. Furthermore, the associated optimal trajectory for i is

admissible.

Proof See Appendix A.1.

The expression for the optimal number of individuals to treat in (7) shows
that the optimal trajectory for m is not homogeneous in space. The policy
maker will take into account the location characteristics, namely the treat-
ment cost. Indeed, we notice that the larger the cost at location θ, the less
individuals will get treated. Worth mentioning, while m∗ varies across space,
total investment in treatment m∗(θ, t)c(θ) is spatially homogeneous. All loca-
tions devote the same amount to treat the disease.

Very interestingly, (7) reveals that the local and the society effects are sub-
stitutes. Indeed, regarding diffusion, what determines the share of individuals
to treat at every moment in time t is the term d2(t) + d3, which does not
depend on the location itself. Furthermore, since 2 [d2(t) + d3] − n − ρ > 0,
then the optimal amount of individuals to cure increases with total infected.
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Substituting m∗(θ, t) in (6) and aggregating in space, the dynamics for the
associated average share of infected obtain as7

i∗′(t) = [ρ− d2(t)− d3] i
∗(t)− A

2 [d2(t) + d3 − n]

1

< 1
c ,1 >

. (8)

Denoting by i0 the initial distribution of infected, we can solve (8) and
obtain the optimal trajectory for i:

i∗(t) =

[
i0 −

1

c

∫ t

0

A

2(d2(s) + d3 − n)
e−

∫ s
0
[ρ−d2(z)−d3)]dzds

]
e
∫ t
0
[ρ−d2(s)−d3)]ds,

(9)
where 1

c =< 1
c ,1 >. Note that if ρ > d2(t) + d3 for all t, then the growth

rate of i would always be positive and i would increase until it reaches a steady
state or until it reaches the value 1. If on the contrary, ρ < d2(t) + d3 for all
t, then i would continuously decrease, until it reaches a steady state or until
the disease disappears.

Let us study next the steady state of the aggregate share of infected and
under which conditions it exists:

Proposition 1 Under the hypothesis of Theorem 1, and if additionally A <
d̄2 + d3 −n, d̄2 + d3 < ρ and 1

c < 2(ρ− d̄2 − d3), then i∗ converges towards an
interior steady state ī when time tends to infinite:

ī =
A

2(d̄2 + d3 − n)

1

ρ− d̄2 − d3

1

c
< 1. (10)

Taking the limit when time tends to infinite in (7) and substituting ī using
(10), the steady state of m∗ obtains:

m̄∗(θ) =
A

2c(θ)

1

ρ− d̄2 − d3
< 1.

Proof See Appendix A.2.

Note that the share of treated individuals at the steady state also depends
on the cost of treatment. However, total investment in treatment at the steady
state c(θ)m̄∗(θ) is still homogeneous in space.

Proposition 1 builds on the hypothesis that individuals are relatively impa-
tient, namely that d̄2+d3 < ρ. As already commented, this hypothesis implies
that i∗ is increasing in time at least from a moment in time onwards, when
d2 gets close enough to d̄2. Hence, Proposition 1 shows is that if individuals
are impatient enough and treatment costs relatively high on average, then
the average share of infected increases until it reaches a steady state. Maybe
even more important, the proposition shows that if d̄2 + d3 > ρ, not only i∗

is decreasing in time from one point in time onwards, but there is no steady

7 All computational details can be found in Appendix A.1, at the end of Step 1.
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state. Hence, if d̄2 + d3 > ρ, then i∗ will decrease until it reaches 0. Therefore,
total eradication of the disease is possible when individuals are patient enough
or when the mixed effect of both local and global diffusion are high. Let us
summarize this result in the following corollary:

Corollary 1 If ρ < d̄2 + d3, then i∗ decreases with time from one moment
onwards until eventually reaching zero.

Corollary 1 shows that when individuals are patient enough, then the dis-
ease is optimally eradicated with time.

Note that diffusion, captured by d1 does not play any role neither in the
dynamics of i∗ nor in its steady state solution. Next section shows that diffusion
does play a role in the stability of the steady state of i.

4.1 Steady state stability analysis

Proposition 1 has shown that under certain assumptions there exists a steady
state for the average number of infected individuals, ī. Under the same set
of assumptions, let us prove next that there exists a spatially homogeneous
steady state for the distribution of the share of infectives on space, i, that we
will denote by ī. Further, we shall prove that the homogeneous steady state of
the local number of infected individuals may be unstable for a large family of
reasonable spatial aggregators ϕ.

