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Four-field Hamiltonian fluid closures of the one-dimensional Vlasov–Poisson equation

C. Chandre1, a) and B. A. Shadwick2, b)

1)CNRS, Aix Marseille Univ, I2M, Marseille, France

2)University of Nebraska-Lincoln, Lincoln, NE, United States

We consider a reduced dynamics for the first four fluid moments of the one-

dimensional Vlasov-Poisson equation, namely, the fluid density, fluid velocity, pres-

sure and heat flux. This dynamics depends on an equation of state to close the

system. This equation of state (closure) connects the fifth order moment –related

to the kurtosis in velocity of the Vlasov distribution– with the first four moments.

By solving the Jacobi identity, we derive an equation of state which ensures that the

resulting reduced fluid model is Hamiltonian. We show that this Hamiltonian closure

allows symmetric homogeneous equilibria of the reduced fluid model to be stable.
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I. INTRODUCTION

In order to simulate the dynamics of a plasma, there is a variety of models which are used

according to the type of question and the level of detail in the description of the plasma. Most

of these models can be categorized as kinetic or fluid, whether the dynamical field variables

are functions of the phase-space coordinates (x, v) of the particles or just configuration space

coordinates x. Compared to kinetic models, fluid models have the significant advantage to

be defined in a dimensionally reduced space, which makes them particularly desirable from

a computational viewpoint. The central question is how to define these fluid models from

a parent kinetic model. There are plethora of methods to do this, some better suited

than others depending on the specific problem at hand. For instance, some reductions

rely on an assumption on the shape of the distribution function,1–5 or introduce suitably

designed dissipative terms.6–8 Here we follow a different route by requiring that the reduced

fluid model preserves an important dynamical property of the parent model, namely its

Hamiltonian structure.9–11 Rather than being an additional constraint on the reduction, we

will see that this requirement provides a way to perform the reduction, and precisely define

the relevant closures leading to the definition of relevant Hamiltonian fluid model(s). In

order to illustrate this point we consider the one-dimensional Vlasov–Poisson equation. This

equation describes the evolution of the distribution function f(x, v, t) of charged particles

(of charge e and mass m) in an electric field E(x, t):

∂f

∂t
= −v∂f

∂x
− eẼ

m

∂f

∂v
,

where Ẽ is the fluctuating part of the electric field E whose dynamics is given by

∂E

∂t
= −4πj̃,

and j = e
∫
vfdv is the current density. We assume periodic boundary conditions in x with

period 2Lx, so that the fluctuating part is defined as

Ẽ = E − 1

2Lx

∫ Lx

−Lx

E dx.

We consider a fluid description obtained by using the first four fluid moments of the distri-

bution function, more precisely, the density ρ(x, t), the fluid velocity u(x, t), the pressure
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P (x, t) and the heat flux q(x, t) defined by

ρ =

∫
fdv,

u = ρ−1
∫
vfdv,

P =

∫
(v − u)2fdv,

q =
1

2

∫
(v − u)3fdv.

From the Vlasov-Poisson equation, we obtain the equations of motion for these moments

and for the electric field:

∂tρ = −∂x(ρu), (1a)

∂tu = −u∂xu−
1

ρ
∂xP +

eẼ

m
(1b)

∂tP = −u∂xP − 3P∂xu− 2∂xq, (1c)

∂tq = −u∂xq − 4q∂xu+
3P

2ρ
∂xP −

1

2
∂xR, (1d)

∂tE = −4πeρ̃u, (1e)

where

R =

∫
(v − u)4fdv,

which is related to the kurtosis (in velocity) of the distribution function f . Here and in what

follows, ∂x and ∂v denote the partial derivatives of a function of x and v with respect to x

and v, respectively. In order to close the set of equations of motion, we need an equation of

state of the form

R = R(ρ, u, P, q).

