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Abstract

Thanks to nonparametric estimators coming from machine learning, microlevel

reserving has become more and more popular for actuaries. Recent research focused

on how to integrate the whole information one can have on claims to predict in-

dividual reserves, with varying success due to incomplete observations. Using the

CART algorithm, we develop new results that allow us to deal with large report-

ing delays and partially observed explanatory variables. Statistically speaking, we

extend CART to take into account truncation of the data, and introduce plug-in

estimators. Our applications are based on real-life insurance portfolios embedding

Income Protection and Third-Party Liability guarantees. The full knowledge of the

claim lifetime is shown to be crucial to predict the individual reserves efficiently.

Keywords : reserving, reporting delay, truncation, censoring, CART.

1 Introduction

In non-life insurance, the final cost is rarely known when the claim occurs. In some cases,

many years may pass before the amounts are settled. Standard procedures to predict

the reserve, like Chain-Ladder (CL) approaches, rely on aggregated cumulative claim

amounts. These techniques have the disadvantage that they do not exploit additional

information one may have on the claims, and that may help to improve the prediction.

Our paper aims to use this information to better catch the heterogeneity of the data, and
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get accurate predictions of the individual reserves. In this view, we propose a CART-

based approach (Breiman et al. [1984]) that compensates for the presence of censoring

and truncation, naturally present in this kind of data. CART allows us to deal with non-

linearities between the response and the explanatory factors while preserving simplicity

of interpretation, and has therefore gained much popularity in actuarial sciences in the

last decade (see Wüthrich [2018a], Baudry and Robert [2019] for recent papers related to

CART and reserving). Note that other machine learning techniques were recently used

for reserving applications, see for instance Duval and Pigeon [2019] and Wüthrich [2018b].

This paper is based on two main ideas. First, the time before settlement gives mean-

ingful information that helps to explain the final cost of claims. Second, the reporting

delays can strongly affect the prediction of claim amounts. Indeed, right-censoring and

left-truncation are known to have a significant impact when there is an underlying time

phenomenon (Fleming and Harrington [2011a]). In reserving, most claims handling ex-

perts agree to say that the claim lifetime plays a crucial role to explain its final amount.

Typically, claims that take a long time to be settled are more likely to be expensive, as

pointed by Maegebier [2013], Spierdijk and Koning [2011], Pitt [2007], or Bluhm [1993].

Calibrating a model only based on closed claims would thus lead to underestimations of

the average claim amounts, since such a procedure would rely on observations with an

overrepresentation of short lifetimes. Trying to better understand the relationship be-

tween models based on aggregate data (e.g. Chain Ladder) and those using individual

data in the context of survival analysis has been done in numerous recent works; such as

Bischofberger et al. [2019], Hiabu [2017], and Miranda et al. [2013]. They discuss the ad-

vantages and drawbacks of the most famous reserving techniques, and suggest to link the

development of claims to the hazard rate of the cost distribution. This approach bridges

the gap between both families of methods, and allow to clarify some assumptions under-

lying aggregate models. Nevertheless, no explanatory variables were considered in these

works, contrary to the paper by Lopez et al. [2019] who propose a tree-based estimator

to predict the residual lifetimes of still open claims (Reported But Not Settled, or RBNS

claims). We extend the latter work in three ways. Firstly, as we cannot estimate the final

claim amount efficiently using partially observed risk factors (such as the claim lifetime),

we introduce plug-in strategies to overcome this issue. Secondly, as large reporting delays

lead to biased predictions, we must modify the CART estimation procedure. We thus de-

termine consistent weights given to each observation to cancel (asymptotically) the bias

caused by censoring and truncation. Finally, we use bootstrap resampling to estimate the
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predictive uncertainty of the estimators introduced thereafter.

The remainder of the paper is organized as follows. Section 2 describes the general

framework and gives some data processing details. Our main contributions are presented

in Section 3, including the theoretical extension that allows us to deal with both partially

observed risk factors and large reporting delays. Finally, Section 5 is devoted to real data

analyses. We compare our results to two competing approaches used in the insurance

industry, namely the Collective Reserving Model (close to Chain Ladder for predicted

reserves, see Wahl et al. [2019]), and the semiparametric Cox model (Cox [1972]).

2 General framework and data management

Consider n claims, with amounts (Mi)1≤i≤n. For some of them, the final amount Mi is

not observed, since the claim is still open. Indeed, the (random) time before the claim i

is fully settled (the so-called claim lifetime), denoted by Ti, is censored. Introducing some

censoring variables (Ci)1≤i≤n, we define (Yi, δi, Ni,Xi) as i.i.d. replications of
Y = min(T,C),

δ = 1T≤C ,

N = δM,

X = (X(1), ..., X(d)) ∈ Rd,

where X are the claim covariates. Note that defining M and N this way amounts to

consider one single payment per claim, which is unrealistic in reality. However, the in-

formation on payments already made for unsettled claims is most of time unavailable to

actuaries, who are usually not in charge of collecting these information.

Remark 2.1. When one has additional information on M (e.g. partial payments already

made for RBNS claims), taking it into account would be straightforward in our setting.

There basically exists two possibilities: integrate it as a covariate (N would be the cumu-

lated amount already paid, and we know that M ≥ N), or consider bivariate censoring.

These variables are easily built from original data. Let’s say that di is the date at which

the ith claim occurs and si the date at which it is fully settled. Moreover, introduce fi

the date at which the claim stops being observed. We have Ti = si− di, and Ci = fi− di.
In practice fi is often the same date for all the claims, due to data collection. In claim

reserving applications, reporting delays must be carefully dealt with. Indeed, the database

only reports claims that have been communicated, meaning that “Incurred But Not yet
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Reported” (the so-called IBNyR) claims are absent. This phenomenon relates to left-

truncation, but is different from the classical left-truncation in the literature. Introducing

the reporting delay

τi = ri − di

where ri is the reporting date of claim i, only claims such that Ci ≥ τi are observed.

Figure 1 illustrates the case of an unknown claim, and reports the typical information

one has on claim history. This truncation phenomenon is not standard, compared to

the classical left-truncation model in survival analysis where it is usually assumed that

observation only occurs when T ≥ τ (or when Y ≥ τ , see respectively Tsai et al. [1987]

and Sellero et al. [2005]). Here, the situation is slightly different: T < τ means that the

claim has been settled before reporting. This can happen for instance if the indemnity

has been fixed in advance, and the claim is thus stored in the database. To sum up,

the observations are made of (Yi, δi, Ni, τi,Xi)1≤i≤n i.i.d. The distribution of this random

vector is the conditional distribution of (Y, δ,N, τ,X)|C ≥ τ (indeed, by construction, all

observations are such that Ci ≥ τi).

