Efficacy and safety of treatments in cutaneous polyarteritis nodosa: A French observational retrospective study

Thomas Bettuzzi, Marie Jachiet, Emilie Sbidian, Laure Frumholtz, Florence
Cordoliani, Luc Mouthon, François Chasset, Romain Paule, Jean-David
Bouaziz, Loïc Guillevin, et al.

To cite this version:

Thomas Bettuzzi, Marie Jachiet, Emilie Sbidian, Laure Frumholtz, Florence Cordoliani, et al.. Efficacy and safety of treatments in cutaneous polyarteritis nodosa: A French observational retrospective study. Journal of The American Academy of Dermatology, 2022, 86 (5), pp.1035-1041. 10.1016/j.jaad.2021.06.872 . hal-03692814

HAL Id: hal-03692814

https://hal.science/hal-03692814

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Efficacy and safety of treatments in cutaneous polyarteritis nodosa: a French observational retrospective study

Thomas Bettuzzi, MD, MPH, ${ }^{1,2}$ Marie Jachiet, MD, ${ }^{3}$ Emilie Sbidian, MD, $\mathrm{PhD}^{1,2,4}$ Laure Frumholtz, MD, ${ }^{5}$ Florence Cordoliani, MD, ${ }^{3}$ Luc Mouthon, MD, PhD, ${ }^{5}$ François Chasset, MD, PhD, ${ }^{6}$ Romain Paule, MD, ${ }^{7}$ Jean-David Bouaziz, MD, PhD, ${ }^{3}$ Loïc Guillevin, MD, PhD, ${ }^{5}$ Benjamin Terrier, MD, PhD, ${ }^{5}$ Selim Aractingi, MD, PhD, ${ }^{8}$ Nicolas Dupin, MD, ${ }^{8}$ Alexis Régent, $\mathrm{MD}, \mathrm{PhD}^{5}$

[^0]
Corresponding author:

Alexis Régent, MD, PhD
alexis.regent@aphp.fr
Tel: + 33158411455

Words: 2497
Abstract words: 200
Capsule summary: 41
Tables: 2
Figures: 3
Supplemental Data: https://data.mendeley.com/datasets/4896hc3w26/1
Funding: none

Disclosures: none to declare
Key words: vasculitis, cutaneous polyarteritis nodosa, treatment, colchicine, glucocorticoids, azathioprine, methotrexate

Abstract

Background: Cutaneous polyarteritis nodosa (cPAN) is a form of medium-sized vessel vasculitis. Despite a disabling and prolonged course, data on treatment efficacy and safety remain scarce.

Objectives: We aimed to describe treatment efficacy and safety in patients with cPAN. Methods: This was a multicentre retrospective observational study, recording clinical and biological data together with treatments received. The primary outcome was the rate of complete response (CR) at month 3 . Secondary outcomes included drug survival, and safety was assessed.

Results: We included 68 patients who received a median of 2 therapeutic lines (interquartile range 1-3). Overall, 13/42 (31\%) patients achieved CR with colchicine, $4 / 17$ (23\%) with dapsone, $11 / 25$ (44%) with glucocorticoids (GCs) alone, 1/9 (11%) with NSAIDs, 11/13 (84%) with GCs+azathioprine (AZA) and $7 / 15(47 \%)$ with GCs+methotrexate. GCs+AZA had the best drug survival (median duration 29.5 months [IQR 19.5-36.0]). Response at month 3 was decreased with peripheral neurological involvement (odds ratio 0.19 [95% confidence interval $0.03-0.81], \mathrm{p}=0.04$). Overall, the rate of treatment-related adverse events was 18%, which led to treatment discontinuation in 7% of patients.

Limitation: Retrospective study
Conclusion: Colchicine seems to confer good benefit-risk balance in cPAN without peripheral sensory neuropathy. GCs+AZA seems the best treatment for disease relapse.