If a steady state ī exists, then by definition limt−→∞ i(θ, t) = ī(θ) for every
θ ∈ T and īt(θ, t) = 0 for all t when t tends to infinity. ī verifies then

0 = d1
∂2ī(θ)

∂θ2
+ (d̄2 − n)̄i(θ) + d3

∫
T

ϕ(θ − ω)̄i∗(ω)dω − m̄∗(θ). (11)

Under Proposition 1’s assumptions, there exists a steady state, ī given by

ī(θ) =
A

2c(θ)

1

d̄2 + d3 − n

1

ρ− d̄2 − d3
.

Note that integrating ī over space yields ī.
Recall that spatial diffusion of infection is captured by the second spatial

derivative, and its strength is captured by parameter d1. If this homogeneous
steady state was stable for (6), then spatial diffusion would not add anything
to our understanding of disease transmission in the long-run since d1 does not
affect ī. Nevertheless, the stability of ī can crucially depend on the diffusion
coefficient d1 as the following proposition shows

Proposition 2 Let us consider the special case in which d̄2 + d3 = 1 + n,
and let us focus on the family of solutions i such that ∇i |0= ∇i |2π and
i(2π) = i(0) = ī. Let ϕ̃ denote the Fourier transform of ϕ. The spatially
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homogeneous steady state ī is unstable if there exists a single value of ξ ∈ T

such that

ϕ̃(ξ) >
d1ξ

2 + n− d̄2
d3

.

In particular, ī is unstable if n < d̄2 since we obtain for ξ = 0 that ϕ̃(0) > 0 >
n−d̄2

d3
.

Proof See Appendix A.3.

Up to this last result, our analysis has depended on the relative size of
diffusion and patience. Proposition 2 reveals the stabilizer role of d1, showing
that the stronger the spatial diffusion of the disease, d1, the more likely it is
that the homogeneous steady state is stable. Proposition 2 also proves that
if d̄2, the steady state of local disease persistence is high enough, larger than
n, then the steady state is unstable independently of diffusion, of patience,
and most importantly, of the spatial aggregator ϕ. In this case, we expect the
dynamics of the disease to be driven by local characteristics.

Additionally, Proposition 2 allows us to unveil other extremely interesting
behaviours. In the case where the steady state is unstable, that is where d̄2 +
d3 = 1+n and n < d̄2, we have d3 = 1+n− d̄2 < 1. Hence, unstable long-term
steady states correspond to economies where the global effect is not powerful
enough.

5 The finite horizon problem

If the policy maker believes that the epidemic is temporary, then instead of
considering an infinite time horizon as in Section 4 she will consider a finite
horizon. Consequently, she will solve a finite horizon problem from 0, the
moment the epidemic is taken into consideration until T . The policy maker
solves the following problem

max
m

∫ T

0

∫
T

(
A [1− i(θ, t)]− c(θ)m2(t, θ)

)
e−(ρ−n)tdθdt−Φe−(ρ−n)T

∫
T

i(θ, T )dθ,

(12)
subject to

∂i(θ, t)

∂t
= d1

∂2i(θ, t)

∂θ2
+ d2i(θ, t) + d3

∫
T

ϕ(θ − ω)i(ω, t)dω −m(θ, t), (13)

where ρ > 0 and where the initial distribution of i, i0 is a known function
on [0, 1], i0 : T −→ [0, 1]. Worth to note, we assume in this finite time horizon
problem that d2, which measures the strength of local transmission is constant
in time, which is not shocking if T is short enough.

Here the policy maker suffers from the final state of the epidemics, which
is measured using the scrap function Φe−(ρ−n)T

∫
T
i(θ, T )dθ in (12). The scrap
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function conveys the idea that the more infected in the economy at time T , the
lower welfare. This disutility increases with parameter Φ ≥ 0 and it decreases
with the time horizon. That is, the larger the time horizon, T , the less the
policy maker cares about the overall final number of diseased.

Under Theorem 1’s hypothesis, the optimal share of treated individuals is
as in the previous section given by

m∗(θ, t) =
A

2c(θ)

1

d2 + d3 − n
+

1

c(θ)

2 [d2 + d3]− n− ρ

< 1
c ,1 >

i(t). (14)

Here again i(t) =< i(t),1 > is the spatial aggregate of i(θ, t) at time t.
Although m∗ is the same function of i as in Section 4, it does not mean that

they both take the same values at any point (θ, t) ∈ T× [0, T ]. The difference
between this and the optimal share in the infinite horizon case stems from the
terminal condition. Indeed, using the scrap function, we obtain that the share
of individuals to treat at the terminal time T is8

m∗(θ, T ) =
1

2c(θ)

A

d2 + d3 − n
+

1

2c(θ)

2(d2 + d3)− n− ρ

< 1
c ,1 >

i(T ), (15)

and i(T ) itself obtains using the terminal condition and the explicit solution
for the value function of the HJB equation of this problem.

