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Abstract—The core of many approaches for the resolution of
variational inverse problems arising in signal and image process-
ing consists of promoting the sought solution to have a sparse
representation in a well-suited space. A crucial task in this context
is the choice of a good sparsity prior that can ensure a good
trade-off between the quality of the solution and the resulting
computational cost. The recently introduced Convex-Non-Convex
(CNC) strategy appears as a great compromise, as it combines the
high qualitative performance of non-convex sparsity-promoting
functions with the convenience of dealing with convex optimiza-
tion problems. This work proposes a new variational formulation
to implement CNC approach in the context of image denoising.
By suitably exploiting duality properties, our formulation allows
to encompass sophisticated directional total variation (DTV)
priors. We additionally propose an efficient optimisation strategy
for the resulting convex minimisation problem. We illustrate
on numerical examples the good performance of the resulting
CNC-DTV method, when compared to the standard convex total
variation denoiser.

Index Terms—Directional Total Variation, Denoising, Non-
convex and non-smooth regularisation, Primal-Dual Algorithm

I. INTRODUCTION

A wide class of problems arising in image and signal
processing can be described by sparsity-regularised variational
models. The most natural sparsity inducing penalty is the ℓ0-
pseudo-norm, but it induces the related problem to be NP hard
and non-convex. A popular convex variational surrogate is the
ℓ1-norm, though it has the drawback of under-estimating the
high amplitude components of the considered signal. Non-
convex variational regularisers manage to overcome this issue,
at the cost of possibly introducing suboptimal local minima in
the objective function. An efficient solution to keep only the
best traits of these regularisers is represented by Convex-Non-
Convex (CNC) strategies [1]–[5]. They consist of building
convex objective functionals that include non-convex regular-
isation terms. Suitable CNC strategies have been designed for
more and more general classes of problems in different fields
of data processing (see [4] and the references therein). For
the well-known Total Variation (TV) regularisation model [6],
a CNC modification has shown to get around the notorious
problems of boundary reduction and staircasing effect for
image restoration [1], [4], [5] and image segmentation [7].

In this work we propose a new variational formulation
extending the CNC strategy to a popular TV-based model,
namely the Directional TV (DTV). DTV was firstly introduced
in [8] for the restoration of images whose structures or textures
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follow a single dominant direction. The idea is to provide
the model with a suitable directional prior information in
order to allow the regularisation to operate more efficiently.
The model was then extended in [9] to handle multiple
dominant directions by means of a spatially varying directional
information that locally coincides with the edge directions of
the image. In [10] and [11] the authors analysed the possibility
to extend the directional approach to the Total Generalised
Variation (TGV) model from [12], which takes into account
higher-order derivatives of the image and allows to promote
piecewise-affine reconstructions, in particular. A possibly non-
convex version of DTV was proposed in [13] by considering
a space-variant exponent for the DTV regulariser that adapts
to the local smoothness of the image.

Our contributions in this work are the following. We infer
a formulation for DTV that allows us to incorporate this
regulariser into a CNC denoising framework. We then define
a numerical procedure to efficiently address the resulting
optimisation problem. We finally provide experimental results
that support the use of the proposed regularisation method.

The paper is organised as follows. In Section II, we intro-
duce a general TV-based image denoising problem. We de-
scribe the construction of a CNC sparsity-promoting function,
and provide a sufficient condition for the convexity of the over-
all problem. Section III is dedicated to the derivation of our
proposed CNC-DTV regularisation approach and Section IV
provides the description of a dedicated optimisation procedure
to tackle it. Section V presents our numerical results showing
the interest of the proposed approach.

II. IMAGE DENOISING VIA CNC TOTAL VARIATION

A. Notation

Throughout this paper we denote by ⟨· | ·⟩ the scalar product
over Rn and ∥ · ∥2 the associated Euclidean norm. In states for
the n× n identity matrix.

The spectral norm is defined as
|||L||| = sup{∥Lz∥2 | z ∈ Rn, ∥z∥2 ≤ 1}. Γ0(Rn) indicates
the class of functions f : Rn → (−∞,+∞] that are proper
(i.e., with a nonempty domain), lower semicontinuous
and convex. For a function f ∈ Γ0(Rn), function
f∗ : Rn → [−∞,+∞] represents its convex conjugate
that is defined as

(∀u ∈ Rn) f∗(u) = sup
x∈Rn

{⟨x, u⟩ − f(x)}.