Introduction

Polyarteritis nodosa is a rare necrotizing vasculitis affecting medium-sized vessels. ${ }^{1}$ Among adults, two clinical entities are distinguished: systemic polyarteritis nodosa ${ }^{2}$ (sPAN), an acute systemic life-threatening disease ${ }^{2}$, and cutaneous polyarteritis nodosa (cPAN), a skin-limited vasculitis, although joint or peripheral sensory neurological involvement is often associated. ${ }^{3}$ The treatment of sPAN relies on high-dose glucocorticoids (GCs) associated or not with conventional immunosuppressants (ISs) according to the disease severity and on plasma exchange and anti-viral therapy in patients with hepatitis B virus (HBV)-related sPAN. ${ }^{4}$ cPAN is a particular form of single-organ vasculitis, ${ }^{5}$ with a chronic non-fatal disabling course and frequent relapse. ${ }^{6}$ cPAN features earlier disease onset and a female predominance as compared with sPAN. ${ }^{6}$ Moreover, cPAN seems unrelated to HBV, ${ }^{3,7}$ and evolution from cPAN to sPAN is unlikely. ${ }^{3,8,2}$

Several studies focused on the clinical and biological evolution of cPAN. ${ }^{3,6,9}$ However, to our knowledge, data on treatment efficacy remain scarce, without any consensus. First-line treatments usually consist of colchicine, dapsone or non-steroidal anti-inflammatory drugs (NSAIDs). ${ }^{5,10}$ Second-line treatment is represented by GCs, associated or not with an IS, mostly azathioprine (AZA), methotrexate (MTX) ${ }^{5,6}$ and more rarely cyclophosphamide (CYC). ${ }^{5}$ Likewise, intravenous immunoglobulins (IVIgs) are commonly used for childhoodonset PAN, with good response, but among adults, data are limited to case series. ${ }^{5,11,12}$

No study has focused on response rates with each therapeutic line. ${ }^{5,13}$ Patients with cPAN do not have poor prognostic features according to the Five Factor Score ${ }^{14}$, and the place of ISs in the therapeutic armamentarium is questionable regarding the benefit-risk ratio. However, a relapsing course has been shown in up to 45% of patients receiving GCs, ${ }^{3}$ so the prescription of an IS is unavoidable in patients with refractory disease and disability. ${ }^{3},{ }^{6}, 13$ Therefore, the optimal benefit-risk balance between efficacy and adverse reactions of treatment is unknown. ${ }^{5}$

We performed an observational retrospective study to evaluate the efficacy and safety of treatments used in cPAN.

Methods

Setting

We performed a multicentre observational retrospective study in three tertiary French centers and included patients with a diagnosis of cPAN between January 1, 1998 and December 31, 2018. The study was approved by the review committee for publications of the

Cochin University hospital (decision AAA-2021-08006) and conformed to scientific principles and research ethical standards.

Population

Patients >18 years old were selected from the PMSI chart of the medical information department database (International Classification of Diseases, $10^{\text {th }}$ revision, code M300). We included patients who had cutaneous involvement associated with a cutaneous biopsy revealing medium-sized vessel arteritis confirmed by a pathologist. We excluded patients with small-sized vessel leukocytoclasic vasculitis. Joint involvement and sensory neuropathy in the same territory as the cutaneous lesions were allowed. We excluded patients with sPAN according the 2012 Chapel Hill definition ${ }^{1}$, proven adenosine deaminase 2 (ADA-2) deficiency ${ }^{15}$ and macular lymphocytic arteritis. Specifically, we excluded patients with biopsy-proven nerve vasculitis. Patients with a clinical sensory-only neuropathy in the region of cutaneous involvement could be included if electromyography excluded a mononeuritis multiplex. We excluded patients with cPAN onset related to medication side effects.

Covariates of interest

For each patient, we collected demographic variables, including age at beginning of symptoms, age at diagnosis and sex. We also recorded clinical data, including constitutional symptoms, cutaneous lesions and topography, joint and neurologic involvement, and biological data at baseline, including viral serologies, leukocyte count, gammaglobulin levels, anti-nuclear antibody (ANA) and antineutrophil cytoplasm antibody (ANCA) positivity, cryoglobulin and C-reactive protein (CRP) levels. For each treatment, we collected the regimen, treatment line (e.g., first and second line), treatment duration, and efficacy and safety, including all adverse events. A serious adverse drug reaction was defined as an adverse event leading to hospitalization or death.