The following proposition describes the optimal average share of infected
at time T depending on diffusion, impatience and the disutility from the ill as
measured by Φ.

Proposition 3 Suppose that diffusion is large, namely that n < d2 + d3,
n+ ρ < 2(d2+ d3) and that Assumption 2 holds. Then i(T ) will never be zero.
Furthermore, a non zero solution exists for i(T ) if the following condition holds

Φe−(ρ−n)T ≥ 2πA

ρ− n
+

1

4(ρ− n)

A2

(d2 + d3 − n)2
<

1

c
,1 > − (16)

2(d2 + d3)− n− ρ

< 1
c ,1 >

− A

d2 + d3 − n

More specifically,

i) 0 < i(T ) < 1 if condition (16) holds with strict inequality. Besides, i(T )
decreases with T ;

ii) i(T ) = 1 if and only if condition (16) holds with equality.

Proof See Appendix A.5.

Proposition 3 contains important results. First, when the time horizon is
finite, then the share of infected is never zero, the disease is never optimally
eradicated. Second, if households care enough about the final share of diseased
and choose a high Φ, then their final share will be below one. If not, then all
population will get infected by T . Also note that the larger T , the smaller the
left hand side, and the more likely is full infection.

8 See Appendix A.4 for a proof.
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6 Policy recommendations and conclusions

This paper has proposed a time-space economic model to control the evolution
and the spread of a disease. The underlying epidemiological model is formu-
lated as a reaction-diffusion integro-differential partial differential equation.
Ours is a novel formulation which captures three different diffusion channels
of a transmissible disease: a pure spatial diffusion effect, a local effect, and a
global diffusion effect. As mentioned, this model is not a mere mathematical
artifact but it is supported by recent evidence on COVID-19. Using data on
the evolution of the COVID-19 pandemic in Europe, we show that all three
diffusion channels are present and are significant to explain the evolution of
COVID-19. That is, the local effect, the diffusion effect and the global effect
are significant and represent different transmission mechanisms of the disease.
Hence, we are confident that although challenging, our modelling of COVID-
19 is throughout. Within this time-space framework, two versions of the policy
maker problem have been presented. The first one, the infinite horizon case,
can be understood as the problem of a policy maker who understands that the
epidemic can last forever and become endemic. The second one, instead, con-
siders that the time horizon is finite and we can consider this as the problem of
a policy maker who faces the epidemic as a finite-lived phenomenon. Thanks to
the linear quadratic expression of the overall cost function, we have been able
to provide the closed-form expression of the optimal policy and the economy’s
steady state. After solving and discussing both models, some conclusions and
policy recommendations can be drawn. In the finite horizon scenario, the dis-
ease will never be fully eradicated. Moreover, the less the policy maker cares
about the final state of the disease or the longer the decision horizon, the more
likely it is that the entire population will be infected. In the infinite horizon
case, the disease can be eradicated with time either if individuals are rela-
tively patient or if the join effect of the local and global diffusion effects are
sufficiently strong. Otherwise, the disease will evolve and reach an endemic
steady state. In this case, if the local persistence is too strong, d̄2 > n, then
the steady state is not stable. Throughout the paper, we have delved into epi-
demics investigating the roles of the aforementioned three diffusion channels.
Obviously, our approach encompasses situations in which one of the channels
is not relevant to a given epidemic or to a specific economy. Finally, let us
discuss further applications and avenues of our model. Indeed, although we
have motivated the construction of our model using the current COVID-19
pandemic, our model can be used to describe the evolution of other epidemics
or transmissible diseases, caused by external agents like viruses or other novel
pathogens. The model could also be enriched by adding nonlinear terms. This
would lead to more complicated models that could not be solved in closed
form and for which only numerical solutions could be provided.
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A Mathematical Results

A.1 The Hamilton-Jacobi-Bellman equation and the optimal solution

Before defining the Hamilton Jacobian Bellman equation and applying dynamic program-
ming techniques, we need to write the policy maker problem differently. Note that

max
m

∫ ∞

0

∫
T

{
A [1− i(θ, t)]− c(θ)m2(t, θ)

}
e−(ρ−n)tdθdt, (17)

is equivalent to

−min
m

∫ ∞

0

∫
T

{
A [1− i(θ, t)]− c(θ)m2(t, θ)

}
e−(ρ−n)tdθdt. (18)

That is,

min
m

∫ ∞

0

∫
T

{
c(θ)m2(t, θ)−A [1− i(θ, t)]

}
e−(ρ−n)tdθdt. (19)

Let us define the objective functional associated to I0 as a function of M as

J(I0;M) :=

∫ ∞

0
e−ρtU(I,M)dt,

where

U(I,M) = min
M

∫ ∞

0

∫
T

{
A [N(t)− I(θ, t)]− c(θ)m2(t, θ)N(t)

}
e−ρtdθdt.

