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Abstract

The outbreak of extraordinary disruptive events, e.g., the COVID-19 pandemic, has
greatly impacted the orderly operation in global supply chains (SCs), and may lead
to the SC breakdown. Regulatory actions, such as government interventions during
the pandemic, can greatly mitigate the disruption propagation (i.e., the ripple effec-
t) and improve SC viability. However, existing works that focus on the disruption
propagation management have not considered the possibility of such interventions.
Motivated by the fact, in this study, we investigate a new disruption propagation
management problem in a multi-echelon SC with limited intervention budget. The
aim is to minimize disruption risk measured by the disrupted probability of target
participants in the SC. For the problem, a novel approach, combining the Causal
Bayesian Network (CBN), the do-calculus and the mathematical programming, is
developed. Specially, two mixed-integer non-linear programming models are con-
structed to determine appropriate interventions. To enhance the proposed mathe-
matical models, two valid inequalities are proposed. Then, a problem-specific genetic
algorithm (GA) is developed for handling large-scale problem instances. Numerical
experiments on a case study and randomly generated instances are conducted to
evaluate the efficiency of the proposed models, the valid inequalities and the GA.
Based on experiment analysis, managerial insights are drawn.

Keywords: Disruption risk; Ripple effect; Supply chain viability; Causal Bayesian
Network; Do-calculus; Mathematical programming

1. Introduction

The outbreak of the COVID-19 pandemic, as an extraordinary disruptive event,
has caused long-term and unpredictable scaling impacts, and exposed the vulnera-
bility of supply chains (SCs) (Queiroz et al., 2020; Ivanov, 2020; Ivanov and Dolgui,
2021a; Burgos and Ivanov, 2021; Chowdhury et al., 2021; Sawik, 2022). Consequent-
ly, the issue of improving SC adaptability and survivability under extraordinary
disruptive events has received great attentions from both scholars and practitioners
(Ivanov, 2020; Ivanov and Dolgui, 2021b). Specifically, Ivanov (2020) introduces
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the concept of SC viability to describe the ability of SC to survive under disruptive
events, either by reinforcing and reconfiguring its structure to adapt the environ-
ment change due to long-term disruptive events, or by external interventions (e.g.,
government intervenes SC participants to mitigate the impact of disruptive events).
SC viability is becoming an interesting topic for the SC, especially for the multi-
echelon SC, to deal with its disruption propagation. Generally, the multi-echelon SC
has a complicated structure and multiple collaborations between SC participants,
thus it is more vulnerable and difficult to survive in the face of extraordinary dis-
ruptions at local nodes and ripple effect (Schmitt et al., 2017; Ivanov, 2020; Ivanov
and Dolgui, 2021a; Dolgui et al., 2020; Sawik, 2020). Ivanov et al. (2016a) de-
scribe the ripple effect as “the disruption propagation, the impact of a disruption on
SC performance and the disruption-based scope of changes in the SC structures.”
For example, Mercedes-Benz restarted an off-road vehicle plant in Alabama in June
2020, but soon stopped production due to a shortage of components made in Europe
due to the COVID-19 pandemic (REUTERS news, 2020). In January 2021, due to
the delay caused by the epidemic, Honda suspended production at its Swindon plant
in the United Kingdom, mainly responsible for the production of vehicles such as
the type of the civic hatchback (BBC news, 2021).

To maintain the SC viability under disruptive events, it is important to ana-
lyze the disruption propagation mechanism and evaluate the disruption risk. To
portray the dependence relationships of disruption propagations among SC partic-
ipants, Bayesian network (BN) is introduced by Hosseini and Ivanov (2019). BN
encapsulates probability informations into a directed acyclic graph (DAG), of which
nodes indicate random variables and arcs express dependence relationships (Koller
and Friedman, 2009; Hosseini and Ivanov, 2019; Hosseini and Ivanov, 2020). Es-
pecially, Hosseini et al. (2019b) propose a dynamic method based on BN to study
the dynamics of the disruption propagation in a SC over a time horizon. Due to
the difficulty of obtaining perfect information in data scarce environment, Liu et al.
(2021) develop a novel robust approach that combines the BN and the mathemati-
cal programming. However, existing works focus on the SC disruption propagation
assessment, and have not investigated the possible interventions that can reduce
considerable SC disruption propagations and maintain the SC viability.

Ivanov (2020) delineates the importance of the control of adaptive mechanisms
in viable SCs. The author points out that a visibility control system can establish
the SC robustness and help it recover from disruptions, e.g., severe natural disaster-
s, which may temporarily, adversely affect demand fulfillment continuity. Specially,
Ivanov (2020) highlights the important role of the government to strengthen the
SC viability against dramatic disruptions. In practice, under the COVID-19 pan-
demic, government typically intervenes the SC to ensure essential material flows,
by hedging against the disruption propagation. For example, China addressed the
issue of the supply of non-woven fabric to intervene the production of melt-blown
polypropylene. One hundred and three companies were involved in stepping up pro-
duction so that mask manufacturers would not face a shortage for their key input
(OECD news, 2020). Intervention actions of government are helpful to improve the
SC viability. However, intervention actions are typically costly, and the intervention
budget is always limited. Thus, it is important to choose appropriate interventions
and evaluate their performance. However, the proposed approaches in the literature
fail to choose and evaluate the impacts of interventions. To bridge the gap between
theory and practice, we investigate a new multi-echelon SC viability problem under
limited intervention budget that can be considered as the government’s intervention
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budget. Specifically, we consider a multi-echelon SC with several suppliers and one
manufacturer under the ripple effect. For ease of quantification, the disruption risk
in the SC is measured by the disruption probability of the manufacturer. The prob-
lem is to determine appropriate interventions to minimize the disruption probability
of the SC participant in the last echelon (i.e., the manufacturer). For the problem, a
new approach that combines the Causal Bayesian Network (CBN), the do-calculus
and the mathematical programming, is designed. The CBN is a particular BN with
causal assumptions to appropriately portray dependence relationships (Pearl, 2009).
The do-calculus, proposed by Pearl (2009), is introduced to quantify the impact of
interventions. The mathematical programming model is constructed to formulate
the studied problem. The main contributions of the work include:

(1) A new multi-echelon SC viability problem, subjected to limited intervention
budget, is investigated.

(2) For the problem, a novel approach, combining the CBN, the do-calculus, and
the mathematical programming, is designed. Especially, two mixed-integer
non-linear programming models are constructed, and two valid inequalities
are proposed to enhance the models.

(3) A problem-specific genetic algorithm (GA) is designed to solve large-scale
problem instances.

(4) Based on experiment analysis, managerial insights are drawn.

The remainder of the paper is organized as follows. Literature review is pre-
sented in Section 2. In Section 3, the studied problem is stated. The CBN and the
do-calculus are introduced to quantify the impacts of interventions on SC disruption
propagation. In Section 4, two mixed-integer non-linear programming approaches
are developed to optimally determine interventions. Two valid inequalities are fur-
ther proposed based on problem property analysis. In Section 5, a problem-specific
GA is designed to solve the problem. In Section 6, numerical experiments on a
case study and randomly generated instances are conducted to evaluate the effi-
ciency of the proposed models, the valid inequalities, and the problem-specific GA.
Then, managerial insights are drawn. Finally, Section 6 summarizes this paper and
suggests future research directions.

2. Literature review

SC disruption risk arises from disruptive events, such as natural disaster or/and
man-made ones, and has attracted researchers’ attention due to increasing uncer-
tainties and disruptions (Dubey et al., 2019; Hosseini et al., 2019; Sawik, 2020; Choi,
2020; Azadegan and Dooley, 2021). The COVID-19 pandemic causes tremendous
consequences to public health and global economy for more than two years (Bona-
parte, 2020; Beck, 2020; Ivanov and Das, 2020; Sohrabi et al., 2020). Thus, designing
and reconfiguring an efficient and viable SC is vital for companies, especially in the
COVID-19 pandemic context. Ivanov (2020) sheds light on the importance of the
SC viability under long-term disruptive events. We study the SC viability issue form
the perspective of SC disruption propagation quantification and mitigation. In this
section, we focus on reviewing the most related literatures about the SC disruption
propagation management, of which the approaches can be mainly classified into two
categories: mathematical models and BN-based approaches.