Outcomes

The primary outcome was the rate of complete response (CR) at month 3 (M3) after treatment initiation, defined as a complete disappearance of cutaneous lesions. When the treatment was changed before M3, it was considered a failure of the therapeutic line. Secondary outcomes were partial response (PR), defined by improvement of cutaneous lesions without CR and drug survival of each treatment, defined by the time from treatment initiation to treatment stop (i.e., the time that a patient remained on a particular treatment
course). Each therapeutic regimen was evaluated separately. We also assessed variables associated with CR in first-line therapy; prescription of an IS, biologics or systemic GCs; and prescription of a second-line therapy. For the IS agent evaluation, we defined the "GC weaning time" as the time before reaching a daily dosage $<10 \mathrm{mg} /$ day .

Statistics

We assessed variables associated with CR to a first-line therapy and to prescription of an IS, biologics and systemic GCs. We used univariate logistic regression analysis to assess variables potentially associated with CR, including age, sex, fever, nodules, livedo, ulcers, joint involvement, neurologic involvement and baseline CRP level, estimating odd ratios (ORs) and 95% confidence intervals (CIs). In a second step, given the presence of potential confounders, we performed multivariate logistic regression analysis. Variables finally included in the multivariable model were treatment, age, sex and those with $\mathrm{p}<0.20$ on univariate analysis. Regarding secondary outcomes, the survival of each treatment was assessed by the Kaplan-Meier method. Because CYC was prescribed for six IV infusions according to protocols established in ANCA-associated vasculitis ${ }^{16}$ and GC monotherapy should be tapered swiftly, we did not include them in the persistence model. AZA+GC was the reference for computations. We used the Wald test to assess variables associated with CR and the log-rank test to compare drug survival for the secondary outcome. All tests were twotailed, and $\mathrm{p}<0.05$ were considered statistically significant. Data are expressed as median (interquartile range [IQR]) for quantitative variables and number (percentage) for categorical variables and were analyzed by using R CRAN 3.6.2.

Results

Population

We included 68 patients (53 females, 78%); the median age at diagnosis was 39 years (IQR 26-51). The clinical and biological characteristics at baseline are presented in Supplemental Table 1. Median time from the beginning of cutaneous signs to diagnosis was 12 months (IQR 5-26). At diagnosis, 53 (78%) patients presented livedo, 47 (69%) nodules, 12 (18%) purpura and 11 (16%) ulcers; 22 (32%) patients had asymmetric clinical sensory neuropathy of the legs confirmed by electromyography. No patients were positive for HBV, HIV or hepatitis C virus. Twenty (29%) patients were positive for ANAs without specificity. All patients were negative for ANCAs, cryoglobulinemia and phospholipid antibodies.

A total of 144 therapeutic lines were initiated, with a median number of 2 therapeutic lines (IQR 1-3, range 0-8) for each patient. Altogether, 42 patients received colchicine (median dosage 1 mg [IQR 1-1], 17 dapsone (median dosage 100 mg [IQR 100-100]), 8 hydroxychloroquine (HCQ), 9 NSAIDs, $13 \mathrm{GCs}+\mathrm{AZA}$, and $15 \mathrm{GCs}+\mathrm{MTX}$. Six patients also received pulses of CYC, 6 patients IVIg, 2 patients rituximab (RTX) infusions and one patient tocilizumab (TCZ). Median prednisone dosage at treatment initiation was $60 \mathrm{mg} /$ day ($60-60$) for CYC, $60 \mathrm{mg} /$ day ($50-60$) for GCs alone, $30 \mathrm{mg} /$ day (30-60) for both GC+AZA and GCs+MTX, and $30 \mathrm{mg} /$ day (20-30) for IVIg.