The value function associated to our problem is then

V (I0) := inf
M

J(I0;M).

The objective functional and the value function associated to the detrended problem are

j(i0;m) :=

∫ ∞

0
u(i,m)e−(ρ−n)tdt,

where

min
m

∫ ∞

0

∫
T

{
A [1− i(θ, t)]− c(θ)m2(t, θ)

}
e−(ρ−n)tdθ,

and
v(i0) := inf

m
j(i0;m).

For simplicity of exposition, let us define the second order linear operator L as the second
spatial derivative, that is L : L2(T) −→ L2(T) and Lv(θ, t) = vθθ(θ, t), for any function v
twice differentiable in θ.

The HJB equation associated to the detrended problem is

ρv(i) = < d1Li,∇v(i) > + < (d2 − n)i,∇v(i) > (20)

+ < d3

∫
T

ϕ(θ − ω)i(ω)dω,∇v(i) >

+ inf
m

{< cm2 −A [1− i] ,1 > − < m,∇v(i) >},

where we have omitted the time index of the diffusion coefficient function d2 for simplicity
reasons.

Let us first define some notions and important spaces. As already mentioned, we will
search for solutions to our problem in the Hilbert space L2(T). Also recall that our operator
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L was defined as Li = ∂2i
∂θ2

, and let us denote its domain by D(L). We will require that

D(L) is a subspace of L2(T), satisfying that for any function i ∈ D(L), its first and second
derivative remain in L2(T).

The HJB equation in (21) is infinite dimensional, which means that for every function i,
i ∈ L2(T), v(i) is a real number, v : L2(T) −→ R. Let Ω be the open set Ω = {i ∈ L2(T) :<
i,1 >> 0}. Function v needs to be sufficiently regular. Indeed, v needs to be continuous
with a continuous differential, i.e. v ∈ C1(Ω). That is, both v and ∇v move continuously
with the distance in L2(T). Note that this assumption involves a second derivative, L. We
need then that ∇v(i) ∈ D(L), and L∇v(i) to be continuous for all i ∈ Ω.

The rest of the proof is structured in three steps. We will first provide with the explicit
solution to the HJB equation. Then, we will prove the feasibility of the induced trajectory
for m. Finally, we will prove the optimality of the induced trajectory for i.

Step 1: Under Theorem 1’s assumptions, all terms in (21) can be computed. Let us
start by solving the inf problem in (21) for any value function v. We obtain that the optimal
choice for m is

m∗(θ, t) =
1

2c(θ)
∇v(i). (21)

We propose the following function as the value function of our problem:

v(i) = a0 + a1 < i,1 > +a2 < i,1 >2, (22)

where a0, a1, a2 ∈ R, and they are to be determined. If v is defined as in (22), we have that

∇v(i) = a1 + 2a2 < i,1 > . (23)

We obtain next the values of a0, a1, a2, equating the coefficients that are constant, those
that multiply < i, 1 > and those that multiply < i, 1 >2 in the HJB equation. First, note
that < Li,∇v(i) >= 0. Second, let us compute the value of the inf in (21) using the optimal
m. Let us define

f(m) :=< cm2 −A [1− i] ,1 > − < m,∇v(i) > (24)

then we can easily compute:

inf
m

f(m) = < c
1

4c2
∇2v(i)−A [1− i] ,1 > − <

1

2c
∇v(i),∇v(i) >

= −
1

4
<

1

c
,∇2v(i) > − < A,1 > +A < i,1 >

= −
1

4
<

1

c
, a21 + 4a22 < i,1 >2 +4a1a2 < i,1 >> −2πA+A < i,1 > (25)

= −a21
1

4
<

1

c
,1 > −4a22 < i,1 >2<

1

c
,1 > −a1a2 < i,1 ><

1

c
,1 >

− 2πA+A < i,1 >

= −a21
1

4
<

1

c
,1 > −2πA− a1a2 < i,1 ><

1

c
,1 > +A < i,1 >

− 4a22 < i,1 >2<
1

c
,1 > .

Then we compute all remaining terms in the HJB equation in (21):

< (d2 − n)i,∇v(i) >=< (d2 − n)i, a1 + 2a2 < i,1 >>=

a1(d2 − n) < i,1 > +2a2(d2 − n) < i,1 >2 .