3



2.1. SC disruption propagation management via mathematical models

Various mathematical modelling approaches are introduced to address the SC
disruption propagation management problem (Snyder et al., 2016). In the following,
optimal control methods and operational research methods are reviewed in details.

The advantage of optimal control methods is to portray the dynamic character-
istic of the SC disruption risk under the ripple effect. Tomlin (2006) investigates
mitigation strategies for SC disruption risk management problem. A mathematical
model is proposed for a single-product setting. Qi and Lee (2015) generalize the
research of Tomlin (2006) by considering expedited shipping, and propose a math-
ematical model. Yu et al. (2009) consider a supplier selection problem under SC
disruption risks. The authors present a modelling approach based on expected profit
functions. Ivanov et al. (2013) treat a production distribution planning problem un-
der the ripple effect. The objective is to optimize the production distributions under
the ripple effect. The authors propose an optimal programme control (OPC) model
integrating the control theory and the linear programming. Ivanov et al. (2014)
consider a multi-period and multi-commodity distribution (re)planning problem un-
der the ripple effect. The authors establish an OPC model to optimize multiple
good distributions. Ivanov et al. (2015) study an integrated aggregate distribution
and transportation planning problem with limited transportation capacity under
the ripple effect. For the problem, an OPC model is established to balance supply
and demand. Ivanov et al. (2016b) investigate a perishable product SC resilience
problem under the ripple effect in Australia dairy industry. For the problem, they
propose an OPC model based on reactive recovery policies. The work of Sokolov
et al. (2016) aims to quantify the ripple effect in the SC from the structural per-
spective. The authors propose a multi-criteria approach, combining the OPC and
the mixed-integer linear programming, to assess the SC resilience.

Due to the uncertainty of SC disruptive events, many scholars focus on applying
stochastic optimization models to investigate the SC disruption propagation man-
agement problem. Sawik (2010) investigates a SC supplier selection problem in a
make-to-order environment, and proposes a novel portfolio-based approach. Sawik
(2011) considers a supply portfolio selection problem under disruption risks. Sawik
(2014) considers a joint supplier selection and customer order scheduling problem un-
der disruption risks. The author proposes a stochastic mixed-integer programming
formulation utilizing conditional value-at-risk. Sawik (2016) studies an integrated
supply, production and distribution problem under disruption risks. The author
proposes a bi-objective stochastic mixed-integer programming model. Sawik (2021)
considers a supplier selection problem in multi-echelon SC networks. The author
proposes an efficient scenario-based stochastic mixed-integer programming model.
Gholami-Zanjani et al. (2021) study a SC location-inventory problem under the
ripple effect, and develop a two-stage stochastic programming model to maximize
the SC total profit. Özçelik et al. (2021) consider a disruption propagation problem
in a reverse SC. The study first quantifies the impact of the ripple effect on the
system performance, and then a robust optimisation model is introduced.

2.2. Disruption propagation management via BNs

BN approach is a probabilistic graphical model, encapsulating probability in-
formation into a directed acyclic graph (DAG), of which nodes indicate random
variables and arcs express conditional probability relationships between nodes. In
the SC, the disruption risks of upstream SC participants to their successors are
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often characterized by probabilities, and thus BN is introduced by Hosseini and I-
vanov (2019) for assessing the SC disruption propagation. Hosseini et al. (2019a)
review several approaches for measuring the SC resilience, and justify the signif-
icance of applying BN approach to assess the SC disruption risk. Hosseini and
Ivanov (2021) investigate the quantification of the SC disruption risk in the context
of the COVID-19 pandemic, and propose a multi-echelon BN model to portray the
forward and backward disruption propagations. Hosseini et al. (2016) consider the
design of resilient SCs, and propose a BN model to quantify the SC resilience based
on a generic conceptual framework. Hosseini et al. (2020) focus on SC resilience
in an open-system context, and propose a useful BN-based decision-making sup-
port approach to mitigate disruption propagation and improve recovery capability
simultaneously. Hosseini et al. (2019b) investigate the dynamics of the disruption
propagation in a two-echelon SC over a time horizon, and propose a dynamic BN.

Few researchers study the disruption propagation problem by integrating the BN
approach and the mathematical programming model. This integrated method can
characterize the SC disruption propagation via the BN, and can provide decision
support by mathematical programming models. Hosseini et al. (2019c) consider a
SC supplier selection problem under the ripple effect. The authors apply a BN ap-
proach to portray the disruption propagation, and propose a bi-objective stochastic
mixed-integer linear programming model to optimize supplier selection. Liu et al.
(2021) study a disruption risk assessment problem, and propose a robust BN ap-
proach integrated with the mixed-integer non-linear programming to evaluate the
worst-case disruption risk in data scarce environment.

The above studies only focus on the SC disruption risk assessment without con-
sidering possible interventions to mitigate disruption propagations in the SC and
maintain the SC viability. In practice, interventions, such as regulatory actions
of government, can greatly reduce the disruption propagation. To the best of our
knowledge, the benefit of interventions upon disruption propagations in the SC has
not been quantitatively studied. In addition, the traditional BN cannot analyze
the impact of interventions on disruption propagations. Causal Bayesian Network
(CBN) is a particular BN with causal assumptions (Pearl, 2009). The do-calculus
is proposed by Pearl (2009) to quantity the impact of an intervention for a CB-
N. The do-calculus approach has been widely applied in transportation (Chatterjee
et al., 2019), machine learning (Barber, 2012; Brownlee et al., 2022), causal infer-
ence (Zečević et al., 2021), and econometrics (Pearl, 2015; Pearl, 2019; Heckman and
Pinto, 2022). In this work, a novel approach that combines the CBN, the do-calculus
and the mathematical programming is designed for the studied problem. Especially,
the CBN is applied to describe the disruption propagation with interventions, the
do-calculus to quantify the impact of interventions on disruption propagations, and
the mathematical programming to optimally determine the interventions. This nov-
el approach is also one of the main contributions of our work. Table 1 summarizes
main differences between related existing studies and our work.

3. Problem statement, CBN and do-calculus

In this section, the studied problem is described, and the principles of the CBN
and the do-calculus are presented. Section 3.1 presents the considered problem.
In Section 3.2, the CBN is applied to describe the disrupted multi-echelon SC. In
Section 3.3, the do-calculus is introduced to quantify interventions for the disrupted
SC.
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Table 1: Comparison of related studies on the SC disruption propagation manage-
ment

Literature
Problem setting Approach

supply chain structure
interventions

mathematical
model

BN
approach

do-calculus
two-echelon multi-echelon

Tomlin (2006) X X
Qi and Lee (2015) X X
Ivanov et al. (2013) X X
Ivanov et al. (2014a) X X
Ivanov et al. (2015) X X
Ivanov et al. (2016b) X X
Sokolov et al. (2016) X X
Sawik (2011) X X
Sawik (2014) X X
Sawik (2016) X X
Sawik (2021) X X
Levner and Ptuskin (2018) X X
Kinra et al. (2020) X X
Li and Zobel (2020) X X
Gholami-Zanjani et al. (2021) X X
Özçelik et al. (2021) X X
Hosseini and Ivanov (2019) X X
Hosseini et al. (2019b) X X
Liu et al. (2021) X X X
Hosseini et al. (2019c) X X X
Our work 3 3 3 3 3

3.1. Multi-echelon SC and disruption propagation

Consider a n-echelon SC network with a set of participants I in which N j de-
notes the set of participants in the jth echelon, j = 1, · · · , n. Specially, N 1 =
{1, · · · , |N 1|}, N j = {|N 1| + · · · + |N j−1| + 1, · · · , |N 1| + · · · + |N j|} for j =
2, · · · , n− 1, and N n = {|I|}. Especially, i, i ∈ {1, · · · , |I|− 1}, denotes a supplier,
and |I| a manufacturer. In the study, we consider that a participant i in the jth ech-
elon can supply materials to multiple participants in the next echelon. There is no
supply relationship among participants in the same echelon. In Figure 1, a 3-echelon
SC network is illustrated, in which N 1 = {1, 2}, N 2 = {3, 4, 5} and N 3 = {6}. The
set of predecessors of participant i is denoted as δ(i). For the example, we have
δ(1) = δ(2) = ∅, δ(3) = {1}, δ(4) = {1}, δ(5) = {2}, and δ(6) = {3, 4, 5}. In
line with Hosseini et al. (2019b) and Liu et al. (2020), we assume that suppliers
in the first echelon can suffer diverse disruptive events, and disruptions of these SC
participants can cause disruptions of the downstream SC participants.