Therapeutic management by line of treatment is summarized in Figure 1. For first-line therapy, the most common treatments were colchicine for 34 (50\%) patients, GC monotherapy for 15 (22%) and NSAIDs for 5 (7\%). Five patients received a GCs+IS regimen and only 2 patients (3%) received dapsone for first line therapy. Four patients never received any pharmacological treatment and only received venous compression stockings, without achieving CR.

Overall, 42 (63\%) patients had relapsing/refractory cPAN and received a second-line treatment, mainly dapsone $(\mathrm{n}=11)$, GCs $(\mathrm{n}=8)$, and GCs+AZA $(\mathrm{n}=7)$. Second-line versus no or single treatment was more frequent with sensory neuropathy (45% vs 11%, $p=0.007$), fever (19% vs $0 \%, \mathrm{p}=0.02$) and nodules (78% vs $54 \%, \mathrm{p}=0.04$) at the time of diagnosis (Table 1).

Factors associated with the prescription of systemic GCs, biologics or IS at any therapeutic line (first, second, etc.) are presented in Supplementary Table 2.

Outcomes

Results of the primary outcome are presented in Figure 2. Response rates were moderate with colchicine, dapsone and GC monotherapy: CR was $13 / 42$ (31%), 4/17 (23%) and $11 / 25(44 \%)$, respectively. For conventional IS agents, $11 / 13$ (84%) patients achieved CR with GC+AZA but only $7 / 15$ (46%) with GC+MTX. All patients receiving CYC pulses ($6 / 6$, 100%) achieved CR. Regarding other treatments, $5 / 6$ (83%) patients achieved CR with IVIg, $0 / 2$ patients with rituximab and $1 / 1$ patient with TCZ.

In total, 21 (31\%) patients achieved CR after first-line therapy. Clinical and biological factors associated with CR to first-line therapy are in Table 2. CR was less frequent with than without neurological involvement ($2 / 17,12 \%$ vs $19 / 51,38 \%$) and less likely on univariable and multivariable analysis (OR 0.22 [95% CI $0.04-1.09$], $\mathrm{p}=0.06$; and 0.19 [0.03-0.81], $\mathrm{p}=0.04$ respectively, adjusted on treatment, age and sex). Likewise, CR was achieved with
colchicine, NSAIDS or HCQ for only $2 / 15$ (13\%) patients with peripheral neuropathy versus 13/31 (42\%) without ($\mathrm{p}=0.07$).

Drug survival is depicted in Figure 3. Drug survival was greater in patients with GCs+AZA (median duration 29.5 months [IQR 19.5-36.0]) than colchicine (6 months [3-13], $\mathrm{p}=0.007$), dapsone (6 months [5-11], $\mathrm{p}=0.04$), HCQ (1 month [1-4], $\mathrm{p}=0.05$; HCQ was stopped early for 2 patients because of intolerance and for 2 others because of lack of efficacy); and GCs+MTX (12 months [3-23], p=0.001). Drug survival did not significantly differ between GCs+AZA and NSAIDs (median duration 3 months [1-11], $\mathrm{p}=0.10$) or GCs+IVIg (16 months [7-36], p=0.70).

GC dosage was decreased to $<10 \mathrm{mg} /$ day for $11 / 13$ (84%) patients receiving AZA, $5 / 6$ with CYC (83%), $5 / 6$ (83%) with IVIg and $5 / 13(38 \%)$ with MTX, after a median of 3.5 (3-7), 7 (4-12), and 3 (2-3) months and not reached, respectively. At M3, the median GC dosage was $10 \mathrm{mg} /$ day (10-14) for AZA, $12 \mathrm{mg} /$ day (10-21) for MTX, $20 \mathrm{mg} / \mathrm{day}$ (20-30) for CYC, and $10 \mathrm{mg} /$ day (6-10) for IVIg.

The rate of adverse reactions was 26/144 (18\%), and treatment was stopped because of adverse reactions in $10 / 144$ (7%) of cases. Four episodes of diarrhea and 1 episode of neutropenia were observed under colchicine. Patients receiving dapsone had symptomatic anemia, dizziness and symptomatic methemoglobinemia in 5, 2 and 1 cases, respectively. Rates of discontinuation because of adverse reactions were similar with dapsone, CYC, IVIg and HCQ (from 12% to 25% of cases) (Supplementary Table 3). The only serious adverse reaction was peritonitis observed under CYC therapy, leading to hospitalization in the intensive care unit.