An example of closure is obtained by assuming a Gaussian distribution for f (see Ref. 3),

f(x, v, t) =
ρ√

2πσ2
e−(v−u)

2/(2σ2),

which leads to R = 3P 2/ρ, independent of u and q. One of the main problems of the

Gaussian closure is that the resulting model breaks the original Hamiltonian structure of

the parent model, the Vlasov–Poisson equation.12 As a consequence, this closure introduces

unphysical dissipation.
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Based on the preservation of the Hamiltonian structure, another closure based on dimen-

sional analysis was proposed in Ref. 10, namely

R =
P 2

ρ
+

4q2

P
. (2)

We notice that this closure depends explicitly on the asymmetries of the distribution func-

tion, measured by q, and is still independent of the fluid velocity u. However this closure

has a fundamental drawback which is that homogeneous equilibria are all unstable. In order

to see this, we linearize the equations of motion around one of such equilibria with q0 = 0,

u0 = 0 and E0 = 0, i.e., ρ = ρ0 + δρ, u = δu, P = P0 + δP , q = δq and E = δE. The

linearized equations of motion for δX = (δρ, δu, δP, δq, δE) in Fourier space, i.e., for

δX =
∞∑

k=−∞

δXk eikx,

reduce to

˙δXk = AδXk, (3)

where

A =



0 −ikρ0 0 0 0

0 0 −ikρ−10 0 e/m

0 −3ikP0 0 −2ik 0

ikρ−20 P 2
0 /2 0 ikρ−10 P0/2 0 0

0 −4πeρ0 0 0 0


.

The matrix A does not have purely imaginary eigenvalues for

k2 < k2c =
4πe2ρ20
mP0

,

from which we conclude that all equilibria with q0 = 0 are unstable.

Here we are looking for a closure which combines two important properties of the Vlasov–

Poisson equation, namely, the stability of symmetric homogeneous equilibria, and its Hamil-

tonian structure.

We do not assume any particular form for the distribution function. Instead we solve

the Jacobi identity in order to determine all possible R(ρ, u, P, q) for which this identity is

satisfied. As a result, we unveil a one-parameter family of Hamiltonian fluid closures. We

show that for these closures, the associated Poisson bracket has two Casimir invariants of
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the entropy type, i.e., two observables C of the form C =
∫

dx ρ Γ(ρ, P, q). These Casimir

invariants provide normal variables in which the closure in parametric form is found to be

polynomial. We then examine numerically some properties of the resulting Hamiltonian

model in two cases: plasma oscillations and the two-stream instability.

II. DERIVATION OF THE FOUR-FIELD HAMILTONIAN CLOSURE

The one-dimensional Vlasov–Poisson equation has a Hamiltonian structure13 (see also

Refs. 14 and 15 for a review), i.e., the equations of motion can be recast using a Hamiltonian

and a Poisson bracket:

∂tf = {f,H}, (4a)

∂tE = {E,H}, (4b)

where

H[f, E] =

∫
dxdvf

mv2

2
+

∫
dx
E2

8π
.

The Poisson bracket between two scalar functionals of f and E is given by

{F,G} =
1

m

∫
f

[
∂x
δF

δf
∂v
δG

δf
− ∂v

δF

δf
∂x
δG

δf
− 4πe

(
δ̃F

δE
∂v
δG

δf
− ∂v

δF

δf

δ̃G

δE

)]
dxdv, (5)

where δF
δf

and δF
δE

denote the functional derivatives of F with respect to f and E respectively.

In particular, this bracket satisfies the Jacobi identity, i.e.,

{F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} = 0,

for all observables F , G and H. For simplicity of the notations and without loss of generality,

we assume that m = 1.

Remark: Gauss’s law is derived from a Casimir invariant of the bracket (5):

C[f, E] = ∂xE − 4πe

∫
dvf.

Here we consider a neutral plasma, i.e., such that the value of this Casimir invariant is −4πe

which expresses the presence of a neutralizing background.

Regardless of the truncation, Eq. (1) can be recast in the following form (see Ref. 10 for

more details):

∂tX = {X, H},
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where X = (ρ, u, S2 = P/ρ3, S3 = 2q/ρ4, E), and

H[ρ, u, S2, S3, E] =
1

2

∫
dx

[
ρu2 + ρ3S2 +

E2

4π

]
,

and

{F,G} =

∫
dx

[
δG

δu
∂x
δF

δρ
− δF

δu
∂x
δG

δρ
− 4πe

(
δG

δu

δ̃F

δE
− δF

δu

δ̃G

δE

)

−1

ρ

(
δG

δu

δF

δSi
− δF

δu

δG

δSi

)
∂xSi + αij

1

ρ2
δF

δSi

δG

δSj
+ ∂x

(
1

ρ

δF

δSi

)
βij

1

ρ

δG

δSj

]
.(6)