As already mentioned, both censoring C and truncation τ induce bias in the analysis

if they are not taken into account. The former leads to under-represent claims with high

amounts, due to the positive correlation between the claim lifetime T and the final claim

amount M . The latter impacts claims that occur just before the extraction of the data.

It is thus necessary to introduce a statistical framework in which such phenomenons can

be considered, see Section 3. On top of that, our goal is twofold. First, we would like

to understand the impact of Ti and Xi on Mi, and typically estimate the final cost of a

claim with characteristics Xi and lifetime Ti, that is E[Mi |Ti,Xi]. Second, we aim to

predict the final cost of RBNS claims, i.e. E[Mi|Ti ≥ Yi, δi = 0,Xi], which would enable

us to determine appropriate individual reserves for still open claims.

Remark 2.2. As in other reserving techniques, one has to remove the inflation affecting

historical information on M to ensure that the amounts are i.i.d. Various methodologies

can be used, among which using external data when available. Otherwise, one could follow

the procedure by Lopez [2019] (see Appendix A for corresponding technical details).

Figure 1: Case of an unknown claim. The observation period begins at t0 and stops at t1.
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3 Extensions to predict RBNS claims

We introduce in this section the statistical developments for the CART algorithm to be

suited to reserving applications.

3.1 Managing reporting delays: new “Kaplan-Meier weights”

From a statistical viewpoint, the main difficulty when dealing with censored and truncated

data is the fact that the classical empirical means become unadapted. If one wishes to

estimate qφ = E[|φ(T,M,X)|] < ∞ (for a given measurable function φ), one may write

qφ as an integral, that is

qφ =

∫
φ(t,m,x)dF (t,m,x),

where F (t,m,x) = P(T ≤ t,M ≤ m,X ≤ x), and plug a consistent estimator of F . In

absence of censoring and truncation, a natural estimator of F is the empirical distribution

function, leading to an estimation of qφ through an empirical mean.

Now, consider that some observations are either partially observed or totally unob-

served, due respectively to censoring and truncation. For simplicity matters, consider

that we wish to estimate the marginal cumulative distribution function of some lifetime

T , i.e. FT (t) = P(T ≤ t) = 1 − S(t), where S(t) is the survival function. In our case,

the fact that truncation occurs when C ≤ τ impacts the way to estimate FT , and makes

the estimator differ from the classical one under left-truncation (Tsai et al. [1987]). To

introduce this new estimator, one needs to state the following assumption.

Assumption 1. τ is independent from (C,M, T,X) and C is independent of (M,T,X).

By analogy to standard techniques like Chain Ladder, this assumption means that we

assume homogeneity in terms of time in all dimensions (occurence, development, calen-

dar).

Proposition 1. Provided that Assumption 1 is satisfied, the cumulative distribution func-

tion of the lifetime T can be estimated by

F̂T (t) = 1−
∏
Yi≤t

(
1− δi1τi<Yi∑n

j=1 1τj<Yi≤Yj

)
,

where we assume that there is no ties among the variables (Yi)1≤i≤n.

Proof. For the sake of conciseness, the proof is moved to Appendix B. An alternative

formula is also proposed in case of ties.
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Note that F̂T is piecewise constant, and can therefore be written through the following

additive formula:

F̂T (t) =
n∑
i=1

wi,n1Yi≤t,

with

wi,n =
δi1τi<Yi∑n

j=1 1τj<Yi≤Yj

∏
Yk<Yi

(
1− δk1τk<Yk∑n

j=1 1τj<Yk≤Yj

)
. (3.1)

Since they take truncation into account, these weights allow to deal with the presence of

reporting delays. These new weights slightly differ from the ones of the classical product-

limit estimator in presence of right-censoring and left-truncation, see Gross and Lai [1996].

Practically speaking, wi,n equals 0 when the observation is censored or truncated. The

quantity wi,n can be thought as the weight to put on the ith observation to correct the

bias caused by censoring and truncation. More weight is given to smallest and largest

observations of T . Based on the idea of Sellero et al. [2005], one could use the same weight

when it comes to estimate the joint cumulative distribution function F . Hence, we define

F̂ (t,m,x) =
n∑
i=1

wi,n 1Yi≤t,Ni≤m,Xi≤x.

A natural estimator of qφ is thus given by

q̂φ =

∫
φ(t,m,x) dF̂ (t,m,x) =

n∑
i=1

wi,n φ(Yi, Ni,Xi). (3.2)

That being said, we can now introduce the weighting procedure used within the CART

algorithm to deal with truncation and censoring.

3.2 Weighted regression-tree procedure

To extend the CART algorithm to predict the individual final claim amount M , we

adopt the same framework as in Lopez et al. [2019]. However, the weighting scheme

differs because of the truncation due to reporting delays. Moreover, the use itself of the

algorithm (denoted further wCART) for prediction purpose has to be adapted since T ,

considered as an explanatory variable of M thereafter, is partially observed for RBNS

claims. For the paper to be self-contained, the complete version of wCART is given in

Appendix C. Here, for brevity, we only remind to the reader the main principles.

Suppose that we want to estimate π(z) = E[φ(M) |Z = z], where Z = (T,X). At

each step of the algorithm, one determines a rule z = (t, x(1), ..., x(d)) 7→ Rj(z) to split
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the data and create two partitions of the covariate space (leading to the binary tree

structure). That is, for each value of z, Rj(z) equals either 0 or 1 depending on whether

some conditions are satisfied by z. Of course Rj(z)Rj′(z) equals 0 when j 6= j′, and∑
j Rj(z) equals 1 to ensure that created subsets are exhaustive and disjoint. To select

the best rule, we use a weighted quadratic loss so as to minimize within-node variances of

the response φ(M) in created subsets (instead of a quadratic loss in the classical CART

algorithm, well-suited to the estimation of an expectation with fully observed variables).