Let Si be the set of possible states of SC participant i ∈ I, and xsi ∈ Si denotes
the sth state of participant i, where s denotes a state index, s ∈ {1, · · · , |Si|}. Es-

pecially, let the first state x1i and the last state x
|Si|
i denote the operational and the

fully disrupted states of i, respectively. The aim of interventions is to minimize the
disruption risk in the entire SC. For interventions to SC participants, we have the
following assumptions: 1) the intervention budget is limited to be B; 2) an inter-
vention can impose the state of participant i to be one of states in Si, and thus can
affect the disruption propagation in the SC; 3) the intervention cost for a particular
participant to be the first state (i.e., the operational state) is more expensive than
other states; 4) intervention can be applied to several SC participants at differen-
t echelons, except for the manufacturer, as we attempt to analyze the disruption
propagation; 5) when the parents of the manufacturers are in the operational state,
the disruption risk of the manufacturer is minimum.
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Figure 1: The structure of a 3-echelon SC network and disruptive events

3.2. Causal Bayesian network

In this work, CBN is introduced for the first time to portray the disruption
propagation. The CBN for the SC disruption propagation without intervention
is illustrated in Figure 2 in which the states of SC participants and disruption
propagation relationships are represented by nodes and arcs, respectively. The arcs
in Figure 2 represent the disruption propagations from SC participants in jth echelon
to SC participants in the (j + 1)th echelon, where j = 1, · · · , n− 1.

For example in Figure 1, suppose that participant i, i = 1, · · · , 6, has two s-
tates x1i and x2i , where x1i and x2i represent the operational and the fully disrupted
states, respectively. Clearly, in this example, |Si| = 2 for i = 1, · · · , 6. The prob-
ability distribution of participant i, i ∈ N 1, are both (pi1, pi2)

> = (0.96, 0.04)>,
and the CPTi of participant i, i ∈ N j, j = 2, 3, are presented in Figure 3.
For example, participant 6 in Figure 3 has the parent set δ(6) = {3, 4, 5} and
the sets of possible states of its parent nodes can be represented as {x1i , x2i }, i ∈
{3, 4, 5}. The set of combinations of participant 6, G6, can be represented as
{(x13, x14, x15), (x13, x14, x25), (x13, x24, x15), (x13, x24, x25), (x23, x14, x15), (x23, x

1
4, x

2
5), (x23, x

2
4, x

1
5),

(x23, x
2
4, x

2
5)}.

To establish the probability distribution of participant i, i ∈ N j, j = 2, · · · , n,

let Gi(·) be a unique bijection mapping Gi
Gi(·)−−−→ {1, · · · , g, · · · , |Gi|} where g de-

notes a state-combination-index. G−1i (·) denotes the inverse mapping of G(·), i.e.,

{1, · · · , g, · · · , |Gi|}
G−1

i (·)
−−−−→ Gi, which maps a state-combination-index of SC par-

ticipant i to a state combination of its parent participants. Especially, G−1i (g)(i′)
represents the state index of parent node i′, i′ ∈ δ(i), given the state-combination-
index g of SC participant i, i ∈ N j, j ∈ {2, · · · , n}. Taking Figure 3 as example,
G−16 (1)(3) = 1, which results in the first state index (i.e, the value 1 of the right-
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Figure 2: An illustrative CBN structure of the multi-echelon SC

hand side of this equation) of parent node 3 given the state-combination-index 1 of
participant 6.

Given the above notations, the probability of participant i in the sth state, i.e.,
pis = P{Xi = xsi}, can be calculated as follows.

pis =

|Gi|∑
g=1

ci,sg
∏
i′∈δ(i)

pi′,G−1
i (g)(i′), i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}. (1)

For example, in Figure 3, the probability distributions of SC participants 3, 4
and 5, can be calculated via Equation (1) as:

p31 = c3,11 · p11 + c3,12 · p12 = 0.98 · 0.96 + 0.30 · 0.04 = 0.95,

p32 = c3,21 · p11 + c3,22 · p12 = 0.05,

p41 = c4,11 · p11 + c4,12 · p12 = 0.93,

p42 = c4,21 · p11 + c4,22 · p12 = 0.07,

p51 = c5,11 · p11 + c5,12 · p12 = 0.95,

p52 = c5,21 · p11 + c5,22 · p12 = 0.05.

Similarly, the probability distribution of the manufacturer in Figure 3 can be
calculated via Equation (1) as:
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Figure 3: The CBN, the probability distributions, and the CPTs for the example in
Figure 1

p61 = c6,11 · p31 · p41 · p51 + c6,12 · p31 · p41 · p52 + c6,13 · p31 · p42 · p51
+c6,14 · p31 · p42 · p52 + c6,15 · p32 · p41 · p51 + c6,16 · p32 · p41 · p52
+c6,17 · p32 · p42 · p51 + c6,18 · p32 · p42 · p52 = 0.97,

p62 = c6,21 · p31 · p41 · p51 + c6,22 · p31 · p41 · p52 + c6,23 · p31 · p42 · p51
+c6,24 · p31 · p42 · p52 + c6,25 · p32 · p41 · p51 + c6,26 · p32 · p41 · p52
+c6,27 · p32 · p42 · p51 + c6,28 · p32 · p42 · p52 = 0.03.

When an intervention is conducted on participant i, the disruption propagation
along the SC can be affected. To quantify the impact of interventions, we introduce
the do-calculus in the next section.

3.3. The do-calculus based on CBN

In this work, each intervention is represented by do(·). Specifically, do(Xi = xsi )
denotes that an intervention imposes the state of participant i to be xsi . Consequent-
ly, the probability of this state changes to be one, i.e., P{Xi = xsi} = 1. In other
words, the state of i is fixed as xsi , i.e., Xi = xsi , due to the intervention do(Xi = xsi ).
The do-operator do(·) can be included in the probability notations (Pearl, 2009).
P(X6|do(X4 = x14)) means the probability distribution of X6 under an intervention
to participant 4 with do(X4 = x14).

To mathematically detail the procedure of the do-calculus, for each participant
i ∈ I, we first introduce binary decision variables zi and yis, where zi is an inter-
vention decision and yis is a state-fixing decision. If an intervention is imposed to
participant i, zi = 1; zi = 0, otherwise. If i’s state is imposed (or intervened) to
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be xsi , then yis = 1, i.e., do(Xi = xsi ); yis = 0, otherwise. Clearly, if zi = 0, then
yis = 0, for s ∈ {1, · · · , |Si|} as yis is the state-fixing decision (no intervention, no
fixing). The probability of i in the sth state, i ∈ I, s ∈ {1, · · · , |Si|}, conditional on
its parent nodes is updated with interventions according to the following logic.

P{Xi = xsi |δ(Xi)} ←


P{Xi = xsi |δ(Xi)}, if zi = 0;
1, if zi = 1 and yis = 1;
0, if zi = 1 and yis = 0.

(2)

The do-calculus-based updated probability distribution of participant i, i ∈ N 1,
is denoted as (Pi1, · · · , Pis, · · · , Pi|Si|)>. Based on the above notations, formula (2)
can be mathematically represented as follows.

Pis =


pis, if zi = 0,
1, if zi = 1 and yis = 1, ∀i ∈ N 1, s ∈ {1, · · · , |Si|}.
0, if zi = 1 and yis = 0,

(3)

Note that, (Pi1, · · · , Pi|Si|)>, i ∈ N j, j ∈ {2, · · · , n}, needs to be calculated
echelon by echelon, which serve as auxiliary variables.