The 2× 2 matrices α = ∂xγ and β are given by

γ =

 2S3 2S4 − 3S2
2

3S4 − 6S2
2 3S5 − 12S2S3

 ,

and

β =

 4S3 5S4 − 9S2
2

5S4 − 9S2
2 6S5 − 24S2S3

 ,

where S4 = R/ρ5 and S5 is an arbitrary function of ρ, u, S2 and S3. As a consequence, since

the bracket is antisymmetric, the models are all conserving energy regardless of the closure

S4 = S4(ρ, u, S2, S3) and S5 = S5(ρ, u, S2, S3). We notice that β = γ+ γT . This allows us to

rewrite the Poisson bracket in a more antisymmetric way

{F,G} =

∫
dx

[
δG

δu
∂x
δF

δρ
− δF

δu
∂x
δG

δρ
− 4πe

(
δG

δu

δ̃F

δE
− δF

δu

δ̃G

δE

)

− 1

ρ
∂xSi

(
δG

δu

δF

δSi
− δF

δu

δG

δSi

)
+

1

ρ

δG

δSi
γij ∂x

(
1

ρ

δF

δSj

)
− 1

ρ

δF

δSi
γij ∂x

(
1

ρ

δG

δSj

)]
.

The Jacobi identity for the above bracket leads to the following constraints on the matrix

γ:

(γkn + γnk)
∂γij
∂Sn

= (γjn + γnj)
∂γik
∂Sn

, (7a)

∂γin
∂Sm

∂γjk
∂Sn

=
∂γjn
∂Sm

∂γik
∂Sn

, (7b)

for all i, j, k, m (and repeated summation over n).
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A. Explicit expression for the Hamiltonian closure

In Ref. 10, it was shown that in order for the bracket (6) to be Hamiltonian, the closures

S4 and S5 needs to be of the form S4 = S4(S2, S3) and S5 = S5(S2, S3), i.e., they do not

depend on ρ and u. The conditions (7) boil down to three constraints

6S5 = 12S2S3 + 4S3
∂S4

∂S2

+ (5S4 − 9S2
2)
∂S4

∂S3

,

∂S5

∂S2

= 4S3 +
∂S4

∂S3

(
∂S4

∂S2

− 3S2

)
,

∂S5

∂S3

=
∂S4

∂S2

+

(
∂S4

∂S3

)2

.

Equivalently, a necessary and sufficient condition is that the closure function S4 satisfies the

following two coupled nonlinear partial differential equations

4S3
∂2S4

∂S2
2

− (9S2
2 − 5S4)

∂2S4

∂S2∂S3

− ∂S4

∂S2

∂S4

∂S3

− 12S3 = 0, (8a)

4S3
∂2S4

∂S2∂S3

− (9S2
2 − 5S4)

∂2S4

∂S2
3

−
(
∂S4

∂S3

)2

− 2
∂S4

∂S2

+ 12S2 = 0. (8b)

From these equations, we readily check that the Gaussian closure S4 = 3S2
2 is not a solution

of these equations, which means that the Gaussian closure is not Hamiltonian. In addition,

we check that the solution given by Eq. (2), corresponding to the dimensional analysis of

Ref. 10, i.e., S4 = S2
2 + S2

3/S2, is the simplest solution. However, this is not an adequate

solution since all homogeneous equilibria are always found to be unstable, as pointed out

above. To solve Eqs. (8), we start by looking for solutions close to symmetric distributions,

i.e.,

S4(S2, S3) = f0(S2) + S2
3f1(S2) +O(S4

3).

We insert this expansion in Eqs. (8) and consider their leading behavior near S3 = 0. This

lead to a set of two coupled ordinary differential equations

2f ′′0 − (9S2
2 − 5f0)f

′
1 − f ′1f0 − 6 = 0,

−(9S2
2 − 5f0)f1 − f ′0 + 6S2 = 0.

By combining these two equations, we obtain one single ordinary differential equation

f ′′0 (9S2
2 − 5f0) + 2f ′20 − 18S2f

′
0 + 20f0 = 0.
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Near S2 = 0, we look for solutions of the type

f0(S2) = kSα2 .

A possible solution is obviously the one obtained using the dimensional analysis10, i.e.,

f0(S2) = S2
2 . In addition there is a less trivial family of solutions for α = 5/3. More

generally, we look at solutions which can be expanded in Puiseux series

f0(S2) =
∞∑
n=5

anS
n/3
2 .