Not surprisingly, the weights wi,n given by (3.1) are considered to compensate for censoring

and truncation. Finally, each set of rules R = (R1, ..., RK) is associated with a tree-based

estimator of the regression function, that is

π̂R(Z) =
K∑
j=1

π̂jRj(Z), where π̂j =

∑n
i=1 wi,n φ(Ni)Rj(Zi)∑n

i=1 wi,nRj(Zi)
. (3.3)

Remark 3.1. Without any stopping rule, this procedure ends up with a complex tree which

is very likely to overfit the data. This estimator is thus not satisfactory to estimate π. To

get an estimator with lower dimension, a pruning step is required. Let K(R) denote the

number of leaves of a subtree: the pruning approach consists of minimizing the following

penalized loss,
n∑
i=1

wi,n (φ(Ni)− π̂R(Zi))
2 + α

K(R)

n
,

where α > 0 is a tuning parameter, usually chosen through cross-validation.

These building and pruning strategies lead to consistent estimators which are asymp-

totically unbiased, thanks to the properties of Kaplan-Meier estimators (see Lopez et al.

[2016] and references therein). Section 4 illustrates such consistency via simulations.

Nonetheless, for reserving applications, this estimator cannot be applied directly. Indeed,

the explanatory vector Z is not fully observed, because T can be censored or truncated.

We therefore propose some possibilities to overcome this issue.

3.3 Strategies to compute the reserves of RBNS claims

Take φ(M) = M . From the selected tree estimator, it is possible to deduce a predictor

of M for claims where Z is fully observed. However, in the context of RBNS claims, T

is censored. It means that Z is partially observed. Denote by y the observed duration.

To provide a reasonable estimator of M when δ = 0, one thus needs to take into account

that T ≥ y. Consider the two following approaches.
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(A) Bayes - the best prediction given the available data is E[M |Y = y, δ = 0,X = x],

which can also be written as

M? = E[M |T ≥ y,X = x] =
E[M1T≥y |X = x]

E[1T≥y |X = x]
. (3.4)

Two trees are built using wCART, to estimate the numerator and denominator.

(B) Plug-in - build one tree π̂ by wCART to estimate π(t,x) = E[M |T = t,X = x].

Then fit a model for T |T ≥ y,X = x, from which a prediction T̂ (y,x) can be

computed. Finally, predict M? using the plug-in principle: M̂? = π̂(T̂ (y,x),x).

In the latter approach, several prediction models T̂ can be used, among which any

machine learning prediction model adapted to censoring and truncation. In the sequel,

we consider the three following cases:

(B1) : build two different wCART estimators to estimate r1,y(x) = E[T1T≥y|X = x] and

r2,y(x) = E[1T≥y|X = x], and compute T̂ (y,x) = r̂1,y(x)r̂2,y(x)−1;

(B2) : use a simplified prediction of T , assuming that T does not depend on X:

T̂ (y,x) = T̂ (y) =

∫
t1t>ydF̂T (t)∫
1t>ydF̂T (t)

=

∑n
i=1 wi,nYi1Yi≥y∑n
j=1wj,n1Yj≥y

.

Although inconsistent in full generality, the simplicity of this approximation is ex-

pected to favor good behavior of this strategy.

(B3) : get T̂ (y,x) from the semiparametric Cox model, see Cox [1972].

For comparison purposes, we consider two other naive competitors, where the input

information about T is not realistic:

(B4) : predict M? by M̂? = π̂(y,x), where y is the observed censored duration;

(B5) : predict M? by M̂? = π̂(r̂(x),x), where r̂(x) is an estimator of r(x) = E[T |X = x]

obtained by wCART.

Given M̂?, the individual reserves as well as the global reserve can easily be obtained.

In our setting, this amounts to keep M̂?
i as the estimator of the ith individual reserve,

since we do not have information on partial payments already made. Strategies (B4) and

(B5) are expected to underestimate the individual reserves, since they do not consider the

full information about T (i.e. T > y, knowing that E[T |X] ≤ k + E[T − k |T ≥ k,X]

for all k ≥ 0). On the contrary, strategies (A), (B1), (B2) and (B3) take it into account,

and are thus expected to provide well-estimated reserves on average.
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4 Simulations

First we investigate the practical behaviour of our tree-based estimator with truncated

and censored data, where truncation is defined as in Section 2. For the sake of simplicity,

we consider the case where we are interested in the distribution of the lifetime T , thus

focusing on estimating π0(x) = E[T |X = x]. Consider the following simulation scheme:

1. draw n i.i.d. replications (X1, . . . ,Xn) of the covariate, with Xi ∼ U(0, 1);

2. draw n i.i.d. lifetimes (T1, . . . , Tn) following an exponential distribution such that

Ti ∼ E(β = α111Xi∈[a,b[ + α211Xi∈[b,c[ + α311Xi∈[c,d[ + α411Xi∈[d,e]).

3. draw n i.i.d. censoring times (Pareto-distributed: Ci ∼ Pareto(λ, µ)) and n i.i.d.

truncation times, uniformly distributed (τi ∼ U(γ, δ));

4. from the simulated lifetimes, censoring and truncation times, get for all i the actual

observed lifetime Yi and the indicator δi = 1Ti≤Ci
;

5. compute the weights wi,n from the entire generated sample (Yi, Ci, τi, δi)1≤i≤n.

Parameter values are stored in Table 1, and descriptive statistics corresponding to

the various simulated datasets are available in Table 4 of Appendix D. To each simulated

sample, we fit a regression tree with the algorithm of Section 3.2. Then, we compute the

weighted squared errors given by WSEi = wi,n(π̂l(i) − π0(Xi))
2, where π̂l(i) is deduced

from (3.3) for the ith observation that belongs to leaf l(i), and where we know that

π0(Xi) = 1/β. To gain some robustness, we repeated 100 times the simulation scheme

above to compute empirical means of WSEi, leading to the MWSE. We also considered

different values for (λ, µ) and (γ, δ) in the censoring and truncation processes so as to

measure the impact of both phenomenons on the procedure’s performance (see Table 1).

Figure 2 and Table 2 report the results. While the sample size remains low, the censoring

and truncation phenomenons seem to significantly impact the performance. This impact

seems to be complex when both truncation and censoring are present. However, as soon as

there are enough observations, the weighted CART estimator with weights wi,n provides

satisfactory results.