The do-calculus-based updated CPT of participant i is denoted as CPTdo
i , and

the elements of CPTdo
i are denoted as Ci,s

g , ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈
{1, · · · , |Gi|}. Therefore, based on the above notations, under state-combination-
index of i, say, g ∈ {1, · · · , |Gi|}, formula (2) can be mathematically represented as
follows.

Ci,s
g =


ci,sg , if zi = 0,
1, if zi = 1 and yis = 1, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}.
0, if zi = 1 and yis = 0,

(4)
For example, in Figure 4, the states of SC participants 4 and 5 are intervened to

be states x14 and x15 respectively (i.e., do(X4 = x14) and do(X5 = x15) are performed),
and CPT4 and CPT5 are updated to be CPTdo

4 and CPTdo
5 respectively. After the

interventions, the probability distributions of SC participants 3, 4 and 5, can be
calculated via formulas (3) and (4) as:

P31 = c3,11 · P11 + c3,12 · P12 = 0.98 · 0.96 + 0.30 · 0.04 = 0.95,

P32 = c3,21 · P11 + c3,22 · P12 = 0.05,

P41 = c4,11 · P11 + c4,12 · P12 = 1,

P42 = c4,21 · P11 + c4,22 · P12 = 0,

P51 = c5,11 · P11 + c5,12 · P12 = 1,

P52 = c5,21 · P11 + c5,22 · P12 = 0,

Similarly, the probability distribution of the manufacturer in Figure 4 can be
calculated via formulas (3) and (4) as:

10



Figure 4: The updated probability distributions and CPTsdo for the CBN (after the
interventions “do(X4 = x14)” and “do(X5 = x15)” are carried out on the state variable
of SC participants 4 and 5)

P61 = C6,1
1 · P31 · P41 · P51 + C6,1

2 · P31 · P41 · P52 + C6,1
3 · P31 · P42 · P51

+C6,1
4 · P31 · P42 · P52 + C6,1

5 · P32 · P41 · P51 + C6,1
6 · P32 · P41 · P52

+C6,1
7 · P32 · P42 · P51 + C6,1

8 · P32 · P42 · P52 = 0.98,

P62 = C6,2
1 · P31 · P41 · P51 + C6,2

2 · P31 · P41 · P52 + C6,2
3 · P31 · P42 · P51

+C6,2
4 · P31 · P42 · P52 + C6,2

5 · P32 · P41 · P51 + C6,2
6 · P32 · P41 · P52

+C6,2
7 · P32 · P42 · P51 + C6,2

8 · P32 · P42 · P52 = 0.02.

After mathematically quantifying the impacts of interventions, in the next sec-
tion, we resort to mathematical programming tools to optimally determine the com-
bination of interventions.

4. Non-linear programming models

Generally, the government intervenes a SC with the objective of minimizing the
disruption risk of the target/key manufacturer. However, in practice, it is a chal-
lenging work how to choose SC participants to intervene and achieve the best result
for reducing disruption propagation. Intervention actions are costly in practice, and
the allocated budget for interventions is limited. Thus, in the section, we propose
two mathematical programming models to select the best interventions.

In the following, the problem notations and decision variables are defined first.
Then, two mixed-integer non-linear programming models, namely zzz1 and zzz2, are
established. Two valid inequalities are further proposed based on problem analysis.
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Parameters:

I: the set of SC participants, I = {1, · · · , |I|}, indexed by i;

Si: the set of states of the SC participant i, i.e., Si = {x1i , · · · , x
|Si|
i }, where s ∈

{1, · · · , |Si|};

N j: the set of SC participants in the jth echelon, j ∈ {1, · · · , n};

δ(i): the set of parent nodes of SC participant i, i ∈ I; note that, δ(i) = ∅, for
i ∈ N 1;

ci,sg : the probability of participant i in state xsi conditional on the gth state com-
bination of its parent nodes (i.e., an element in CPTi), where i ∈ I, s ∈
{1, · · · , |Si|}, g ∈ {1, · · · , |Gi|};

G−1i (g)(i′): the state index of parent node i′, i′ ∈ δ(i), for SC participant i, i ∈ I, given
state-combination-index g, g ∈ {1, · · · , |Gi|};

ais: the intervention cost of SC participant i to be the sth state, where i ∈ I\{|I|},
s ∈ {1, · · · , |Si|};

B: the total budget for executing interventions.

Decision variables:

zi: equal to 1 if SC participant i, i ∈ I, is intervened, 0 otherwise;

yis: equal to 1 if SC participant i, i ∈ I, is intervened to be state xsi ∈ Si (i.e.,
do(Xi = xsi )), 0 otherwise;

Pis: the probability of participant i in state xsi after interventions, where i ∈ I,
s ∈ {1, · · · , |Si|};

Ci,s
g : the probability of participant i in state xsi given the state-combination-index

g of its parent nodes after interventions (i.e., an element in CPTdo
i ), where

i ∈ I, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|}.

4.1. Non-linear programming model zzz1

In this subsection, we establish the first mixed-integer non-linear programming
model, denoted by zzz1, based on the do-calculus.

[zzz1] : min P|I|,|S|I|| (5)

s.t.

|I|−1∑
i=1

|Si|∑
s=1

aisyis ≤ B (6)

|Si|∑
s=1

yis = zi, ∀i ∈ I (7)

Pis ≤ 2− yis, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (8)

Pis ≥ yis, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (9)
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Pis ≤ 1 + yis − zi, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (10)

Pis ≤ pis + zi, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (11)

Pis ≥ pis − zi, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (12)

Ci,s
g ≤ 2− yis, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (13)

Ci,s
g ≥ yis, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (14)

Ci,s
g ≤ 1 + yis − zi, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|}

(15)
Ci,s
g ≤ ci,sg + zi, i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (16)

Ci,s
g ≥ ci,sg − zi, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (17)

Pis =

|Gi|∑
g=1

Ci,s
g

∏
i′∈δ(i)

pi′,G−1
i (g)(i′), i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|} (18)

0 ≤ Pis ≤ 1, ∀i ∈ I, s ∈ {1, · · · , |Si|} (19)

0 ≤ Ci,s
g ≤ 1, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (20)

z|I| = 0 (21)

zi ∈ {0, 1}, ∀i ∈ I (22)

yis ∈ {0, 1}, ∀i ∈ I, s ∈ {1, · · · , |Si|} (23)

The objective function (5) minimizes the fully disrupted probability of SC par-

ticipant |I| (i.e., the probability of fully disrupted state x
|Si|
|I| ) after interventions.

Constraint (6) ensures that the total cost of all interventions imposed on SC par-
ticipants does not exceed the limited budget. Constraints (7) guarantee that an
intervened SC participant, if any, is only intervened to be a specific state. Con-
straints (8-12) ensure that the probability distribution of participant i i ∈ N 1, is
updated based on formula (3). Specifically, constraints (8-9) ensure that the prob-
ability Pis is updated to be 1 if participant i, i ∈ N 1, is intervened to be the sth
state; constraints (10) guarantee that Pis is updated to be 0 if participant i, i ∈ N 1,
is intervened but not to be the sth state; and constraints (11-12) ensure that Pis
keeps the same as before if SC participant i, i ∈ N 1, is not intervened. Constraints
(13-17) ensure that CPTi, i ∈ I, is updated to be CPTdo

i after interventions. Specif-
ically, constraints (13-14) ensure that Ci,s

g is updated to be 1 if SC participant i is
intervened to be the sth state given the state-combination-index g; constraints (15)
ensure that Ci,s

g is updated to be 0 if SC participant i is intervened but not to be
the sth state given the state-combination-index g; and constraints (16-17) ensure
that Ci,s

g keeps the same as before if SC participant i is not intervened given the
state-combination-index g. These constraints are established to satisfy formula (4).
Constraints (18) are established to calculate the probability distribution of each SC
participant i, i ∈ I, which are based on formula (1). In constraint (18), index i′

denotes the index for parent nodes of SC participant i, i ∈ N 1. Constraints (19-23)
define the domains of variables.