Median follow-up was 60 months (IQR 16-137). Two patients died during follow-up, one death linked to colon cancer and another to ischemic cardiopathy. No death was related to the vasculitis course or treatment adverse events.

Discussion

We report a large case series retrospectively evaluating treatment efficacy and safety in patients with cPAN. CR was variable for patients receiving colchicine and dapsone (31% and 24%, respectively), who showed rare and benign adverse events. Second-line therapy versus no or single therapy was more frequent with peripheral sensory neurological involvement (45% of cases), fever (19%) and nodules (78%). For patients who required second-line therapy, CR rate was good with GCs+AZA (84\%), with good drug survival (median duration 29.5 months).

Our finding of female predominance and a median age of 40 years with cPAN is consistent with the literature. ${ }^{5,9}$ Similar to results of a retrospective Japanese study, sensory neurological involvement in the same territory as cutaneous lesions seemed associated with poor outcomes. ${ }^{6}$ Although we carefully excluded patients with sPAN, patients with sensory neuropathy and fever had increased treatment requirements, which questions the existence of a continuum between cPAN and sPAN. These systemic symptoms could characterize "cPAN with systemic features", a clinical form more often requiring GC or IS treatment. In contrast, we did not find any association with other clinical variables, particularly ulcers, found associated with poor outcomes in other studies. ${ }^{6,17}$ In addition, we observed a large heterogeneity among treating physicians, ranging from therapeutic abstention to CYC pulse therapy, also reported previously. ${ }^{5,18,19}$

Colchicine and dapsone have been proposed as first-line therapy for cPAN^{5}, and their efficacy, although inconsistent, has been reported in several case series. ${ }^{18}$ With the favorable benefit-risk balance, our data support the use of colchicine and dapsone in patients with a mild disease course. In our study, the benefit of HCQ or NSAIDs seemed more limited. Nonetheless, median treatment length for HCQ was only 1 month (IQR 1-3), but HCQ takes longer to work in most cases, so interpreting the primary outcome is difficult. GC monotherapy was often prescribed for cPAN in this study and in the literature. ${ }^{3,19,20}$ Nevertheless, Alibaz-Oner et al. reported that more than 45% of cPAN patients experienced relapse after CR and that CR was never reached for 17% of patients, which emphasizes the need to add IS to achieve sustained CR. ${ }^{3}$

AZA and MTX have been proposed for treating cPAN 18,21, but a head-to-head comparison has never been performed. In our study, CR was achieved more often with GCs+AZA than GCs+MTX or GCs alone, and the former exhibited longer drug survival and more frequently GC dosage decreased to $<10 \mathrm{mg} / \mathrm{day}$. Therefore, the GCs+AZA combination might be the preferred second-line treatment. Likewise, with severe disease characterized by neurological involvement, it might be the preferred first-line option because of the decreased likelihood of CR with colchicine, NSAIDs or HCQ.

Considering the small size of treatment groups, we cannot draw definitive conclusions regarding CYC or IVIg that might be used for refractory patients. Their exact place in the treatment strategy remains unclear.

The strength of the study is the large scale considering the rare prevalence of cPAN. In addition, our sample characteristics are consistent with those in previous reports ${ }^{6,11}$, and we confirm the female predominance ($3: 1$ sex ratio at disease onset) of cPAN versus sPAN,
which mainly occurs in men. The median age of 39 years at the time of diagnosis supports a clinical pattern distinct from pediatric PAN and ADA-2 deficiency. ${ }^{8}$ Moreover, the ANA positivity in 29% of patients agrees with previous reports. ${ }^{9}$