Group-specific means Component probabilities Censorship rate Truncation rate

α1 α2 α3 α4 [a, b[ [b, c[ [c, d[ [d, e] 10% 30% 50% 5% 15%

0.08 0.05 0.16 0.5 [0, 0.3[ [0.3, 0.6[ [0.6, 0.8[ [0.8, 1] (λ, µ) (λ, µ) (λ, µ) (γ, δ) (γ, δ)

12.5 20 6.25 2 30% 30% 20% 20% (80,1.03) (20,1.2) (14,2) (0,0.3) (0,1.2)

Table 1: Parameters involved in the simulation scheme.
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Truncation Censoring Sample Group-specific MWSE MWSE

rate (%) rate (%) size (n) Group 1 Group 2 Group 3 Group 4 Global

100 2.4480 20.8320000 1.61175 2.12600 2.23375

10% 1000 0.4705 11.7646667 0.03925 0.00975 1.10795

5000 0.0034 0.6306333 0.00120 0.00020 0.05720

100 5.9335000 53.97467 2.1965 2.32850 5.24670

15% 30% 1000 4.4461667 15.79833 0.0375 0.00225 1.84215

5000 0.1077333 1.21450 0.0006 0.00005 0.11877

100 5.639833 13.9091667 2.64475 4.27975 2.03135

50% 1000 2.069667 10.3565000 0.13850 0.15400 1.12775

5000 0.098900 0.9647667 0.00100 0.00000 0.09480

Table 2: Mean weighted squared errors w.r.t. the censoring rate and sample size, in the

case where the truncation rate equals 15%.
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Figure 2: MWSE as a function of the logarithm of the sample size (linear interpolation

for n = 100, 1000, 5000).

5 Applications

To be in line with regulatory constraints and current practices in insurance companies,

the assessment of reserves is considered on a quarterly basis (note that we changed this

time step to check the stability of our conclusions, which was confirmed). Building the

database and running the estimations is thus performed every three months, with updated

policyholders’ features and claim characteristics. Each time, we split our n-sized data into

two independent subsamples to assess the prediction power of the methods: the learning

set with nl observations (representing two third of the dataset), and the test set containing

the remaining nt observations (from which the predictive power can be assessed). In

practice, we backtest our reserve predictions. To do so, we only consider the closed claims

(among the nt observations) at the last observed date t1. This way, the true outcomes

M and the true global reserve P are available and can be compared to the predictions.
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The predictive uncertainty of our estimators M̂? and P̂ , where P̂ stands for the global

estimated reserve, is approximated using bootstrap resampling (see Björkwall et al. [2009],

Pinheiro et al. [2003], England and Verrall [1999]). Knowing that P̂ =
∑nt

i=1(1 − δi)M̂?
i ,

we will consider:

• the overall standardized error, defined by ε = (P̂ − P )/P ,

• and the root mean squared deviation RMSD, defined by

RMSD =
√
MSE =

√√√√(1/

(
nt∑
i=1

(1− δi)

))
nt∑
i=1

(1− δi)(M̂?
i −Mi)2.

The first quantity indicates the overall quality of the reserving method, whereas the second

one gives insights about the accuracy of the prediction of individual reserves. We will also

report the bootstrap estimate of the relative standard deviation (RSD), defined by

RSD =
(
1/P̄

) √√√√ 1

B − 1

B∑
b=1

(P̂b − P̄ )2,

where P̄ = (1/B)
∑B

b=1 P̂b, with P̂b the estimated reserve on the bth bootstrap sample.

In the sequel, the number of bootstrap samples is set to B = 1000. For each of the

above indicators, the superscript (.) will be used to precise which strategy was used to

make the predictions.

5.1 Income Protection

Short-term disability insurance was designed to protect the policyholders against the loss

of some revenue. In our context, the coverage can last up to three years, meaning that the

duration of payments T is capped. Here, predicting the final claim amount is similar to

predicting the residual lifetime in the disability state. Without loss of generality, say that

the insurer has to pay 1AC for each insured day (i.e. M = T ). We wish to predict the global

reserve at various settlement dates, by summing predicted remaining claim lifetimes using

strategy (A) (with M replaced by T , see Section 3.3 and Remark C.1 in Appendix C).

Other strategies presented in Section 3.3 are useless, since T is the response in this case.

We compare our results to two famous approaches: i) the Cox model (recommended by

regulators for such insurance risk), and ii) the Chain Ladder (CL) model applied on RBNS

claims only (since there is no reporting delays here, there are no IBNyR claims).

11



5.1.1 About the database

Our database reports 65 670 claims related to income protection guarantees over six years,

from 01/01/2006 to 12/31/2011. For each claim, we know the gender of the policyholder

(14 455 males, 51 215 females), her socio-professional category (2 406 managers, 62 799

employees and 465 others), her age when the claim occured, the duration in the disability

state, the commercial network (three kinds of brokers: 28 662 “Net-A”, 4 890 “Net-B”

and 32 118 “Net-C ”), and the cause (57 131 sicknesses, and 8 539 accidents) that triggered

the coverage. The censoring rate equals 7.2% at the end of the observation period. The

mean observed duration in the disability state is 100 days (beyond a deductible of 30

days), with a median of 42 days and a standard deviation of 162 days. If necessary, more

details about the data can be found in Lopez et al. [2019], Section 3.

5.1.2 Evolution of the predicted reserve

We predict the global reserve P every quarter, from 01/01/2008 to 10/01/2009. The

overall results are stored in Table 3, with additional details about the datasets given in

the top part of Table 8 in Appendix E.4. As an illustration, Figure 3 shows the evolution

of the prediction error for each strategy.

First, notice that P is strongly underestimated in 2008, with both (CL) and (A). On

01/01/2008, the error ε(CL) reaches 60%, whereas it roughly equals 44% using (A). Clearly,

the (CL) model does not take into account the censoring phenomenon adequately, which

causes large underestimations of the final claim amounts. Although (A) is supposed

to appropriately deal with censoring, largest observed lifetimes equal two years at the

beginning of 2008. Given that asymptotic properties of our tree estimator are guaranteed

once the observations almost entirely map the domain of possible values for T (which

is not the case here, since some of the claims will last up to three years in practice),

it is not surprising to underestimate the individual reserves M? (and thus P ). On the

contrary, the Cox model (Cox [1972]) seems to provide satisfactory results for all the

settlement dates. Its semiparametric specification allows us to anticipate longer lifetimes

since the beginning, thanks to the baseline hazard component. Still, these good results

should be moderated since they originate from favourable circumstances: low censoring

rate (see Table 8), no indication that the proportional hazards (PH) assumption may not

be reasonable (looking at scaled Schoenfeld residuals), and bounded lifetimes that cover

a narrow interval ([0, 12] quarters), ensuring that the response T has low variance.