4.2. Non-linear programming model zzz2

We attempt to reduce the number of variables and constraints used in zzz1, and
a more compact mixed-integer non-linear programming model, denoted by zzz2, is
established in this subsection.
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The additional notations are defined as follows. To formalize the one-to-one cor-
respondence relationship between a state combination of participants 1, · · · , |I| − 1
and a state-combination-index, we define the following mapping. Let L(·) be a u-

nique bijection mapping S1×· · ·×S|I|−1
L(·)−−→ {1, · · · , l, · · · ,

∏|I|−1
i=1 |Si|}, which maps

a state combination of all suppliers to a state-combination-index l, l ∈ {1, · · · ,
∏|I|−1

i=1 |Si|}.
Note that, “×” denotes the Cartesian product. Taking Figure 3 as example, the state
combination of all suppliers is {(x11, · · · , x15), · · · , (x

|S1|
1 , · · · , x|S5|5 )} and (x11, x

1
2, x

1
3, x

1
4,

x15) corresponds to the state-combination-index l = 1. L−1(·) denotes the in-

verse mapping of L(·), i.e., {1, · · · ,
∏|I|−1

i=1 |Si|}
L−1(·)−−−→ S1 × · · · × S|I|−1 which map-

s a state-combination-index to a state combination of all suppliers. Conversely,
state-combination-index l = 1 corresponds to state combination (x11, x

1
2, x

1
3, x

1
4, x

1
5).

L−1(l)(i) represents the state index of SC participant i, i ∈ {1, · · · , |I| − 1}, given
the state-combination-index l. For the example in Figure 3, L−1(1)(2) = 1 repre-
sents that given the state-combination-index 1 SC participant 2 is in the state with
index 1 (in state x11).

Similarly, let Fi(·) be a mapping {1, · · · , l, · · · ,
∏|I|−1

i=1 |Si|}
Fi(·)−−→ {1, · · · , g, · · · , |Gi|}

which maps a state-combination-index of all suppliers to a state-combination-index
of parent nodes of SC participant i. For example, in Figure 3, F6(1) = 1 denotes
that the state-combination-index 1 of all suppliers 1, 2, 3, 4, and 5 (corresponding
to the state combination (x11, x

1
2, x

1
3, x

1
4, x

1
5)) is mapped into the state-combination-

index 1 of the parent nodes for participant 6 (corresponding to the state combination
(x13, x

1
4, x

1
5)).

Based on the above notations, the probability in state x
|Si|
|I| for the target manu-

facturer (with notation |I|) after interventions can be described as:

P|I|,|Si| =

∏|I|−1

i′=1
|Si′ |∑

l=1

∏
i∈N 1

Pi,L−1(l)(i) ·
∏

i∈N j ,j∈{2,··· ,n}

C
i,L−1(l)(i)
Fi(l)

 , (24)

where Pi,L−1(l)(i) denotes the probability of i in the L−1(l)(i)th state; C
i,L−1(l)(i)
Fi(l)

rep-

resents the probability of i in the L−1(l)(i)th state conditional on state-combination-
index Fi(l).

First, the additional notations are defined as follows. Then, the second mixed-
integer non-linear programming model zzz2 is established, which is more concise that
zzz1.

New additional parameters:

L−1(l)(i): the state index of SC participant i, i ∈ {1, · · · , |I| − 1}, for a given state-

combination-index l, l ∈ {1, · · · ,
∏|I|−1

i=1 |Si|};

Fi(l): the state-combination-index of parent nodes of SC participant i, i ∈ N j,

j ∈ {2, · · · , n}, for a given state-combination-index l, l ∈ {1, · · · ,
∏|I|−1

i=1 |Si|}.

We are now ready to present the second mixed-integer non-linear programming
model.

[zzz2] : min

∏|I|−1

i′=1
|Si′ |∑

l=1

∏
i∈N 1

Pi,L−1(l)(i) ·
∏

i∈N j ,j∈{2,··· ,n}

C
i,L−1(l)(i)
Fi(l)

 (25)
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s.t.

|I|−1∑
i=1

|Si|∑
s=1

aisyis ≤ B (26)

|Si|∑
s=1

yis = zi, ∀i ∈ I (27)

Pis ≤ 2− yis, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (28)

Pis ≥ yis, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (29)

Pis ≤ 1 + yis − zi, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (30)

Pis ≤ pis + zi, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (31)

Pis ≥ pis − zi, ∀i ∈ N 1, s ∈ {1, · · · , |Si|} (32)

Ci,s
g ≤ 2− yis, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (33)

Ci,s
g ≥ yis, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (34)

Ci,s
g ≤ 1 + yis − zi, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|}

(35)
Ci,s
g ≤ ci,sg + zi, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (36)

Ci,s
g ≥ ci,sg − zi, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (37)

0 ≤ Ci,s
g ≤ 1, ∀i ∈ N j, j ∈ {2, · · · , n}, s ∈ {1, · · · , |Si|}, g ∈ {1, · · · , |Gi|} (38)

z|I| = 0 (39)

zi ∈ {0, 1}, ∀i ∈ I (40)

yis ∈ {0, 1}, ∀i ∈ I, s ∈ {1, · · · , |Si|} (41)

The objective function (25) minimizes the fully disrupted probability of SC par-
ticipant |I| after interventions. Constraint (26) ensures that the total cost of all
interventions imposed on SC participants does not exceed the limited budget. Con-
straints (27) guarantee that an intervened SC participant, if any, is only intervened
to be a specific state. Constraints (28-32) ensure that the probability distribution
of participant i i ∈ N 1, is updated based on formula (3). Specifically, constraints
(28-29) ensure that the probability Pis is updated to be 1 if participant i, i ∈ N 1, is
intervened to be the sth state; constraints (30) guarantee that Pis is updated to be
0 if participant i, i ∈ N 1, is intervened but not to be the sth state; and constraints
(31-32) ensure that Pis keeps the same as before if SC participant i, i ∈ N 1, is not
intervened. Constraints (33-37) ensure that CPTi, i ∈ I, is updated to be CPTdo

i

after interventions. Specifically, constraints (33-34) ensure that Ci,s
g is updated to be

1 if SC participant i is intervened to be the sth state given the state-combination-
index g; constraints (35) ensure that Ci,s

g is updated to be 0 if SC participant i
is intervened but not to be the sth state given the state-combination-index g; and
constraints (36-37) ensure that the Ci,s

g keeps the same as before if SC participant
i is not intervened given the state-combination-index g. These constraints are con-
structed to satisfy formula (4). Constraints (38-41) define the domains of variables.

The number of decision variables in model zzz2 is less than that of model zzz1 by∑|I|−1
i=1 |Si|+1. The number of constraints in model zzz2 is less than that of model zzz1

by
∑|I|

i=1 |Si|+1. To obtain an approximate solution quickly in larger-scale instances,
we can use the following heuristics: 1) In the mixed-integer nonlinear programming

15



model, the integer variables can be relaxed to be continuous variables, and this
model is transformed into a nonlinear programming model, which can be solved
quickly. 2) Then, the obtained the solutions of relaxed integer variables are rounded
to be integer variables. In the above way, we can quickly obtain an approximate
solution.

4.3. Problem analysis

In this subsection, we present two problem properties by Propositions 1 and 2
to establish valid inequalities, leading to the enhanced formulations.

The additional notations are defined as follows.
New additional parameters:

suc(i): the set of successors of i, i ∈ N j, j ∈ {1, · · · , n− 2}, indexed by i′;

κ: binary parameter, equal to 1 if the total budget B is not less than the total
cost for intervening participants in the (n − 1)th echelon to be operational
state (i.e., the first state); 0 otherwise.

In the following, we present two propositions and the corresponding valid in-
equalities are established.

Proposition 1. When all successors of participant i, i ∈ N j, j ∈ {1, · · · , n−2}, are
intervened, there is an optimal solution of models zzz1 and zzz2 such that participant
i does not need to be intervened.

Proof : see Appendix.
Based on Proposition 1, a valid inequality, i.e., VI1, can be proposed as follows.