B. Image denoising

We focus on solving an image denoising problem, i.e.
on restoring a source image x̄ ∈ Rn from an acquired



measurement o ∈ Rn that is related to the sought image
through

o = x̄+ e, (1)

where e ∈ Rn is an additive noise, here assumed to be
i.i.d. zero-mean Gaussian. Then, a simple denoising strategy
consists of defining an estimate x̂ ∈ Rn of x̄ by solving the
penalized least squares problem

minimize
x∈Rn

{
J (x) = ψ(x) +

λ

2
∥x− o∥22

}
. (2)

Hereabove, function ψ : Rn → (−∞,+∞] is the regular-
ization term, associated to the regularization factor λ−1, with
λ > 0.

C. Total-variation based regularizers

When dealing with images, a common approach consists of
choosing ψ so as to sparsify the sought image in a transformed
space obtained via a linear transformation. This amounts to
defining ψ = Ψ ◦ D where D ∈ Rm×n is a linear operator
and Ψ : Rm → (−∞,+∞] is a sparsity-promoting term.
Among possible choices for Ψ and D, the total variation (TV)
model [6] is probably the most celebrated one. TV regular-
izer promotes sparsity in the space of the vertical/horizontal
gradients of the image, thus allowing piece-wise constant
functions in the solution space. Matrix D ∈ R2n×n is set
as the linear operator defined as D = [D⊤

h D⊤
v ]

⊤, where
(Dh, Dv) ∈ (Rn×n)2 are the discrete horizontal and vertical
2D gradient operators obtained with a finite difference scheme.
Then,

(∀x ∈ Rn) TV(x) = ∥Dx∥1,2,

=

n∑
i=1

∥(Dx)i∥2. (3)

Here, for every u ∈ R2n and i ∈ {1, . . . , n}, we use the
compact notation: ui = (ui, un+i) ∈ R2. We can also provide
another definition of TV, based on duality [14]:

(∀x ∈Rn) TV(x)

= max
u∈R2n

{⟨Dx | u⟩ | ui ∈ B2, i ∈ {1, . . . , n}}, (4)

with B2 = {υ ∈ R2 | ∥υ∥2 ≤ 1} the unit closed ball of R2.
One drawback of TV is that it gives an isotropic role to

vertical and horizontal directions, that might not be well-
adapted for natural images. In [8], a modified version of
TV is proposed, that is more suitable for images containing
objects with a (possibly non vertical/horizontal) dominant
direction. The idea is to introduce an affine transformation
in the dual space (i.e., the space of the image gradients).
This transformation is parametrized by an expansion factor
α ≥ 1 and a rotation angle θ ∈ [−π/2, π/2]. We then define
the transition matrices:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, Λα =

[
1 0
0 α

]
.

These are used to build the elliptic set Eα,θ ⊂ R2 given by
Eα,θ = RθΛαB2, that is then substituted for B2 in (4).

Actually, shapes present in images might have more than
one directional orientation. In order to adapt the previous
regularizer to each edge directions in the image, following [9],
we can rely on a set of local ellipses Eαi,θi ⊂ R2 for each
pixel i ∈ {1, . . . , n}. This leads to the so-called directional
TV (DTV) regularizer, defined as

(∀x ∈ Rn) DTV(x;α,θ) =

n∑
i=1

max
u∈Eαi,θi

⟨(Dx)i|u⟩. (5)

Here, α = (αi)1≤i≤n, θ = (θi)1≤i≤n are a predefined
set of scaling factors/angles describing the edge direction
information at each pixel of the image.

It is worth noticing that DTV is actually a generalized
version of TV. Indeed, by choosing αi = 1 and θi = 0 for
every i ∈ {1, . . . , n}, one retrieves the classic TV functional
as expressed in (4), since E1,0 = R0Λ1B2 = B2.

DTV can be described in a more compact manner, by
introducing the operator Aα,θ : R2n → R2n that encodes
the underlying local affine transformations. This linear op-
erator is such that, for every u ∈ R2n, Aα,θu =
(RθiΛαiui)1≤i≤n. We can also express its inverse, through
A−1

α,θu =
(
Λ1/αi

R−θiui

)
1≤i≤n

for every u ∈ R2n. Then, an
equivalent definition of DTV is

(∀x ∈Rn) DTV(x,α,θ)

= max
u∈R2n

{⟨Dx | u⟩ | (A−1
α,θu)i ∈ B2, i ∈ {1, . . . , n}}.