Second, the errors of (CL) and (A) decrease as time passes. This is in line with expec-
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01/01/08 04/01/08 07/01/08 10/01/08 01/01/09 04/01/09 07/01/09 10/01/09

P 378 817 363 899 384 703 382 289 400 365 391 806 380 500 342 298

P̄ (CL) 151 017 166 614 193 593 207 677 243 701 242 688 254 947 259 834

ε(CL) -60.1% -54.2% -50% -45% -39% -38% -33% -24%

P̄ (Cox) 406 559 359 710 386 701 366 381 414 068 388 272 389 268 378 820

ε(Cox) 7.3% -1.2% 0.5% -4.2% 3.4% -0.9% 2.3% 9.5%

RSD(Cox) 2.1% 5.6% 1.9% 1.8% 1.6% 2.4% 0.9% 0.8%

RMSD(Cox) 243 234 241 230 224 210 201 187

P̄ (A) 211 357 227 088 263 030 312 400 402 398 384 361 387 525 374 133

ε(A) -44.2% -42% -31.6% -18.3% 0.5% -1.9% 1.8% 9.3%

RSD(A) 3.2% 3% 3.7% 2.2% 2.3% 2.1% 0.9% 1%

RMSD(A) 417 430 444 405 383 376 377 371

Table 3: Actual reserve P , prediction P̄ , and corresponding predictive uncertainties.

tations, as more and more information become available. One year later (on 01/01/2009),

ε(A) decreases steeply to reach 0.5%, whereas it still equals 39% with (CL). The predic-

tion of P thus improves much faster with (A) than with (CL). Strategy (A) benefits from

the fact that larger observed lifetimes are now included in the learning set, allowing to

significantly improve the quality of our estimator. On the contrary, (CL) still suffers from

the proportion of censored lifetimes (almost 11.9% on 01/01/2009, see Table 8). The in-

dicators RSD(A) and RSD(Cox) show that the variance of the prediction of P are similar

for both strategies, whereas there is a significant difference between them when looking

at the RMSD indicator. In particular, the Cox model seems to provide more accurate

individual predictions here.

Third, for most recent settlement dates, (A) and Cox tend to overestimate P whereas

(CL) still underestimates P (ε(CL) = −24%). These statements make sense, since the

portfolio is observed until 12/31/2011. Getting closer to this date, the percentage of
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Figure 3: Evolution of the prediction errors (in %) depending on the methodology; for all

the settlement dates under consideration.
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fully observed claims increases and the actual global reserve decreases. This explains

why the (CL) reserve gets closer to the reality. However, such improvements would not

be experienced in practice, since P would have no reason to decrease so much (except

in case of run-off business). Concerning the results for strategy (A), our backtesting

approach implies that considered claims for the prediction of the reserve P are settled

on 12/31/2011. The estimations thus face a selection bias, due to an overrepresentation

of claims with short developments (whatever X). Since our estimator is based on past

information, it anticipates longer developments on average for those claims. Hopefully,

this is therefore a non-issue, and the same applies to the Cox model. To make sure about

that, we ran the estimations on the whole database (without only selecting closed claims

on 12/31/2011), and confirmed that the prediction error remained low and stable.

To sum up, the predictions by strategy (A) and the Cox model give similar results on

this example, provided that the main underlying characteristics of the insured risk have

been observed (nearly three years of historical information here). In addition, although

intermediary results (regression coefficients for Cox, and tree estimators for (A)) were not

presented here for conciseness, both models accord with designating the policyholder’s

age as the most discriminant risk factor to explain T . This is good news since this is in

line with what risk experts do observe in short-term disability.

5.2 Third Party Liability (TPL) insurance

In this application, we aim to estimate individual reserves M? based on T and X, where

T is censored and where claims are subject to large reporting delays. We compare the

methodologies (A) and (B1-5) proposed in Section 3.3 to the Collective Reserving Model

(CRM), recently introduced by Wahl et al. [2019]. The CRM enables to split the reserves

dedicated to RBNS and IBNyR claims, allowing for a more fair comparison of RBNS

reserves than when using Chain Ladder (CL). We consider the ausautoBI8999 dataset

providing claims in motor insurance1. A lot of claims have long development times,

causing specific claim management processes and atypical loss development triangles (an

example of such triangle is provided in Appendix E.2).

1Available in the R package CASdatasets.
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5.2.1 Brief description of the database under study

The dataset is made of 22 036 settled automobile bodily injury claims in Australia. These

claims arose from accidents occurring from July 1989 to January 1999. The database

contains event dates (accident, reporting, closing), operational time (indicator of claim

management difficulties), type of injury, number of injured people, potential legal repre-

sentation of the policyholder, and aggregated settled claim amount. In Appendix E.1, Ta-

ble 6 summarizes descriptive statistics on these variables, as well as other created by-hand

variables useful for our study (e.g. reporting delay, or claim duration). Additionally, Fig-

ure 7 shows that reporting started very late as compared to accident dates, which is very

likely due to data collection. In particular, there are no settled claims before 01/01/1993.

Knowing that the mean claim lifetime equals 558 days and that accident dates start in

mid-1989, it looks necessary to omit the data before 01/01/1993 in our study to avoid

issues related to data quality. Finally, our database reports 16 822 claims.

5.2.2 Prediction of individual reserves for RBNS claims

First, claim amounts have to be inflated to the most recent date (01/01/1999). The annual

inflation rate, estimated by the method of Lopez [2019] (Appendix A), equals 0.39%.

We wish to give quarterly predictions of the cost of RBNS claims, i.e. E[M |T > y,X],

between 09/30/1996 and 06/30/1997. We use the strategies (A) and (B1-5) to do so; which

obviously lead to different estimators of the individual reserves. More precisely, strategies

of type (B) give the same tree estimator π̂(t,x), but reserve predictions will differ for one

simple reason: rebuilding the information on T is not considered analogously. Anyway, for

all the settlement dates studied, looking at the tree π̂ indicates that the claim lifetime has

been detected as the risk factor with the strongest impact on the settled claim amounts.

For instance, on 03/31/1997, Figure 4 shows that the most discriminant threshold for

claim duration is 838 days, meaning that claims that last more than this threshold before

being closed are expected to cause significantly higher final claim amounts (on average

75,000$, as compared to 19,000$ otherwise). Note that this threshold is somewhat stable:

it varies by less than 5% depending on the settlement date in practice. Finally, in this

example, the population was divided using seven segmentation rules; only based on the

claim lifetime, the reporting delay, and the legal representation. Other characteristics

such as the number of injured people were not selected, justifying our initial beliefs.