In order to solve for the the last term, recall that
∫
T
ϕ(ω)dω = 1. Then, since

<

∫
T

ϕ(θ − ω)i(ω)dω,1 >=

∫
T

∫
T

ϕ(θ − ω)i(ω)dωdθ =

∫
T

i(ω)dω =< i,1 > .
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Using this result, we obtain that

< d3

∫
T

ϕ(θ − ω)i(ω)dω,∇v(i) >= a1d3 < i,1 > +2a2d3 < i,1 >2 .

Then,

(ρ− n)a0 = −
a21
4

<
1

c
,1 > −2πA;

(ρ− n)a1 = a1(d2 − n) + a1d3 − a1a2 <
1

c
,1 > +A,

(ρ− n)a2 = 2a2(d2 − n) + 2a2d3− <
1

c
,1 > a22.

Solving this system, and assuming that a2 ̸= 0:

a0 = −
2πA

ρ− n
−

1

4(ρ− n)
<

1

c
,1 >

A2

(d2 + d3 − n)2
,

a1 =
A

d2 + d3 − n
,

a2 =
2(d2 + d3)− n− ρ

< 1
c
,1 >

.

As a result, the value function v is:

v(i) = −
2πA

ρ− n
−

1

4(ρ− n)

A2

(d2 + d3 − n)2
<

1

c
,1 > + (26)

A

d2 + d3 − n
< i,1 > +

2(d2 + d3)− n− ρ

< 1
c
,1 >

< i,1 >2,

and

∇v(i) =
A

d2 + d3 − n
+ 2

2(d2 + d3)− n− ρ

< 1
c
,1 >

< i,1 > . (27)

We can write it in a simplified manner denoting using that i(t) =< i,1 >.

v(i) = − 2πA
ρ−n

− 1
4(ρ−n)

A2

(d2+d3−n)2
< 1

c
,1 > + A

d2+d3−n
i(t) +

2(d2+d3)−n−ρ

< 1
c
,1>

i(t)2,

∇v(i) = A
d2+d3−n

+ 2
2(d2+d3)−n−ρ

< 1
c
,1>

i(t).

Then, using (21), the optimal amount of treated individuals per capita in location θ at time
t, m∗, obtains as a function of the total number of infected:

m∗(θ, t) =
1

2c(θ)

A

d2(t) + d3 − n
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

i(t). (28)

Since c is a positive function, then m∗(θ, t) is positive if d2(t)+d3−n > 0 and 2[d2(t)+
d3]− n− ρ > 0.

We still need to check that m∗(θ, t) is smaller than 1:

1

2c(θ)

A

d2(t) + d3 − n
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

i(t) < 1,
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Note that since i(t) < 1,

1

2c(θ)

A

d2(t) + d3 − n
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

i(t)

<
1

2c(θ)

A

d2(t) + d3 − n
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

,

and since by assumption A < d2(t) + d3 − n, then

1

2c(θ)

A

d2(t) + d3 − n
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

<
1

2
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

.

If
1

2
+

1

c(θ)

2(d2(t) + d3)− n− ρ

< 1
c
,1 >

< 1,

then m∗(θ, t) < 1. The condition above is equivalent to

2(d2(t) + d3)− n− ρ <
1

2
<

1

c
,1 > .

Before passing to Step 2 and prove that v is the value function of our problem, we need
to obtain the analytical expression for i.

One can substitute the optimal solution m∗ into (6):

∂i(θ,t)
∂t

= d1
∂2i
∂θ2

(θ, t) + (d2 − n)i(θ, t) + d3
∫
T
ϕ(θ − ω)i(ω, t)dω

− A
2c(θ)

1
d2+d3−n

− 1
c(θ)

2(d2+d3)−n−ρ

< 1
c
,1>

i(t).
(29)

From (29), we can integrate with respect to space and the dynamics of i(t) =< i,1 >
obtains:

< ∂i
∂t

,1 >=< d1
∂2i
∂θ2

,1 > + < (d2 − n)i,1 > + < d3
∫
T
ϕ(θ − ω)i(ω, t)dω,1 >

− < A
2c(θ)

1
d2+d3−n

,1 > − < 1
c(θ)

2(d2+d3)−n−ρ

< 1
c
,1>

i,1 > .
(30)

We can rewrite (30) as:

∂i
∂t

= (d2 − n)i+ d3i− A
2(d2+d3−n)

< 1
c(θ)

,1 > − [2(d2 + d3)− n− ρ] , i. (31)

or

i′(t) = [ρ− (d2(t) + d3)] i(t)−
A

2(d2(t) + d3 − n)
<

1

c
,1 > . (32)

Denoting by i0 the initial average of ill individuals in T:

i∗(t) =

[
i0 −

1

c

∫ t

0

A

2(d2(s) + d3 − n)
e
∫ s
0 [ρ−d2(z)−d3)]dzds

]
e−

∫ t
0 [ρ−d2(s)−d3)]ds. (33)

Step 2: We need to prove that v is indeed the value function of the Hamilton-Bellman-
Jacobi equation associated to the detrended problem, that is, the function v which solves
(21).