(6)

The aforementioned (D)TV prior relies intrinsically on the
convex sparsity measure ℓ1,2. However, as emphasized in [15],
[16], non-convexity sparsity penalties might be key to obtain
high quality results. The goal of this paper is to incorporate
a CNC approach with the aim to obtain an enhanced image
denoiser without complexifying the optimization procedure.

III. PROPOSED CNC-DTV METHOD

A. CNC approach

The idea of CNC, initially proposed in [4], [5], is to use the
following construction for the regularization term ψ = ΨM ◦D
in (2), with D the discrete gradient linear operator and

(∀u ∈ R2n) ΨM (u) = φ(u)− inf
t∈R2n

{
φ(t) +

1

2
∥M(u− t)∥22

}
︸ ︷︷ ︸

φM (u)

.

(7)
Function ΨM is the non-convex modification of a convex
sparsity promoting term φ ∈ Γ0(R2n), parametrized by a
matrix M ∈ Rk×2n. It is obtained by subtracting from function
φ its so-called generalised Moreau envelope φM : R2n → R
depending on matrix M [5, Definition 6]. This matrix plays a
fundamental role, as it can be designed so as to guarantee both
the efficiency of a non-convex regularisation approach and, at
the same time, the overall convexity of the objective function,
as we will discuss hereafter.

In [4], two main examples for the choice of function φ
are reported, which lead to different instances of CNC-TV



regularisations, namely φ = ℓ1 yields an anisotropic version of
the TV while φ equal to the Hessian Schatten norm [17] leads
to a second-order extension of the TV regularizer. However,
up to our knowledge, DTV (as defined in (6)) has not been
explored in the context of CNC, and this is the aim of this
work.

B. Convexity condition

A key feature of CNC approach is that, despite the non-
convexity of the introduced penalty ΨM , it is still possible
to recast the minimization problem as a convex one. More
precisely, in accordance with [18, Example 75], Problem (2)
with ψ = ΨM ◦D and ΨM given in (7), can be reformulated
as the following minimisation problem by introducing the dual
variable y ∈ R2n:

minimize
(x,y)∈Rn×R2n

J̃M (x, y) =
λ

2
∥x− o∥22 −

1

2
∥MDx∥22 (8)

+
1

2
∥My∥22 + φ(Dx) + φ∗(M⊤M(Dx− y)).

Remark 1. The equivalent problem in (8) is slightly different
from the one proposed in [4, Eqs (88)-(89)] and [3, Eqs (52)-
(53)], which relied on a saddle point formulation.

Since φ is convex, so is its conjugate φ∗, as well as
their compositions with linear mappings. It results that the
only non-convex term in the objective function in (8) is
the concave quadratic one x 7→ − 1

2∥MDx∥22. In order to
guarantee that J̃M is convex, it is sufficient to ensure the
convexity of the twice continuously differentiable function
x 7→ λ

2 ∥x− o∥22 − 1
2∥MDx∥22 [1], [4], [5], that is equivalent

to impose that the Hessian

H = λI2n −D⊤M⊤MD (9)

is a positive semidefinite matrix. In order to guarantee the
existence of a unique minimizer, we further require H to be
positive definite and M⊤M to be a full-rank matrix, thus
making the objective function in (8) coercive.

C. Proposed CNC Directional Total Variation

Let us now present our main contribution, that is a CNC
formulation able to encompass the DTV regulariser (6) (itself
being a generalisation of (4)).

First, by Fenchel-Rockafeller duality [19], from (6), we
obtain an equivalent primal formulation for DTV, by noticing
that the adjoint operator of A−1

α,θ is given, for every u ∈ R2n,
by A−∗

α,θu =
(
RθiΛ1/αi

ui

)
1≤i≤n

. This yields

(∀x ∈ Rn) DTV(x,α,θ)

= min
v∈R2n

{∥v∥1,2 | A−∗
α,θv = Dx}

= (A−∗
α,θ ▷ ∥ · ∥1,2)(Dx), (10)

where (A−∗
α,θ ▷ g) denotes the Exact Infimal Postcomposition

of a function g by A−∗
α,θ [19, Chapter 12]. Then the proposed

CNC modification of DTV parametrised by some matrix M ∈
Rk×2n reads

(∀x ∈Rn) CNC-DTV(x)

= φA(Dx)− inf
t∈R2n

{
φA(t) +

1

2
∥M(Dx− t)∥22

}
,

where φA = A−∗
α,θ▷∥·∥1,2. According to properties of the in-

fimal postcomposition by a bounded operator [19, Proposition
13.24(iv)], the conjugate of φA is expressed as

(∀y ∈ R2n) φ∗
A(y) = ιB∞,2

(A−1
α,θy), (11)

where B∞,2 is the ℓ∞,2 ball with center 0 and radius 1.
Hence, choosing φ = φA in (8) and introducing a constraint

on the range of x lead to the following optimisation problem
where we set H = Rn × R2n × R2n:

minimize
(x,y,v)∈H

F (x, y, v) + ∥v∥1,2 + ιS(x, y, v)

+ ιE(Dx,A−∗
α,θv) + ιB∞,2

(A−1
α,θM

⊤M(Dx− y)).