We show that the only possible solutions are f0(S2) = S2
2 and

f0(S2) = kS
5/3
2 ,

for any value of k. For practical purposes, we define κ = 5k/9. We notice that contrary

to the solution provided by dimensional analysis, the second solution comes as a family

parameterized by κ. The interesting feature is that this family extends to a Hamiltonian

closure for arbitrary large values of S3. Indeed we are looking for a solution which can be

expanded as

S4(S2, S3) =
∞∑
n=0

fn(S2)S
2n
3 . (9)

Inserting this ansatz in Eq. (8) leads to a recurrence relation for the coefficients fn(S2):

f0(S2) =
9κ

5
S
5/3
2 , (10a)

f1(S2) =
κ− 2S

1/3
2

3S2(κ− S1/3
2 )

, (10b)

fn+1 = − 1

9(n+ 1)(2n+ 1)S
5/3
2 (κ− S1/3

2 )

[
(4n− 1)f ′n

+
n∑

m=1

m(12m− 7− 2n)fmfn+1−m

]
, (10c)

and an addition constraint where fn has to satisfy

S
5/3
2 (κ− S1/3

2 )(n+ 1)f ′n+1 − (n+ 1)
κ

3
S
2/3
2 fn+1 +

2

9
f ′′n

+
1

9

n∑
m=1

(6m− n− 1)f ′mfn+1−m = 0, (11)
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for all n ≥ 1. The first few terms are given by

f2(S2) =
1

34S
11/3
2 (κ− S1/3

2 )
,

f3(S2) = 2
5κ− 3S

1/3
2

38S
19/3
2 (κ− S1/3

2 )3
,

f4(S2) =
48κ2 − 61κS

1/3
2 + 18S

2/3
2

311S9
2(κ− S1/3

2 )5
.

The expression of other terms of the series expansion of S4 can be obtained using a MAT-

LAB16 code available at Ref. 17. We are not able to prove directly that for all n, the fns

obtained by the recursion relation (10) satisfy Eq. (11). However, we have checked that for

n below 25, these conditions are satisfied using symbolic computations available from the

MATLAB16 code. Beyond this value of 25, the symbolic computations are too complex to

allow simplifications in a reasonable amount of time. By truncating the series (9), i.e., by

considering

S4(S2, S3) =
nmax∑
n=0

fn(S2)S
2n
3 ,

we have found that the Jacobi identity is satisfied up to orders S2nmax
3 for the values of

nmax we have tested. This led us to conjecture that the limit nmax → ∞ corresponds to a

Hamiltonian closure. We notice that the closure is singular at

S
(c)
2 = κ3,

so this explicit closure S4 = S4(S2, S3) is valid only in the range S2 ∈ [0, S
(c)
2 [.

Remark: Scaling. We notice that the functions fn satisfy

fn(λ2S2;λ
2/3κ) = λ4−6nfn(S2;κ),

for all n ≥ 0. Therefore, we have a scaling relationship for S4:

S4(λ
2S2, λ

3S3;λ
2/3κ) = λ4S4(S2, S3;κ).

A contour plot of S4 in the plane (S2, S3) is represented in Fig. 1 for κ = 1. The equations

of motion are given by Eqs. (1) with

R(ρ, P, q) = ρ5
∞∑
n=0

fn

(
P

ρ3

)(
2q

ρ4

)2n

.

9



FIG. 1. Contourplot of S4 given by Eq. (9) as a function of S2 and S3 for κ = 1. The summation

is computed up to S30
3 . The vertical red line corresponds to the location of the singularity at

S2 = S
(c)
2 . The MATLAB16 code to compute symbolically the terms of the closure and obtain

numerically this figure is available at Ref. 17.

In particular one interesting feature is that the first order of the closure does not depend on

ρ, i.e.,

R(ρ, P, q = 0) =
9κ

5
P 5/3.

Remark: Relation between the kurtosis and the skewness. A scaling of kurtosis (related

to S4) with squared skewness (related to S3) for plasma density fluctuations and sea-surface

temperature fluctuations was found in Refs. 18–22. Using the Hamiltonian closure, this

relation is found as the first two terms of the closure, i.e., S4 = b + aS2
3 + O(S4

3) where a

and b are functions of ρ and P .

10



B. Casimir invariants

A very interesting property of the noncanonical Poisson bracket (6) is that it possesses

a number of Casimir invariants, i.e., observables C such that {C,F} = 0 for any other

observable F . First we are looking for Casimir invariants of the entropy type, i.e.,

C =

∫
dxρΓ(S2, S3).