VI1 : zi ≤ |suc(i)| −
∑

i′∈suc(i)

zi′ , ∀i ∈ N j, j = 1 · · · , n− 1.

The valid inequality VI1 means that if all successors of participant i are inter-
vened, i.e., zi′ = 1, ∀i′ ∈ suc(i), there is an optimal solution of models zzz1 and
zzz2 in which this participant needs not to be intervened, i.e., zi = 0, i ∈ N j,
j ∈ {1, · · · , n− 2}.

Proposition 2. When budget B is not less than the total intervention cost of all
participants in the (n−1)th echelon to be the operational state, i.e., B ≥

∑
i∈Nn−1 ai1

(and thus κ = 1), then in an optimal solution of models zzz1 and zzz2 all these par-
ticipants in the (n− 1)th echelon are intervened to be operational state.

Proof : see Appendix.
Based on Proposition 2, another valid inequality, i.e., VI2, can be proposed as

follows.
VI2 : yi1 ≥ κ, ∀i ∈ N n−1.

The valid inequality VI2 implies that if κ = 1, i.e., B ≥
∑

i∈Nn−1 ai1, then
yi1 = 1, ∀i ∈ N n−1.
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5. Solution method for large-scale problems

Genetic Algorithm (GA), a popular heuristic algorithm, can be applied to solve
mixed-integer nonlinear optimization problems (Hua and Huang, 2006). In this
section, a problem-specific GA algorithm is designed to cope with large-scale prob-
lems. The following subsections discuss the chromosome representation and initial-
ization, crossover and mutation, fitness calculation, and selection operation. Given
the mathematical programming models in Section 3, commercial solvers cannot solve
large-scale problems, therefore a problem-specific GA is developed.

5.1. Chromosome representation and initialization

In the chromosome, the number p at the ith position represents that the SC par-
ticipant i, i ∈ I, is intervened into state p. The length of chromosome is |I|, where
I denotes the set of SC participants. Specially, p = 0 denotes the SC participant
is not intervened, and the last bit in the chromosome represents the fitness value.
The gene structure of an example is illustrated in Figure 5. In this example, SC
participants include 1, 2, 3, 4, 5, and 6. SC participants 1, 2, 5 are intervened into
states 1, 2, 1, respectively. In the chromosome, SC participants 3 and 4 are not
intervened, which are set to be 0. The fitness value 0.23 is coded in the 6th bit.

For each initial individual, the intervened SC participants are generated accord-
ing to the limited budget B. The chromosome initialisation steps are illustrated in
Algorithm 1 for intervening SC participants. Now we have coded the |I| bits for a
chromosome. Given the above information, we calculate its objective value by using
BN inference approach, which serves as the reciprocal of the fitness value for this
chromosome (coded in the last bit).

Algorithm 1 Intervention of SC participants in the chromosome initialization

function Initialize SC participants intervention (aij, B)
% aij : the intervention cost of SC participant i to be the sth state; B: the total budget for executing interventions

U = 0; X = ∅; % U denotes the used intervention cost; X denotes the SC participants’ intervention

while U ≥ B do
randomly select an SC participant ic and fix its state to be sc,
and U = U + aicsc ;
X = X

⋃
{ic 7→ sc}; % intervene SC participant ic into state sc

return: SC participants’ intervention X.

5.2. Crossover and mutation

To generate offsprings, efficient crossover and mutation are commonly applied.
In this work, one-point crossover and two different mutation operators are designed.

To satisfy the restriction of the limited budget, we conduct the following opera-
tions: (i) randomly selecting a crossover point; (ii) swapping the tails of two parents
to generate two children; (iii) calculating the fitness values of two children; (iv) if
the restriction is satisfied, output two children; otherwise, adjusting the intervened
SC participants and their states to satisfy the restriction. Figure 6 illustrates the
procedure.

The mutation operator can expand the searching space of the GA, and improve
the performance of the GA. Therefore, two mutation operators are designed in this
work, which include: (i) randomly modifying an intervened SC participant and its
state; (ii) randomly swapping of two intervened SC participants in the chromosome.
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Figure 5: Chromosome representation

For example in Figure 6, the first mutation operator consists of (i) copying the
chromosome to an offspring; (ii) randomly selecting a free SC participant (say i1);
(iii) judging which SC participants could be intervened to replace SC participant i1
conforming with the limited budget; (iv) randomly modifying the state for the SC
participant based on step (iii), and calculating the fitness value of the child. The
second mutation operator is illustrated in Figure 7, which includes: (i) coping the
chromosome to an offspring individual; (ii) randomly selecting two intervened SC
(say, participant r1 in state i1, and participant r2 in state i2); (ii) judging whether
SC participant r1 can be intervened into state i2 conforming with the limited budget
B, and further judging whether SC participant r2 can be intervened to state i1
conforming with the limited budget B; (iii) if both yes, swapping and calculating
the fitness value of the offspring; otherwise, not swapping.

Figure 6: Crossover

Figure 7: Mutation
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5.3. Fitness Calculation

To calculate the fitness value of the chromosome, the BN inference approach
can be applied. Based on the notation of do-calculus in Section 3.3, the intervened
SC participants and their states adjust the probability informations in the CBN,
and the structure of CBN cannot be changed. Before calculating the fitness value,
the probability informations can be updated according to logic (2) in Section 3.3.
The BN approach can be directly applied to calculate the fitness value, which is
expressed as follows.

fitnessc =

∏|I|−1

i′=1
|Si′ |∑

l=1

∏
i∈N 1

Pi,L−1(l)(i) ·
∏

i∈N j ,j∈{2,··· ,n}

C
i,L−1(l)(i)
Fi(l)

 . (42)

5.4. Selection operator

The chromosome is selected according to probability prc, which is calculated by
fitness as follows.

prc =
fitnessc∑sizepop

i=1 fitnessi

where sizepop is the number of chromosomes in the population. We will examine
the effectiveness of our propose GA for addressing large-scale problems in the next
section.

6. Numerical experiments

In this section, experiments on a case study and 30 randomly generated instances
are conducted to test the proposed models that are solved by internal solver BMIBN-
B in YALMIP. In Section 5.1, a case study is conducted and managerial insights are
drawn. In Section 5.2, the efficiency of the proposed valid inequalities are evaluated.
All the numerical experiments are conducted on a personal computer with Core I5
and 3.60GHz processor and 8GB RAM under Windows 7 Operating System. The
computation time of the internal solver BMIBNB in YALMIP is limited as 3600s.

6.1. Case study

In this subsection, we test different 3-echelon SCs with 6 participants (see Figure
8). Three states, i.e., fully operational, semi-fully operational, and fully disrupted,
are considered. Suppose that the intervention costs of SC participants 1, 2, 3, 4, 5
to be the fully operational state are 45, 78, 57, 66, 67, respectively. The intervention
costs of SC participants 1, 2, 3, 4, 5 to be the semi-fully operational state are 50,
48, 47, 56, 57, respectively. Different intervention budgets B equal to 0, 50, 100,
150, 200, 250, and 300, are tested to evaluate their impacts on the disruption risk of
the manufacturer. The case study is modelled by the proposed models zzz1 and zzz2.
Internal solver BMIBNB is applied by exploiting the optimization infrastructure in
YALMIP.

Table 2 reports the average results of 5 instances under the same parameter
combination. That is, each combination, i.e., one row in the Table 2, is tested with
5 randomly generated instances. The first column in Table 2 gives different SC
structures. The second column presents different intervention budgets. The third
and fourth columns report computation time of models zzz1 and zzz2 in seconds (s
for short). The fifth and sixth columns report the intervened participants and the
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Figure 8: Different SC structures in the case study

minimum disruption risk of the manufacturer under a given B, respectively. The
seventh column represents the used budget. From the 3nd and the 4rd columns of
Table 2, we can observe that models zzz1 and zzz2 can be solved in long computation
time, thus it is necessary to design a fast heuristic algorithm. From the 5th and the
6th columns, we can see that optimal interventions are performed on the participants
in the echelon close to the manufacturer’s position, if budget B reaches a threshold.
For example, in combination {4,1,1}, when budget B reaches 100, the increase of
budget B does not further impact the disruption risk of the manufacturer. We
can observe from the 6th column of Table 2, the allocated budgets are not all
consumed. The reason is that, based on Proposition 2, this threshold can be obtained
as

∑
i∈Nn−1 ai,1, i.e., the sum of SC participants in the (n − 1)-echelon intervened

to be state s = 1. Generally, when B increases, the disruption probability of the
manufacturer decreases in general.