A first limitation is that our patients were all recruited from tertiary care centers, so they might have had more severe disease. This might explain the primary resistance to NSAIDs we observed as compared with other studies. ${ }^{10}$ Moreover, treatment allocation was not randomized, and indication biases remain. Thus, the analyses of treatment effect are less precise, especially taking into account the heterogeneity of the disease. For instance, colchicine and dapsone were mainly given as first and second line therapy respectively. It might explain the apparent more frequent success of colchicine. However, we assessed the efficacy of treatment with several outcomes, including drug survival, which might reflect a balance between efficacy and safety. Specifically, sensory neuropathy could be interpreted as a manifestation of sPAN, so classifying these patients is difficult. Nonetheless, sensory neuropathy was previously reported as a manifestation of cPAN, ${ }^{5,6,9}$ and we excluded patients with motor neuropathy and biopsy-proven nerve vasculitis, performed with clinical suspicion, and patients were followed for a long time without changes to sPAN. Another limitation is the retrospective design associated with inherent confounding bias and the risk of missing data (specifically for adverse reactions). The recruitment period was long, and we cannot exclude a shift in patient recruitment and therapeutic management strategy. In addition, only a few patients with a recent diagnosis were included in the study, and we cannot draw definitive conclusions on the treatment efficacy and safety of TCZ and RTX, which might be considered a future option.

This study helps to better define the efficacy and safety of treatment in cPAN. It supports a favorable benefit-risk balance of colchicine for mild to moderate disease (i.e., without neurological involvement) and the use of GCs+AZA for severe cPAN (i.e., with neurological involvement). Prospective studies remain warranted to assess the best treatment for cPAN and to evaluate other treatments.

References

1. Jennette JC, Falk RJ, Bacon PA, et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1-11. doi:10.1002/art. 37715
2. Pagnoux C, Seror R, Henegar C, et al. Clinical features and outcomes in 348 patients with polyarteritis nodosa: A systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French vasculitis study group database. Arthritis Rheum. 2010;62(2):616-626. doi:10.1002/art. 27240
3. Alibaz-Oner F, Koster MJ, Crowson CS, et al. Clinical Spectrum of Medium-Sized Vessel Vasculitis: Medium-Sized Vessel Vasculitis. Arthritis Care Res. 2017;69(6):884-891. doi:10.1002/acr. 23007
4. Régent A, Mouthon L, Guillevin L, Terrier B. Role of therapeutic plasma exchanges in systemic vasculitis. Transfus Apher Sci. 2020;59(6):102992.
doi:10.1016/j.transci.2020.102992
5. Morgan AJ, Schwartz RA. Cutaneous polyarteritis nodosa: a comprehensive review:

Cutaneous polyarteritis nodosa. Int J Dermatol. 2010;49(7):750-756. doi:10.1111/j.13654632.2010.04522. x
6. Shirai T, Shirota Y, Fujii H, Ishii T, Harigae H. Four distinct clinical phenotypes of vasculitis affecting medium-sized arteries. Scand J Rheumatol. 2019;48(4):308-314. doi:10.1080/03009742.2018.1551965
7. Minkowitz G. Benign Cutaneous Polyarteritis Nodosa: Relationship to Systemic Polyarteritis Nodosa and to Hepatitis B Infection. Arch Dermatol. 1991;127(10):1520. doi:10.1001/archderm.1991.01680090084009
8. Ozen S. The changing face of polyarteritis nodosa and necrotizing vasculitis. Nat Rev Rheumatol. 2017;13(6):381-386. doi:10.1038/nrrheum.2017.68
9. Criado PR, Marques GF, Morita TCAB, de Carvalho JF. Epidemiological, clinical and laboratory profiles of cutaneous polyarteritis nodosa patients: Report of 22 cases and literature review. Autoimmun Rev. 2016;15(6):558-563. doi:10.1016/j.autrev.2016.02.010
10. Ishiguro N, Kawashima M. Cutaneous polyarteritis nodosa: A report of 16 cases with clinical and histopathological analysis and a review of the published work. J Dermatol. 2010;37(1):85-93. doi:10.1111/j.1346-8138.2009.00752.x
11. Maillard H, Szczesniak S, Martin L, et al. [Cutaneous periarteritis nodosa: diagnostic and therapeutic aspects of 9 cases]. Ann Dermatol Venereol. 1999;126(2):125-129.
12. Lobo I, Ferreira M, Silva E, Alves R, Selores M. Cutaneous polyarteritis nodosa treated with intravenous immunoglobulins. J Eur Acad Dermatol Venereol. 2008;22(7):880882. doi:10.1111/j.1468-3083.2007.02478.x
13. Furukawa F. Cutaneous Polyarteritis Nodosa: An Update. Ann Vasc Dis. 2012;5(3):282-288. doi:10.3400/avd.ra.12.00061
14. Guillevin L, Lhote F, Gayraud M, et al. Prognostic Factors in Polyarteritis Nodosa and Churg-Strauss Syndrome A Prospective Study in 342 Patients: Medicine (Baltimore). 1996;75(1):17-28. doi:10.1097/00005792-199601000-00003
15. Zhou Q, Yang D, Ombrello AK, et al. Early-Onset Stroke and Vasculopathy Associated with Mutations in ADA2. N Engl J Med. 2014;370(10):911-920.
doi:10.1056/NEJMoa1307361
16. Guillevin L, Cordier J-F, Lhote F, et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized wegener's granulomatosis. Arthritis Rheum.
1997;40(12):2187-2198. doi:10.1002/art. 1780401213
17. Kato A, Hamada T, Miyake T, et al. Clinical and Laboratory Markers Associated With Relapse in Cutaneous Polyarteritis Nodosa. JAMA Dermatol. 2018;154(8):922.