Concerning the reserve predictions, they are in line with our expectations. Figures 5

and 6 give the whole picture of the results. For detailed numerical results and additional
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information on the datasets, please refer respectively to Table 7 in Appendix E.3 and

bottom part of Table 8 in Appendix E.4. The best prediction method seems to be (B1),

since the prediction error remains low and stable as compared to others. The error ε(B1)

is about ±7% (except for two settlement dates, but more on this later). Unless this may

seem substantial, the explanation is twofold : learning samples are of limited size, and

the censoring rate is high (between 30% and 55%, depending on the settlement date).

Globally, our reserve estimates are more accurate than insurance practice (CRM model).

Indeed, the CRM (closely related to Chain Ladder) systematically underestimates the

reserve, which is not surprising in case of claims with long developments. Improvements

related to the latest settlement dates are once again fictive, as explained in Section 5.1.2.

The results from other strategies can be further analyzed. Recall that strategy (B4)

considers the observed claim lifetime Y as a fully observed input in the modelling, and

that the comparison between actual and predicted reserves is made on RBNS claims

only (where T > Y ). Due to the positive correlation between lifetime T and amount M

(Kendall’s tau equals 0.36), reserves are obviously always underestimated. Due to our

backtesting approach, the quality of predictions improves as time passes. This makes

sense since the remaining claim durations, not taken into account here, get much lower

for most recent settlement dates. In terms of prediction error, strategy (B5) has more or

less the same profile. Although the associated estimator uses a prediction of T , it does

EndObsW < 838

ReportDelay < 350

ReportDelay < 15

ReportDelay < 213

ReportDelay >= 45

EndObsW < 1142

Legal = No
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Figure 4: Optimal tree π̂ following (B)-type strategies, on 03/31/1997. The lifetime (’En-

dObsW’) appears as the most important explanatory variable to predict claim amounts.
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Figure 5: Evolution of the prediction errors for each strategy, for all the settlement dates.

not integrate the information on elapsed time. Given that T̂ = Ê[T |X] underestimates

y + E[T − y |T ≥ y,X], these results were clearly expected. This strategy is even worse

than (B4) since it systematically makes the same mistake and does not really benefit

from newer information coming from latest experience (at most recent settlement dates).

Strategy (B3), estimating T (given that T > Y ) by the semiparametric Cox model before

plugging it into the model that predicts M?, reveals very unstable results. As can be

seen in Figure 5, the associated prediction error ε(B3) sometimes explode (see for instance

the predicted global reserve on 09/30/96). In fact, a deeper analysis on intermediate

results about Cox modelling shows that the crucial underlying PH assumption is strongly

violated. In this context, it is very unlikely that predictions on T can be trusted, meaning

that our final estimator can not rely on such predictions. Now focusing on strategies (A),

(B1) and (B2), the corresponding prediction errors seem to behave the same. In terms of

computation power, (B1) is more demanding than (A). However, it is easier to estimate

E[T |T > y,X = x] than E[M |T > y,X = x], since T is a much lower dispersed random

variable thanM . As expected, those methodologies tend to overestimate the global reserve

because they suffer from the lack of data related to high values of y, which makes the

denominator of (3.4) tend to zero. This effect is smoothed when using (B1), thanks to the

plug-in step. In addition to being much simpler, strategy (B2) shows good performance,

which makes it attractive. However, because it does not integrate the information on X,

it should not be recommended if the portfolio composition (in terms of the distribution of

X) is subject to significant changes. For latest settlement dates, all strategies taking into

account that T ≥ y tend to overestimate the reality, because of the selection bias due to

backtests (see also the discussion in Section 5.1.2). The bump of the prediction errors for
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Figure 6: Boxplot of predictions of P at all settlement dates (B=1000 bootstrap samples).

all these strategies on 12/31/97 is caused by significantly different distributions of claim

durations in the learning and test sets. To mention an example of such difference, the

third quartiles respectively equal 760 and 730 days. This leads to overestimations when

predicting T (given that T ≥ y) on the test set, hence on M̂?.

Concerning the prediction uncertainty of the strategies considered, Figure 6 highlights

that one should have little confidence in predictions coming from (B3). Strategies (A) and

(B4) globally seem to provide predicted reserves with little variance, which makes sense

since they are one-step prediction methods (without plug-in). Finally, (B1) and (B2) lead

to similar prediction uncertainties, higher than when using other strategies (except (B3)).

In a nutshell, the strategy (B1) seems to outperform all other methods in terms of

reserve prediction quality, and shows stable results on our data. This estimator is supposed

to be asymptotically unbiased, with acceptable variance. We do not pretend it to be the

best choice whatever the case, but proved through situations implying different sample

sizes and censoring rates that it remains interesting.

6 Conclusion

We proposed different methodologies to perform individual claim reserving, based on re-

gression trees. Our contribution is twofold: our modelling enables to take into account the
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reporting delays appropriately, and shows the good way to implement plug-in estimators

to get reasonable estimations of the reserves. The main features of these approaches are

the possibility to use all available information on a claim to predict its final state. In

other words, the information on the time since occurrence of the claim is appropriately

and fully integrated in the model in our framework. To go further, this work could be

improved in several ways. Our applications are mainly a picture of the reserve at some

point of time. In particular, no dynamic readjustment of the reserve - due to new infor-

mation or events that affect the claim - is considered. Nevertheless, our technique may

be easily modified to incorporate this, as long as the required information is available.

Among other possible improvements, let us mention the possibility to use random forests

(i.e. aggregations of regression trees) to stabilize the results, since the CART algorithm

is known to be sometimes sensitive to the introduction of new data. The drawback would

be a loss of intelligibility of the obtained model. Moreover, some assumptions could be

relaxed. In particular, a key assumption in our work is the independence between τ and

the other variables of the model. It is possible to easily relax this assumption by making τ

depend on the covariates X, and then compute a stratified version of the estimator (where

the computation of the weights is done separately on groups of observations belonging to

the same stratum, as in Galimberti et al. [2002]).
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A Removing inflation: estimation procedure

Let M
′
i denote the observed claim amount (before removing inflation). In general, the

data reports M ′
i instead of Mi. We assume that

logM ′
i = βdi + logMi, (A.1)

where di is the fiscal year at which the ith claim is observed, and β is an inflation factor

that is going to be estimated using our data. We assume that (Mi)1≤i≤n are i.i.d. and

independent of (di)1≤i≤n. The dates di take their value in {0, ..., D} (where D+1 periods,

e.g. years, are observed). Then, proceed as follows:

• Compute m
′
i,j, defined as the average of the fully observed claims that occurred on

the fiscal year di, and which are settled after j years (for (i, j) such that di + j ≤ t1,

where t1 is the last observed date). Let ni,j denote the number of such claims.