First, as an intermediate step, we prove here that | e−(ρ−n)tv[i(t)] |−→t→∞ 0:

| e−(ρ−n)tv[i(t)] |=| e−(ρ−n)t
(
a0 + a1 < i,1 > +a2 < i,1 >2

)
|

≤| a0 | e−(ρ−n)t+ | a1 | e−(ρ−n)ti+ | a2 | e−(ρ−n)ti2.

If each of the three terms at the right of the expression above tend to zero, so will |
e−(ρ−n)tv[i(t)] |. First, note that under Assumption 1, limt−→∞ | a0 | e−(ρ−n)t = 0.
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Next, we need to study limt−→∞ e−(ρ−n)ti(t) and limt−→∞ e−(ρ−n)ti2(t).
First, let us solve (8) from time τ to t, where τ is large enough so that we can assume

that d2(t) is close enough to its steady state. Then

i(t) = i(τ)e(ρ−d̄2−d3)(t−τ) +
1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

(
1− e(ρ−d̄2−d3)(t−τ)

)

=

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)
e(ρ−d̄2−d3)(t−τ) +

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3
.

Let us compute the first limit we need to compute:

lim
t−→∞

e−(ρ−n)ti(t) =

lim
t−→∞

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)
e(n−d̄2−d3)(t−τ)+

lim
t−→∞

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3
e−(ρ−n)t = 0,

if n < ρ and n < d̄2 + d3.
Then, let us focus on the second limit. Let us first compute i2(t):

i2(t) =

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)2

e2(ρ−d̄2−d3)(t−τ)+

(
1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)2

+2

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)
e(ρ−d̄2−d3)(t−τ) 1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

Accordingly,
lim

t−→∞
e−(ρ−n)ti2(t) =

lim
t−→∞

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)2

e2(ρ−d̄2−d3)(t−τ)e−(ρ−n)t

+ lim
t−→∞

e−(ρ−n)t

(
1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)2

+ lim
t−→∞

e−(ρ−n)t2

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)
e(ρ−d̄2−d3)(t−τ) 1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

= lim
t−→∞

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)2

e−2(ρ−d̄2−d3)τ e(ρ+n−2(d̄2−d3))t

+ lim
t−→∞

e−(ρ−n)t

(
1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)2

+

lim
t−→∞

2

(
i(τ)−

1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3

)
1

c

1

d̄2 + d3 − n

1

ρ− d̄2 − d3
e−(ρ−d̄2−d3)τ e(n−d̄2−d3)t = 0,

if n < ρ, n < d̄2 + d3 and ρ + n < 2(d̄2 + d3), which is the case under the theorem’s
assumptions.

Step 3: Finally, let us finally prove that v is the value function so that m is optimal. This
will also prove that the solution v to the HJB equation is the value function. By definition,
m∗ is an optimal control if for any other admissible control m̃ we have that

j(i0,m
∗) ≤ j(i0, m̃).

Hence, it is our objective to prove that the above inequality holds for any admissible control
m̃.

To start, let us denote ĩ the trajectory associated to m̃, and let us denote by w(t, i) :
R× L2(T) −→ R:

w(t, i) = e−(ρ−n)tv(i).
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Then

v(i0)− w(T, ĩ(T )) = w(0, ĩ0)− w(T, ĩ(T )) = −
∫ T

0

d

dt
w(t, ĩ(t))dt =

=

∫ T

0

[
(ρ− n)e−(ρ−n)tv[̃i(t)]− e−(ρ−n)t d

dt
v[̃i(t)]

]
dt

=

∫ T

0

[
(ρ− n)e−(ρ−n)tv[̃i(t)]− e−(ρ−n)t < it,∇v[̃i(t)] >

]
dt

=

∫ T

0
(ρ− n)e−(ρ−n)tv[̃i(t)]dt

−
∫ T

0
e−(ρ−n)t

{
< d1Lĩ+ (d2(t)− n)̃i+ d3

∫
T

ϕ(θ − ω)̃i(ω)dω − m̃N0,∇v[̃i(t)] >

}
dt.

We pass to the limit when T → ∞, knowing that < d1Lĩ,∇v(̃i(t)) >= 0 and that
limT→∞ w(T, ĩ(T )) = 0:

v(i0) =

∫ ∞

0
e−(ρ−n)t

{
(ρ− n)v[̃i(t)]− < (d2(t)− n)̃i+ d3

∫
T

ϕ(θ − ω)̃i(ω)dω − m̃,∇v[̃i(t)] >

}
dt.

v(i0)− j(i0, m̃) =∫ ∞

0
e−(ρ−n)t

{
(ρ− n)v[̃i(t)]− < (d2(t)− n)̃i+ d3

∫
T

ϕ(θ − ω)̃i(ω)dω − m̃,∇v(̃i(t)) >

}
dt− < u(̃i, m̃),1 > .