341 doi:10.1001/jamadermatol.2018.1601
342 18. Daoud MS, Hutton KP, Gibson LE. Cutaneous periarteritis nodosa: a
343 clinicopathological study of 79 cases. Br J Dermatol. 1997;136(5):706-713.
344 doi:10.1046/j.1365-2133.1997.6601645.x
345 19. Buffiere-Morgado A, Battistella M, Vignon-Pennamen M-D, et al. Relationship
346 between cutaneous polyarteritis nodosa (cPAN) and macular lymphocytic arteritis (MLA):
347 Blinded histologic assessment of 35 cPAN cases. J Am Acad Dermatol. 2015;73(6):1013-
348 1020. doi:10.1016/j.jaad.2015.09.010
349 20. Chen K-R. Cutaneous Polyarteritis Nodosa: A Clinical and Histopathological Study of 35020 Cases. J Dermatol. 1989;16(6):429-442. doi:10.1111/j.1346-8138.1989.tb01582.x
351 21. Flanagan N, Casey EB, Watson R, Barnes L. Cutaneous polyarteritis nodosa with 352 seronegative arthritis. Rheumatology. 1999;38(11):1161-1162.
353 doi:10.1093/rheumatology/38.11.1161

Table 1 Clinical characteristics of patients with cutaneous polyarteritis nodosa (cPAN) who received a second-line treatment versus no or a single therapeutic line ($\mathrm{n}=68$).

	Second-line treatment $(\mathbf{n = 4 2})$	No or single treatment $(\mathbf{n = 2 6})$	P-value
Age, years, median (IQR)	$39(25-49)$	$39(28-56)$	0.28
Sex	$32(76)$	$21(81)$	0.76
Fever	$8(19)$	$0(0)$	$\mathbf{0 . 0 2}$
Livedo	$30(71)$	$23(88)$	0.13
Nodules	$33(78)$	$14(54)$	$\mathbf{0 . 0 4}$
Purpura	$10(24)$	$2(8)$	0.11
Ulcers	$7(17)$	$4(15)$	0.89
Arthralgia	$16(38)$	$9(35)$	0.80
Sensory neuropathy	$19(45)$	$3(11)$	$\mathbf{0 . 0 0 7}$
Baseline CRP level $>\mathbf{5} \mathbf{~ m g} / \mathbf{L}$	$24(57)$	$9(34)$	0.08

Data are $\mathrm{n}(\%)$ unless otherwise indicated.
IQR: interquartile range; CRP: C-reactive protein

Table 2 Univariate and multivariate analysis of factors associated with complete remission with first-line treatment.