• Under (A.1), we know that logm
′
i,j ≈ βjdi + αj, where αj = E[logMi|Ti = j]. For

each j, we compute β̂j the weighted least-square estimator of the slope β based on

the points (m
′
i,j, di)i:di+j≤t1 . More precisely, one solves

(α̂j, β̂j) = arg min
αj ,βj

∑
i:di+j≤t1

ni,j(logm
′

i,j − αj − βjdi)2.

• Finally, our estimator of β is given by β̂ =
∑

j n
1/2
j β̂j∑

j n
1/2
j

, with nj =
∑

i ni,j.

For each claim i such that δi = 1 (settled claims), we thus consider M̂i = M ′
ie
−β̂di as

an estimator of the final claim amount Mi, once removed the inflation effect. In practice,

one will use this amount in applications.

B Estimator of S(t) in our censoring-truncation model

Let us recall that, for a discrete variable A taking value at point {a1, ..., ak}, its survival

function SA(t) = P(A ≥ a) can be written as

SA(t) =
k∏
j=1

(1− λA(aj)) , (B.1)

with

λA(t) = −dSA(t)

SA(t)
.
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A way to determine an estimator of SA hence reduces to replace λA in (B.1) by a con-

sistent estimator obtained from the data. If the variable A is not discrete, it can still

be approximated by a discrete distribution where the (aj)1≤j≤k are replaced by the value

of the complete observations (in our case, the uncensored observations). This is the ba-

sis of the construction of Kaplan-Meier and other product-limit based estimator, see for

example Fleming and Harrington [2011b].

Hence, our aim is to determine a consistent estimator of λT (t) = −dST (t)

ST (t)
.

Let L(t) = P(τ ≤ t), SC(t) = P(C ≥ t), α = P (τ < C), and

S1(t) = E [δ1τ≤Y 1Y≤t|τ < C] .

By basic computations, we obtain dS1(t) = −α−1SC(t)L(t)dST (t).

Indeed,

S1(t) = α−1E
[
1τ≤t1T≤TE[1max(τ,T )<C |τ, T ]

]
= α−1E [1τ≤T1T≤tSC(max(τ, T ))]

= α−1E [1τ≤T1T≤tSC(T )]

= −α−1

∫ t

0

SC(y)L(y)dST (y),

where we used that (T, τ) is independent of C for the second line, and the independence

between T and C for the last line. On the other hand, let

S2(t) = E [1τ<t<Y |τ < C] .

We have S2(t) = α−1ST (t)SC(t)L(t). Since

S2(t) = α−1E
[
1τ<t1t<T1max(t,τ)<C

]
= α−1E

[
1τ<tE

[
1t<T1max(t,τ)<C |τ

]]
= α−1E [1τ<tST (t)SC(max(t, τ))]

= α−1E [1τ<tST (t)SC(t)] ,

hence

−dST (t)

ST (t)
=
dS1(t)

S2(t)
.

The quantities S1 and S2 can be estimated consistently by

Ŝ1(t) =
1

n

n∑
i=1

δi1τi<Yi1Yi≤t and Ŝ2(t) =
1

n

n∑
i=1

1τi<t≤Yi .
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This leads to the following estimator of the survival function,

ŜT (t) = 1− F̂T (t) =
∏
Yi≤t

(
1− dŜ1(Yi)

Ŝ2(Yi)

)
,

when there is no ties.

In case of ties, let (t1, ..., tk) denote the distinct values taken by (Yi)1≤i≤n, leading to

ŜT (t) =
∏
ti≤t

(
1− dŜ1(ti)

Ŝ2(ti)

)
.

C Modification of the CART algorithm

We present here the weighted CART algorithm (wCART), used throughout the paper to

take into account censoring and truncation phenomenons.

Step 1: R1(z) = 1 for all z = (y,x), and n1 = 1 (corresponds to the root node).

Step k+1: Let (R1, ...Rnk
) denote the rules obtained at step k. For j = 1, ..., nk,

• if all observations such that δiRj(Yi,Xi) = 1 have the same characteristics, then

keep rule j as it is no longer possible to segment the population;

• else, rule Rj is replaced by two rules Rj1 and Rj2 determined in the following way:

for each component Z(l) of Z = (Y,X) (l = 1, ..., d + 1), define the best threshold

z
(l)
? to split the data, such that z

(l)
? = arg minz(l) s(Rj, z

(l)), with

s(Rj, z
(l)) =

n∑
i=1

wi,n(φ(Ni)− n̄l−(z(l), Rj))
21

Z
(l)
i ≤z(l)

Rj(Zi)

+
n∑
i=1

wi,n(φ(Ni)− n̄l+(z(l), Rj))
21

Z
(l)
i >z(l)

Rj(Zi),

where

n̄l−(z,Rj) =

∑n
i=1 wi,nφ(Ni)1Z

(l)
i ≤z

Rj(Zi)∑n
k=1 wk,n1Z

(l)
k ≤z

Rj(Zk)
, n̄l+(z,Rj) =

∑n
i=1 wi,nφ(Ni)1Z

(l)
i >z

Rj(Zi)∑n
k=1 wk,n1Z

(l)
k >z

Rj(Zk)
.

Then, select the best component to consider, that is l̂ = arg minl s(Rj, z
(l)
? ).

Define the two new rules Rj1(z) = Rj(z)1
z(l̂)≤z(l̂)?

, and Rj2(z) = Rj(z)1
z(l̂)>z

(l̂)
?
.

• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.
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Remark C.1. Sometimes, M may be a deterministic function of T . The algorithm is thus

easily adapted by replacing N by Y , and Z = (Y,X) by X. In this simpler situation (where

only one single censored/truncated variable has to be predicted), competing approaches

include survival trees and forests, see Ishwaran et al. [2008] and Molinaro et al. [2004].

D Simulations

We give here the characteristics of the simulated samples used in the simulation study.