We know that m̃(·) is an admissible control, so that v satisfies (21) by construction. Hence

v(i0)− j(i0, m̃) =

∫ ∞

0
e−ρt

(
inf
m

u(̃i,m)− < m̃,∇v[̃i(t)] >
)
dt− < u(̃i, m̃),1 > .

Let us prove that v(i0)−j(i0, m̃) ≤ 0. First and since we know that by definition infm f(m) ≤
f(m̃) for any function f and any m̃. Then∫ ∞

0
e−ρt inf

m
u(̃i,m)dt− < u(̃i, m̃),1 >≤ 0.

Hence ∫ ∞

0
e−ρt

(
inf
m

u(̃i,m)− < m̃,∇v(i(t)) >
)
dt− < u(̃i, m̃),1 >≤ −

∫ ∞

0
e−ρt

< m̃,∇v[i(t)] >)dt ≤ 0.

Consequently v(i0)− j(i0, m̃) ≤ 0. Note that v(i0)− j(i0,m∗) = 0, so that

⇒ v(i0)− j(i0, m̃) ≤ v(i0)− j(i0,m
∗) ⇒ j(i0,m

∗) ≤ j(i0, m̃).

This implies the optimality of m∗. Furthermore, since v(i0) = j(i0,m∗) ⇒ v(i0) is the value
function for i0. Uniqueness follows from standard convexity considerations.

A.2 Proof of Proposition 1

If we let time tend to ∞ in equation (33), and denoting by ī the steady state value of i(t),
we obtain the result in Proposition 1:

ī =
A

2(d̄2 + d3 − n)

1

ρ− (d̄2 + d3)
<

1

c
,1 >,

and m̄ = A
d̄2+d3−n

. m̄ < 1 if A < d̄2 + d3 − n, so that ī < 1 if

1

2

1

ρ− (d̄2 + d3)
<

1

c
,1 >< 1,

or

<
1

c
,1 >< 2(ρ− (d̄2 + d3)),
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A.3 Proof of Proposition 2

Let us define z = i− ī, then under the proposition assumptions z verifies that

∂z(θ, t)

∂t
= d1

∂2z

∂θ2
(θ, t) + (d2(t)− n)z(θ, t) + d3

∫
T

ϕ(θ − ω)z(ω, t)dω. (34)

Let us then define the stationary problem associated to (34):

0 =
∂z̄(θ, t)

∂t
= d1

∂2z̄

∂θ2
(θ, t) + (d̄2 − n)z̄(θ, t) + d3

∫
T

ϕ(θ − ω)z̃(ω, t)dω. (35)

The eigenvalue problem associated to the stationary problem (35) is to find the set of
values λ such that

λz̄ = d1Lz̄ + (d̄2 − n)z̄ + d3

∫
T

ϕ(θ − ω)z̄(ω)dω.

We apply the Fourier transform on both sides∫
T

λz̄(θ)e−iξθdθ = d1

∫
T

Lz̄(θ)e−iξθdθ + (d2 − n)

∫
T

z̄(θ)e−iξθdθ (36)

+d3

∫
T

∫
T

ϕ(θ − ω)z̄(ω)e−iξθdωdθ.

Note that ∫
T

Lz̄(θ)e−iξθdθ = e−iξθ∇z̄ |T +

∫
T

iξ∇z̄(θ)e−iξθdθ

= e−iξθ∇z̄ |T +iξz̄e−iξθ |T +(iξ)2
∫
T

z̄(θ)e−iξθdθ.

If ∇z̄ |0= ∇z̄ |2π and z̄(2π) = z̄(0) = 0, then∫
T

Lz̄(θ)e−iξθdθ = −ξ2
∫
T

z̄(θ)e−iξθdθ.

Defining χ as the Fourier transform of z̄, that is χ(ξ) =
∫
T
z̄(θ)e−iξθdθ, we obtain from

(36) that
(λ+ n− d̄2)χ(ξ) = d3ϕ̃(ξ)χ(ξ)− d1ξ

2χ(ξ),

that is (
λ+ n+ d1ξ

2 − d̄2 − d3ϕ̃(ξ)
)
χ(ξ) = 0.

Since we are looking for non trivial steady state solutions, we assume that χ(ξ) ̸= 0. Hence,
defining λ as a function of ξ:

λ(ξ) = d̄2 + d3ϕ̃(ξ)− n− d1ξ
2.