	Univariate analysis		Multivariate analysis	
	cOR $(95 \% \mathrm{CI})$	P-value	aOR $(95 \% \mathrm{CI})$	P-value
Age > 40 years	$1.80(0.63-5.09)$	0.27	$2.43(0.79-7.83)$	0.13
Sex	$1.30(0.36-4.68)$	0.69	$1.41(0.39-5.88)$	0.61
Livedo	$0.86(0.25-2.94)$	0.81		
Nodules	$0.85(0.28-2.55)$	0.77		
Purpura	$0.39(0.08-1.96)$	0.26		
Ulcers	$1.34(0.35-5.20)$	0.67		
Fever	$0.72(0.13-3.90)$	0.70		
Arthralgia	$1.09(0.37-3.14)$	0.88		
Neuropathy	$\mathbf{0 . 2 2}(\mathbf{0 . 0 4 - 1 . 0 9})$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 1 9}(\mathbf{0 . 0 3 - 0 . 8 1})$	$\mathbf{0 . 0 4}$
CRP level > 5 mg/L	$1.30(0.29-5.86)$	0.72		

cOR: crude odds ratio; aOR: adjusted odds ratio, adjusted on treatment, age and sex; 95% CI: 95% confidence interval; CRP: C-reactive protein; P-value obtained by Wald test.

Legends

Figure 1 Treatment received by patients with cutaneous polyarteritis nodosa (cPAN) by line of therapy ($n=68$). Inner circle is first-line treatment, second circle is second-line treatment, etc.

AZA: azathioprine; CYC: cyclophosphamide; GC: glucocorticoids; HCQ: hydroxychloroquine; IVIg: intravenous immunoglobulins; MTX: methotrexate; NSAIDs: non-steroidal anti-inflammatory drugs. RTX; rituximab; TCZ: tocilizumab

Figure 2 Clinical response by treatment regimen.
AZA: azathioprine; CR: complete response; CYC: cyclophosphamide; GC: glucocorticoids; HCQ:
hydroxychloroquine; IVIg: intravenous immunoglobulins; MTX: methotrexate; NSAIDs: non-steroidal antiinflammatory drugs; PR: partial response

Figure 3 Kaplan-Meier analysis of drug survival by treatment regimen.
AZA: glucocorticoids (GCs)+azathioprine; CYC: GCs+cyclophosphamide; HCQ: hydroxychloroquine, IVIg:
GCs+intravenous immunoglobulins; MTX: GCs+methotrexate; NSAIDs: non-steroidal anti-inflammatory drugs

$$
\begin{aligned}
& \text { Treatment }+ \text { NSAIDS }+ \text { Colchicine }+\mathrm{IVIg}+\mathrm{HCQ} \\
& + \text { AZA }+ \text { Dapsone }+ \text { MTX }
\end{aligned}
$$

[^0]: ${ }^{1}$ Hôpital Henri Mondor, Service de Dermatologie, APHP, Créteil, France
 ${ }^{2}$ EpiDermE, Université de Paris Est Créteil Val de Marne, F-94010 Créteil, France
 ${ }^{3}$ Hôpital Saint Louis, Service de Dermatologie, APHP, Paris, France
 ${ }^{4}$ INSERM, Centre d'Investigation Clinique 1430, F-94010 Créteil, France
 ${ }^{5}$ Service de Médecine Interne, Centre de Référence Maladies Autoimmunes et Systémiques Rares, Hôpital Cochin, APHP-Centre Université de Paris, F-75014 Paris; Université de Paris, F-75006, Paris
 ${ }^{6}$ Sorbonne Université, Faculté de médecine, Hôpital Tenon, Service de Dermatologie, APHP, Paris, France
 ${ }^{7}$ Médecine interne, Hôpital Foch, Service de médecine interne, Suresnes, France
 ${ }^{8}$ Service de Dermatologie, Hôpital Cochin, APHP-Centre Université de Paris, F-75014 Paris; Université de Paris, F-75006, Paris