In view of the above observations, we can have the following managerial insights:

1. The disruption probability of the manufacturer may decrease with the increase
of budget. Thus, both an appropriate budget and an optimal intervention
scheme are important to reduce the SC disruption propagation.

2. SC participants that are close to the manufacturer are often extremely impor-
tant in reducing the disruption probability of the manufacturer. Therefore,
the manufacturer needs to pay close attention to the operations of preceding
suppliers in the SC.

3. When all SC participants in the (n−1)-echelon are intervened into fully opera-
tional state, the disruption probability of the manufacturer remains unchanged
no matter how other participants are intervened. This result can be derived
from Proposition 2. Thus, it is important to determine the budget of the
interventions. Therefore, an excessive intervention budget is unnecessary.
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Table 2: The intervention decisions under different SC structures and budgets

{|N 1|, |N 2|, |N 3|} Total budget
B

Model zzz1

time(s)
Model zzz2

time(s)
Intervened

participants
Disruption risk

of the manufacturer
Used

budget

{1,4,1}

0 5.50 61.35 None 0.0849 0
50 51.80 127.22 1 0.0782 45
100 663.98 718.96 1 0.0782 45
150 653.40 1359.51 1 0.0782 45
200 625.67 941.16 1 0.0782 45
250 619.38 1813.29 1 0.0782 45
300 651.93 659.73 2,3,4,5 0.0300 268

{2,3,1}

0 0.78 0.89 None 0.0327 0
50 7.74 4.04 1 0.0279 45
100 32.21 20.36 4 0.0271 66
150 95.87 49.61 4,5 0.0228 133
200 35.30 49.75 3,4,5 0.0200 190
250 37.73 66.72 3,4,5 0.0200 190
300 113.35 77.30 3,4,5 0.0200 190

{3,2,1}

0 12.37 1.82 None 0.2954 0
50 15.49 7.00 5 0.1716 17
100 71.73 88.30 3,4,5 0.0800 86
150 84.09 116.95 4,5 0.0200 133
200 217.02 118.20 4,5 0.0200 133
250 123.06 146.24 4,5 0.0200 133
300 118.31 216.85 4,5 0.0200 133

{4,1,1}

0 10.31 14.83 None 0.0624 0
50 542.86 491.59 None 0.0624 0
100 723.52 657.21 5 0.0400 67
150 601.89 628.62 5 0.0400 67
200 623.76 1004.47 5 0.0400 67
250 629.78 925.39 5 0.0400 67
300 644.52 1113.02 5 0.0400 67

6.2. Valid inequalities

In this subsection, the performances of two valid inequalities, i.e., VI1 and VI2,
are tested. The number of states and the number of echelons are set to be 2 and
3, respectively. Different numbers of SC participants, |I| ∈ {5, 6, 7, 8, 9, 10}, are
tested. The intervention cost ais is randomly generated on the interval [50, 75],
where i ∈ I\{|I|}, s ∈ {1, · · · , |Si|}, conforming with the problem assumption. The

budget B is randomly generated between [50 · |I|
4
, 75 · |I|

2
], where |I| is the number

of participants. The probability informations are randomly generated with respect
to the second Kolmogorov axiom of probability (Durrett, 2019), i.e.,

∑|Si|
s=1 pis = 1,

i ∈ N 1, and
∑|Si|

s=1 c
i,s
g = 1, where g ∈ {1, · · · , |Gi|}, i ∈ N j, j = 2, · · · , n. Each

participant in the jth echelon randomly link to one to two participants in the (j+1)th
echelon, where j = 1, · · · , n − 1. Five instances with the same |I| are randomly
generated and tested. In total, 30 random instances are tested.

The average computation results for zzz1 and valid inequalities are presented in
Table 3. The first column in Table 3 represents the number of participants, i.e.,
|I|. The 2nd to the 9th columns represent the objective value and the running
time of models zzz1, zzz1+VI1, zzz1+VI2, and zzz1+VI1+VI2, respectively. We can
observe from Table 3 that the average running time of models zzz1+VI1, zzz1+VI2,
and zzz1+VI1+VI2 are 1496.89s, 822.02s, and 709.77s respectively, which are only
92.57%, 50.84% and 43.89% of that of needed by model zzz1. We can remark that
the running time of model zzz1+VI2 for |I| = 8 is 697.13s, which is faster than
that proposed by model zzz1+VI1+VI2. The reason may be that more inequalities
consume more computation time, and VI1 is not very efficient for the instances.
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Table 3: Evaluation of the efficiency of VI1 and VI2 for zzz1

|I| zzz1 zzz1+VI1 zzz1+VI2 zzz1+VI1+VI2
Objective Time(s) Objective Time(s) Objective Time(s) Objective Time(s)

5 0.23 120.61 0.23 106.66 0.23 17.65 0.23 18.29
6 0.20 385.45 0.20 334.50 0.20 284.40 0.20 283.59
7 0.17 879.04 0.17 786.37 0.17 653.25 0.17 649.35
8 0.22 1116.77 0.22 983.09 0.22 697.13 0.22 763.67
9 0.29(5)* 3600.00 0.28(5)* 3600.00 0.22(2)* 1889.27 0.23(2)* 1451.37
10 0.26(5)* 3600.00 0.26(5)* 3170.74 0.24(1)* 1390.43 0.24(1)* 1092.36

Average 0.23 1616.98 0.23 1496.89 0.22 822.02 0.22 709.77

“(number of instances)*”: the number of instances that be solved to optimum in the time

limit.

Table 4: Evaluation of the efficiency of VI1 and VI2 for zzz2

|I| zzz2 zzz2+VI1 zzz2+VI2 zzz2+VI1+VI2
Objective Time(s) Objective Time(s) Objective Time(s) Objective Time(s)

5 0.23 56.70 0.23 49.82 0.23 10.23 0.23 10.96
6 0.20 242.81 0.20 204.09 0.20 101.47 0.20 152.23
7 0.17 958.46 0.17 565.25 0.17 346.03 0.17 472.42
8 0.24(2)* 2470.21 0.22 1779.00 0.22 1548.90 0.22 1478.40
9 0.20(4)* 3444.68 0.20(5)* 3223.27 0.17(1)* 1914.11 0.13 1380.12
10 0.36(5)* 3600.00 0.31(5)* 3600.00 0.23(1)* 1536.35 0.22(1)* 1078.72

Average 0.23 1795.48 0.22 1570.24 0.20 909.52 0.20 762.14

“(number of instances)*”: the number of instances that be solved to optimum in the time

limit.

With the increase of the number of participants, the computation time of model
zzz1 increases from 120.61s to 3600s. Especially, model zzz1 cannot obtain optimal
solution for all five instances. In conclusion, the computation results show that:
(i) both valid inequalities are efficient for reducing computation times; (ii) model
zzz1+VI1+VI2 is of the most efficiency in term of computation time.

The average computation results for zzz2 and valid inequalities are presented in
Table 4. We can observe from Table 4 that the average running time of models
zzz2+VI1, zzz2+VI2, and zzz2+VI1+VI2 are 1570.24s, 909.52s, and 762.14s respec-
tively, which are only 87.46%, 50.66% and 42.45% of that required by model zzz2.
Specifically, when the number of participants is 10, model zzz2 cannot obtain optimal
solution for all 5 instances. In conclusion, the computation results show that: (i)
both valid inequalities are efficient for reducing the computation times of model zzz2;
(ii) model zzz2+VI1+VI2 is of the most efficiency in term of computation time.