If ϕ̃(·) is such that for one single value of ξ ∈ [0, 2π], λ(ξ) > 0, then the steady state is
unstable. Note that if d̄2 > n, then the steady state is always unstable because for ξ = 0,
we would have that λ(0) = d̄2 + d3ϕ̃(0)− n > 0.

If on the contrary d̄2 < n, z̄ is unstable if there exists one value of ξ ∈ T such that

ϕ̃(ξ) >
d1ξ2 + n− d̄2

d3
.

This condition obviously depends on ϕ̃ and ϕ. Note also that d1 plays a major role since it
tends to stabilize the steady state. Indeed, the larger d1, the higher the value of ϕ̃ required
for unstability.
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A.4 The terminal condition in the finite horizon problem

The value function of the HJB equation associated to the finite time horizon problem co-
incides with the value function of the infinite horizon problem. As proven in [3], the only
difference is the change of the transversality condition by the following terminal condition.
When time is finite the value function satisfies that

v(i(T )) = −Φe−(ρ−n)T

∫
T

i(θ, T )dθ = −Φe−(ρ−n)T i(T ). (37)

Since m∗
F (θ, t) = 1

2c(θ)
∇v(i), for every t, in particular,

m∗
F (θ, T ) =

1

2c(θ)
∇v(i(T )) (38)

Using (27), we have that

m∗
F (θ, T ) =

1

2c(θ)

(
A

d2 + d3 − n
+ 2

2(d2 + d3)− n− ρ

< 1
c
,1 >

i(T )

)
, (39)

where i(T ) is still unknown.

A.5 Proof of Proposition 3

To obtain i(T ), one can equate the value for m∗
F (θ, T ) obtained in (39) and that provided

by the (38), where we use the terminal condition (37) to replace v(i(T )):

−
2πA

ρ− n
−

1

4(ρ− n)

A2

(d2 + d3 − n)2
<

1

c
,1 > +

A

d2 + d3 − n
i(T )+

2(d2 + d3)− n− ρ

< 1
c
,1 >

i(T )2 = −Φe−(ρ−n)T i(T ),

which can be rewritten as a second order polynomial in i(T ):

2(d2 + d3)− n− ρ

< 1
c
,1 >

i(T )2 + i(T )

(
A

d2 + d3 − n
+ Φe−(ρ−n)T

)
−

2πA

ρ− n
−

1

4(ρ− n)

A2

(d2 + d3 − n)2
<

1

c
,1 >= 0.

The polynomial above always has two roots. Note that i(T ) can never be 0. If it was, then
2πA
ρ−n

+ 1
4(ρ−n)

A2

(d2+d3−n)2
< 1

c
,1 > should be zero, which is impossible under the model

assumptions.

Denoting by a =
2(d2+d3)−n−ρ

< 1
c
,1>

the second order coefficient, by b = A
d2+d3−n

+

Φe−(ρ−n)T and c = − 2πA
ρ−n

− 1
4(ρ−n)

A2

(d2+d3−n)2
< 1

c
,1 >, the polynomial roots are

i(T ) =
−b±

√
b2 − 4ac

2a
.

Hence, depending on the relative importance of diffusion, of impatience and population
growth, there will be a corner solution for i(T ) or an interior solution, or no solution at all.
Note first that in this case b > 0, so that there is only one positive root if and only if ac < 0,
which is true under the proposition’s assumptions. Then

i) i(T ) = 1 if and only if a+ b+ c = 0, which is what the third point in Proposition 3.
ii) 0 < i(T ) < 1 if a+ b+ c > 0.
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To prove that i(T ) decreases with T , let us define the following function F as

F (iT , T ) =
2(d2 + d3)− n− ρ

< 1
c
,1 >

i(T )2 + i(T )

(
A

d2 + d3 − n
+ Φe−(ρ−n)T

)
−

2πA

ρ− n
−

1

4(ρ− n)

A2

(d2 + d3 − n)2
<

1

c
,1 > .

We know that F (iT , T ) = 0. Using the Implicit Function Theorem:

∂F (iT , T )

∂iT

∂iT

∂T
+

∂F (iT , T )

∂T
= 0,

so that ∂iT
∂T

= −
∂F (iT ,T )

∂T
∂F (iT ,T )

∂iT

, if
∂F (iT ,T )

∂iT
̸= 0. We can compute the partial derivatives of F :

∂F (iT , T )

∂T
= ϕ(ρ− n)iT e−(ρ−n)T > 0,

and
∂F (iT , T )

∂iT
= 2aiT + b,

where a and b were previously defined and they are both positive. Hence, we conclude that
∂iT
∂T

< 0.