(12)

Here, S = [0, 1]n×R2n×R2n is the additional constraint set,
E is the vector space {(w, z) ∈ R2n ×R2n | w = z} and, for
every (x, y, v) ∈ H,

F (x, y, v) =
λ

2
∥x− o∥22 −

1

2
∥MDx∥22 +

1

2
∥My∥22. (13)

Since φA is convex, the positive semidefiniteness condition
for H in (9) can also be applied as a convexity guaranty
for our new objective function in (12). In the next section,
we investigate how to address Problem (12) by means of an
optimisation scheme that exploits the structure of this objective
function.

IV. OPTIMISATION ALGORITHM

A. Primal-dual splitting

The Primal-Dual (PD) method in [20]–[22] allows to ef-
ficiently deal with problems involving several Lipschitzian,
proximable, and linear composite terms. In (12) we iden-
tify the following functions and linear operators: for every
(y, v) ∈ R2n × R2n,

h1(v) = ∥v∥1,2 L1 = [0 0 I2n]

h2(v) = ιB∞,2
(v) L2 = [A−1

α,θM
⊤MD −A−1

α,θM
⊤M, 0]

h3(y, v) = ιE(y, v) L3 =

[
D 0 0
0 0 A−∗

α,θ

]
,

so that (12) amounts to minimizing F +
∑3

i=1 hi ◦ Li + ιS .
The iterations defining a sequence (zℓ)ℓ∈N = (xℓ, yℓ, vℓ)ℓ∈N

which, starting from point z0 ∈ H, converges to a solution
z∞ ∈ H to (12), are presented in Algorithm 1, where δ > 0
is a Lipschitz constant of function F . For f ∈ Γ0(Rn), proxf
corresponds to the proximity operator of f . When f = ιS ,
proxf reduces to projS , the projection onto S.



Algorithm 1 Primal-Dual Algorithm to solve (12)
Initialize z0 ∈ H, w1,0 ∈ Rn, w2,0 ∈ R2n,w3,0 ∈ R2n

Set τ > 0 and σ > 0 s.t. 1
τ − σ|||

∑3
i=1 L

⊤
i Li||| ≥ δ

2
for ℓ = 0, 1, . . . do

zℓ+1 = projS(zℓ − τ∇F (zℓ)− τ
∑3

i=1 L
⊤
i wi,ℓ)

for i = 1, 2, 3 do
wi,ℓ+1 = proxσh∗

i
(wi,ℓ + σLi(2zℓ+1 − zℓ))

end
end

Since |||D|||2 = 8, and |||A−1
α,θ||| ≤ 1 (resp. |||A−∗

α,θ||| ≤
1) as A−1

α,θ (resp. A−∗
α,θ) is the combination of rotations and

contractions along one axis, the norm of the involved linear
operator can be upper bounded as follows:

|||L⊤
1 L1 + L⊤

2 L2 + L⊤
3 L3|||
≤ 1 + (1 + 8)(|||M |||4) + 8. (14)

It is worthy to note that Problem (12) and Algorithm 1 repre-
sent a unified framework for convex / non-convex, classical /
directional TV, since proper choices for matrix M and operator
Aα,θ allow us to model the four different instances of the
denoising problem at hand. For M = 02n ∈ R2n×2n, i.e. the
null operator, we retrieve the convex TV formulation, whereas
the classical TV formulation is obtained by setting, for every
i ∈ {1, . . . , n}, αi = 1 and θi = 0.

In the proposed framework, all the proximal computations
are exact since the PD method allows us to decouple the
functions that are defined by composing a convex function
with a linear operator. This represents an advantage with
respect to the Forward-Backward strategies proposed in [5,
Algorithm 3] and in [4, Proposition 10], which involve nested
optimisation procedures, i.e. a subroutine has to be used to
compute the proximity operator of the classical TV functional.
We dedicate the next subsection to the description of the
proximity operators of the involved terms.