Sample Group-specific exposure Sample

size n Group 1 Group 2 Group 3 Group 4 mean

100 37% 27% 16% 20% 11.13

1000 26.4% 31.7% 20.1% 21.8% 11.36

5 000 31.41% 29.95% 19.49% 19.15% 11.55

Table 4: Descriptive statistics of simulated datasets.

E Applications

E.1 Descriptive statistics for the motor insurance dataset

Depending on the type of the variable, we give different indicators: for categorical vari-

ables, exposure for each category is provided. Concerning numerical variables, the mini-

mum, the maximum, the median, the mean, and the standard deviation are given.

Variable: Type Min. Median Mean Std. Max.

AccDate date 07/01/1989 10/01/1994 08/02/1994 01/01/1999

ReportDate date 09/01/1990 03/01/1995 05/12/1995 02/01/1999

FinDate date 07/01/1993 01/01/1997 10/11/1996 03/01/1999

Reporting delay numerical 0 59 113 173 1 430

Claim duration numerical 0 486 558 381 2 069

Operational time numerical 0.1 45.9 46.33 27.1 99.1

InjNb numerical 1 2 2.13 1.37 5

AggClaim numerical 10 13 854 38 367 90 981 4 485 797

Legal boolean No: 8 008 Yes: 14 028

InjType1 categorical Fatal: High: Medium: Minor: Severe: Small: Not recorded:

frequency 256 189 1 133 15 638 188 3 376 1 256

Table 5: Descriptive statistics on available information for ausautoBI8999 dataset.

We also show that reporting started much later than accidents, which led us to remove

oldest observations since it is not clear whether these information are reliable.
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Figure 7: Dates of events in ausautoBI8999 dataset. Reporting only started mid-1993.

E.2 Example of loss triangle in the TPL insurance application

We give the (non cumulated) payments for RBNS claims on 12/31/1996 (settlement date),

leading to a CL reserve of 26 165 560$. Numbers are given in thousands and rounded to

make the reading easier.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

01/01/93 0.1 27 57 237 343 199 184 524 563 381 428 250 449 651 606 19

04/01/93 0 36 171 162 909 332 324 454 208 389 192 862 344 275 119

07/01/93 5 61 228 395 210 370 353 501 805 188 330 235 849 358

10/01/93 2 49 139 169 98 571 327 647 655 687 829 342 88

01/01/94 5 112 101 210 209 299 223 729 264 855 370 120

04/01/94 2 15 236 372 240 371 792 136 652 604 176

07/01/94 8 152 688 350 437 364 580 327 507 228

10/01/94 19 125 304 347 157 439 452 300 143

01/01/95 61 102 254 166 154 414 492 686

04/01/95 11 82 129 225 310 477 148

07/01/95 15 79 67 245 361 719

10/01/95 0.9 43 234 228 139

01/01/96 0 112 263 42

04/01/96 5 91 53

07/01/96 7 16

10/01/96 0

Table 6: Example of loss triangle.
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E.3 Detailed results on the calibration of reserves

We provide here the detailed results for the application on TPL guarantees. When using

the CRM model, we only report the part of the reserve dedicated to RBNS claims.

09/30/96 12/31/96 03/31/97 06/30/97 09/30/97 12/31/97 03/31/98 06/30/98

P 100 872 881 96 545 407 97 351 400 87 497 571 78 389 452 71 489 554 58 207 140 56 493 734

PCRM 7 212 119 8 014 483 9 015 614 9 758 563 11 935 499 14 650 041 15 397 966 20 617 125

ε(CRM) -92.8% -91.7% -90.7% -88.8% -84.7% -79.5% -73.4% -63.5%

P (A) 115 776 538 94 284 076 103 701 446 108 631 498 96 881 249 114 245 317 92 722 102 71 456 983

ε(A) +14.8% -2.3% +6.5% +24.2% +23.6% +59.8% +59.3% +26.5%

RSD(A) 14.5% 5.3% 6.7% 6.1% 5.1% 11.8% 4.1% 3.8%

RMSD(A) 131 477 118 117 103 363 74 249 61 914 82 596 67 906 149 120

P (B1) 103 890 209 91 167 753 88 837 467 89 498 892 99 104 425 94 607 399 65 703 004 60 192 296

ε(B1) +3% -5.6% -8.7% +2.2% +26.4% +32.3% +12.9% +6.5%

RSD(B1) 43.5% 11.7% 16.7% 29% 16.5% 19.1% 26.5% 18.9%

RMSD(B1) 142 831 119 204 106 326 83 161 65 001 95 649 76 673 155 189

P (B2) 117 001 710 111 788 049 123 314 660 98 413 820 113 376 802 125 713 715 81 641 459 66 327 464

ε(B2) +16% +15.8% +26.7% +12.5% +44.6% +75.8% +40.3% +17.4%

RSD(B2) 33% 8.1% 17.7% 32.5% 14.3% 15.4% 40.2% 31.9%

RMSD(B2) 140 472 119 905 107 727 84 696 67 241 102 941 95 601 158 678

P (B3) 210 330 566 102 857 540 113 318 807 98 456 074 102 297 911 268 349 985 92 537 067 71 268 961

ε(B3) +108% +6.5% +16.4% +12.5% +30.5% +275% +59% +26.2%

RSD(B3) 70% 6.1% 20.3% 39.4% 12.6% 42.6% 58.7% 28.7%

RMSD(B3) 176 961 119 356 107 170 84 024 67 402 200 421 108 349 159 456

P (B4) 66 954 771 52 828 868 58 790 353 63 305 968 58 620 699 58 700 374 55 884 349 41 978 823

ε(B4) -33.6% -45.3% -39.6% -27.6% -25.2% -17.9% -4% -25.7%

RSD(B4) 9.5% 3.2% 4.6% 5.1% 2.8% 6.3% 20.5% 2.5%

RMSD(B4) 132 730 120 251 106 166 78 661 62 152 81 923 93 140 154 126

P (B5) 56 792 306 41 315 697 43 034 713 53 340 431 39 257 861 35 175 163 42 180 221 32 297 800

ε(B5) -43.7% -57.2% -55.8% -39% -49.9% -50.8% -27.5% -42.8%

RSD(B5) 27% 42.6% 21.3% 39.2% 62% 28.5% 29.5% 28.8%

RMSD(B5) 132 114 122 838 110 157 81 709 68 191 81 638 69 368 157 515

Table 7: Quarterly assessment of the global reserve at various settlement dates.

E.4 Details about subsamples at each settlement date
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