We can observe from Tables 3 and 4 that the efficiencies of models zzz1+VI1+VI2
and zzz2+VI1+VI2 are comparable. Especially, the average computation time of
zzz1+VI1+VI2 is 93.13% of that needed by zzz2+VI1+VI2, while zzz1+VI1+VI2 and
zzz2+VI1+VI2 cannot find optimal solution for 3 and 1 (out of 5) instances, respec-
tively.

6.3. Experimental results

To evaluate the performance of the problem-specific GA, the comparison is made
with the two models (zzz1+VI1+VI2 and zzz2+VI1+VI2, solved with internal solver
BMIBNB by the optimization infrastructure in YALMIP) and the GA, respectively.
Computational results of the problem-specific GA and the models are reported in
Table 5. The first column in Table 5 represents the number of participants, i.e.,
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Table 5: Comparison of computational results between models and GA

|I| zzz1+VI1+VI2 zzz2+VI1+VI2 GA
Objective Time(s) Objective Time(s) Objective Time(s) Improvement(%)

4 0.26 4.23 0.26 3.52 0.26 0.01 0
5 0.40 11.36 0.40 8.63 0.40 0.02 0
6 0.18 23.94 0.18 17.30 0.18 0.02 0
7 0.21 48.18 0.21 79.15 0.22 2.05 -4.76
8 0.25 118.45 0.25 347.42 0.26 3.16 -4.00
9 0.16 277.19 0.16 749.59 0.17 4.51 -6.25
10 0.34 526.74 0.34 2747.85 0.34 20.49 0
11 0.26 2081.60 0.28 3600.00 0.22 131.84 15.38
12 0.32 3600.00 0.32 3600.00 0.30 413.85 6.25
13 0.34 3600.00 0.34 3600.00 0.26 443.12 25.00
14 0.43 3600.00 0.43 3600.00 0.36 427.54 16.28
15 - 3600.00 - 3600.00 0.39 426.78 -
16 - 3600.00 - 3600.00 0.41 573.03 -
17 - 3600.00 - 3600.00 0.45 1490.51 -

Average* 0.29 1262.88 0.29 1668.50 0.27 131.51 6.90

“-”: no instance can be solved to feasible solutions in the time limit.

“Improvement(%)”: is calculated via min{model values}−GA value
min{model values} × 100%.

“*”: the average value for these instances that can obtain feasible solutions.

|I|. The 2nd to the 7th columns represent the objective value and the running
time of the models, and those of the GA, respectively. The 8th column represents
the improvement of the GA. The improvement value between the GA and the two
models is calculated by min{model values}−GA value

min{model values} × 100%.
From Table 5, we can observe that with increase of the size of instances, the

computation time of two models increase much faster than the GA. The average
running time of the GA is 131.51, which is only 10.41% (i.e., 131.51

1763.69
× 100%) of

model zzz1+VI1+VI2. The average improvement value of the GA is 6.90%.
The experimental results show that: (i) our proposed models are time-consuming;

(ii) the problem-specific GA is very efficient, as it can obtain a feasible solution with
significantly shorter time than two models in addressing large-scale problems.

7. Conclusion

In this paper, we study the disruption propagation management problem in
a multi-echelon SC under limited intervention budget. For the problem, a novel
approach, combining the CBN, the do-calculus and the mathematical programming,
is developed. Then, we propose two mixed-integer non-linear programming models
to solve the problem. The proposed models allow for minimizing disruption risk
under limited intervention budget. To improve the efficiencies of proposed models,
we exploit the problem properties and develop two valid inequalities. Besides, we
investigate a case study, and managerial insights are drawn. Finally, the numerical
experiments demonstrate that the efficiencies of models and valid inequalities.

Our future researches include the following issues. First of all, to portray the
dynamic fluctuation of the disruption risk, a hybrid model integrating Markov chain
with static or dynamic BN may be further designed to extend our study. Second,
different intervention costs from a state to another state can be considered. Third,
the study can be further extended to data scarce environment in which only partial
distribution probability information is known. Fourth, some uncontrollable suppliers
can be considered, and a more general model can be further developed. Fifth, to
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solve large-scale problems faster and more effectively, more efficient approaches,
e.g., heuristics, may be designed. Finally, it may be interesting to combine supplier
selection decisions into the studied problem.
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Appendix

Proposition 1. When all successors of participant i, i ∈ N j, j ∈ {1, · · · , n−2}, are
intervened, there is an optimal solution of models zzz1 and zzz2 such that participant
i does not need to be intervened.

Proof. For each participant i, i ∈ N j, j ∈ {1, · · · , n − 2}, the probability distri-
bution of subsequent (or immediately succeeding) participant i′, i′ ∈ suc(i), can be
calculated via equation (1) as:

pi′s =

|Gi′ |∑
g=1

ci
′,s
g

∏
i∈δ(i′)

pi,G−1
i (g)(i′), i′ ∈ suc(i), i ∈ N j, j ∈ {1, · · · , n−2}, s ∈ {1, · · · , |Si′|}.

When participant i′, i′ ∈ suc(i), is intervened to be state xs
′

i′ , the elements of
CPTi′ are updated via Equation (4) as: Ci′,s

g = 0,∀s ∈ {1, · · · , |Si′ |} \ {s′}, g ∈
{1, · · · , |Gi|}, and Ci′,s′

g = 1, g ∈ {1, · · · , |Gi|}. Based on the above informations, the
elements of the probability distribution of participant i′ are pi′s = 0, i ∈ N j, j ∈
{2, · · · , n}, s ∈ {1, · · · , |Si|} \ {s′}, and pi′s′ = 1. Thus, the probability distribution
of participant i′, i′ ∈ suc(i), is not relate to the probability distribution of participant
i. Thus, participant i does not need to be intervened if all subsequent participants
of participant i, i ∈ N j, j ∈ {1, · · · , n− 2}, are intervened. �

Proposition 2. When budget B is not less than the total intervention cost of
all participants in the (n − 1)th echelon to be in the operational state, i.e., B ≥∑

i∈Nn−1 ai1 (and thus κ = 1), then in an optimal solution of models zzz1 and zzz2 all
these participants in the (n− 1)th echelon are intervened to be operational state.

Proof. According our assumptions of the problem, when the parents nodes of the
manufacturer are in the operational state, the disruption risk of the manufacturer

is minimum. Mathematically, speaking c
|I|,|S|I||
g , c

|I|,|S|I||
1 = ming∈Gi{c

|I|,|S|I||
g }. The

disruption risk of the manufacturer can be calculated according to formula (1) as:
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p|I|,|S|I|| =

|G|I||∑
g=1

c
|I|,|S|I||
g

∏
i′∈δ(|I|)

pi′,G−1
|I|(g)(i

′)

≥
|G|I||∑
g=1

c
|I|,|S|I||
1

∏
i′∈δ(|I|)

pi′,G−1
|I|(g)(i

′) (as c
|I|,|S|I||
1 = min{c|I|,|S|I||g |g ∈ Gi})

= c
|I|,|S|I||
1

|G|I||∑
g=1

∏
i′∈δ(|I|)

pi′,G−1
|I|(g)(i

′)

= c
|I|,|S|I||
1 , (as

|G|I||∑
g=1

∏
i′∈δ(|I|)

pi′,G−1
|I|(g)(i

′) = 1)

where the last equal sign holds when pi′,G−1
|I|(1)(i

′) = 1, ∀i′ ∈ δ(|I|). Because the

manufacturer |I| is not intervened (i.e., z|I| = 0) according to our assumptions of

the problem, P|I|,|S|I|| = p|I|,|S|I||, due to formula (3). Similarly, C
|I|,|S|I||
g = c

|I|,|S|I||
g ,

due to formula (4). Clearly, C
|I|,|S|I||
1 is a lower bound on P|I|,|S|I||, and this lower

bound can be attained in the condition that pi′,G−1
|I|(1)(i

′) = 1, ∀i′ ∈ δ(|I|). That is to

say, if all participants in the (n− 1)th echelon are intervened to be the operational
state, the lower bound can be achieved. Due to the condition of this proposition
that budget B is not less than the total intervention cost of all participants in the
(n − 1)th echelon to be in the operational state, we can attain the lower bound

C
|I|,|S|I||
1 . Thus, the proposition holds. �
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