B. Practical implementation

The proximity operator of function h∗2 = h1 = ∥ · ∥1,2 can
easily be inferred from the one of the ℓ2 norm by applying
the rule for a separable sum of terms:

(∀u ∈ R2n) proxσh∗
2
(u) =

(
ui −

ui

max(∥ui∥2

σ , 1)

)
1≤i≤n

,

while the proximity operator of function h∗1 = h2 is obtained
by applying Moreau’s identity: [19]

(∀u ∈ R2n) proxσh∗
1
(u) = u− σproxh2

σ
(
u

σ
)

=

(
ui

max(∥ui∥2, 1)

)
1≤i≤n

.

(a) (b) (c)

Fig. 1: Original images: texture (a), barcode (b), and
geometric (c).

By applying again Moreau’s formula, the proximity operator
of σh∗3 is given by

(∀(y, v) ∈ (R2n)2) proxσh∗
3
(y, v) = (y, v)− σ projE

( y
σ
,
v

σ

)
=

1

2

[
y − v
v − y

]
.

V. NUMERICAL RESULTS

We now evaluate the proposed approach for the restoration
of noisy grayscale images. In accordance with [4], we choose
matrix M =

√
γI2n, so that M⊤M = γI2n and there-

fore the convexity condition reduces to ensuring the positive
semidefiniteness of H = λI2n − γD⊤D. Since |||D|||2 = 8,
the convexity condition is satisfied as soon as γ < λ/8. We
therefore set

γ = (ρλ)/8,

with ρ ∈ {0, 0.99}. For ρ = 0, we retrieve the convex
formulation of TV, whereas for ρ = 0.99 we get a high degree
of non-convexity for ψM while ensuring the convexity of the
global problem.

We illustrate the performance of CNC-DTV on three
synthetic images, texture, barcode, and geometric,
shown in Figure 1. We added white zero-mean Gaussian
noise with standard deviation σe = 0.1. In order to extract the
directional information θ in DTV, we exploited the strategy
proposed in [11, Section 5]. For the definition of parameter
α, we set αi = α for every i as in [9]. We then chose the
best combination of the two parameters α and λ by means
of a grid search to optimise the Peak Signal-to-Noise Ratio
(PSNR) of the restored image.

In Table I, we report the best PSNR obtained when running
our PD algorithm for the classic convex (i.e, ρ = 0) TV (C-
TV), the non-convex (i.e, ρ = 0.99) TV (NC-TV), convex
directional (C-DTV), and non-convex directional (NC-DTV)
TV. This quantitative assessment shows that the combination
of non-convex prior with a DTV-based space-variant regu-
larisation yields an improvement w.r.t. the three other tested
approaches.

image C-TV CNC-TV C-DTV (1/α) CNC-DTV (1/α)
texture 23.70 24.34 25.83 (0.1) 26.76 (0.25)
barcode 25.60 26.92 26.07 (0.4) 27.69 (0.5)
geometric 30.81 31.16 31.24 (0.45) 32.30 (0.45)

TABLE I: Best PSNR for σe = 0.1 optimised over a grid
search for parameters λ and α.



We also provide in Figure 2 a visual illustration of the per-
formance of the four approaches on texture image, showing
the absolute error between the best estimated solution x̂ and
the original image x̄. The reconstructions involving a non-
convex regulariser or directional information show peculiar
structures in the distribution of its absolute residual error,
whereas the classic convex approach yields a rather dense
error distribution. NC-DTV inherits the high coherence w.r.t
the directions in the image from C-DTV and the high accuracy
in noise removal and sharp transition reconstruction from NC-
TV.

C-TV NC-TV

C-DTV NC-DTV

Fig. 2: Residual absolute error for texture.

Eventually, in Figure 3, we illustrate for image geometric
the PSNR evolution along 3000 iterations (left) and the dis-
tance from the iterates zℓ to the solution z∞ in logarithmic
scale (right) of the four approaches, which shows the fast and
stable convergence behaviour of the proposed PD algorithm.

PS
N

R

∥z
ℓ
−
z ∞

∥ 2
/∥
z ∞

∥ 2

ℓ ℓ

Fig. 3: PSNR versus iterations (left) and distance from the
iterates to the solution versus iterations in logarithmic scale
(right) for geometric.

VI. CONCLUSIONS

In this work we investigated the extension of the CNC
approach to a directional version of the TV regularisation
model for image denoising. We proposed to address the
resulting minimisation problem with a primal-dual procedure
that efficiently exploits the structure of the objective function
and we provided numerical results supporting the interest of
the proposed approach.
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