The function Γ satisfies the following conditions:

βij
∂2Γ

∂Si∂Sn
+
∂γij
∂Sn

∂Γ

∂Si
= 0, (12)

for all j, k and n in (2, 3) (and where we assumed implicit summation over the repeated

index i). We assume that we have K solutions, denoted Γk for k = 2, . . . , K. Using the

property β = γ + γT , we prove that the above-conditions are equivalent to

∂

∂Sn

(
∂Γk
∂Si

βij
∂Γl
∂Sj

)
= 0, (13)

for all n, k and l.

Using series expansions, we found two solutions to Eq. (13):

C2 =
∞∑
n=0

∫
dxρgn(S2)S

2n
3 ,

C3 =
∞∑
n=0

∫
dxρhn(S2)S

2n+1
3 ,

where the first elements in the series are:

g0(S2) = S
1/3
2 ,

g1(S2) = − 1

33S
7/3
2 (κ− S1/3

2 )
,

g2(S2) =
−4κ+ 3S

1/3
2

36S5
2(κ− S1/3

2 )3
,

h0(S2) =
1

3S2(κ− S1/3
2 )

,

h1(S2) =
2

34S
11/3
2 (κ− S1/3

2 )2
,

h2(S2) =
2(5κ− 4S

1/3
2 )

37S
19/3
2 (κ− S1/3

2 )4
.
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The functions hn and gn for n ≥ 1 are determined from the recurrence relations:

gn+1 = − 1

9(n+ 1)(2n+ 1)S
5/3
2 (κ− S1/3

2 )

[
(4n+ 1)g′n +

n∑
m=0

m(6n+ 4m+ 1)fn+1−mgm

]
,

hn+1 = − 1

9(n+ 1)(2n+ 3)S
5/3
2 (κ− S1/3

2 )

[
(4n+ 3)h′n +

n∑
m=0

(2m+ 3n+ 3)(2m+ 1)fn+1−mhm

]
,

which are both obtained from Eq. (12) with j = 3 and n = 3.

These Casimir invariants allow us to define particularly relevant variables, referred to as

normal variables, in which the Hamiltonian system is greatly simplified. We perform a local

change of variables: (S2, S3) 7→ (Γ2,Γ3), where

Γ2 =
∞∑
n=0

gn(S2)S
2n
3 ,

Γ3 =
∞∑
n=0

hn(S2)S
2n+1
3 .

The bracket (6) becomes

{F,G} =

∫
dx

[
δG

δu
∂x
δF

δρ
− δF

δu
∂x
δG

δρ
− 4πe

(
δG

δu

δ̃F

δE
− δF

δu

δ̃G

δE

)

−∂xΓi
ρ

(
δG

δu

δF

δΓi
− δF

δu

δG

δΓi

)
+

1

ρ
∂x

(
1

ρ

δF

δΓi

)
β̃ij

δG

δΓj

]
, (14)

where β̃ is a symmetric matrix whose elements are

β̃kl =
∂Γk
∂Si

βij
∂Γl
∂Sj

,

with an implicit summation over repeated indices. From Eq. (13), we deduce that the

matrix β̃ is constant. As a consequence, the bracket (14) always satisfies the Jacobi identity.

Therefore the existence of two Casimir invariants of the entropy type for the bracket (6) is

sufficient to ensure that it is a Poisson bracket. Note that we use the terminology Casimir

invariant also for a bracket which is a priori not of the Poisson type. Using the expressions

for S3 = 0, the matrix β̃ takes the very simple form

β̃ =

 0 1

1 0

 .

In addition, the existence of two Casimir invariants of the entropy type ensures a third

Casimir invariant:

C1 =

∫
dx
(
u− ρ

2
Γk(β̃

−1)klΓl

)
,
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which is equal to

C1 =

∫
dx (u− ρΓ2Γ3) .

Its expansion is given by

C1 =

∫
dx

(
u− ρ

∞∑
n=0

kn(S2)S
2n+1
3

)
,

where

kn =
n∑

m=0

gn−mhm,

for n ≥ 0, and the first elements of the series are given by

k0(S2) =
1

S
2/3
2 (κ− S1/3

2 )
,

k1(S2) =
1

33S
10/3
2 (κ− S1/3

2 )2
,

k2(S2) =
4κ− 3S

1/3
2

36S6
2(κ− S1/3

2 )4
.

We notice that three Casimir invariants similar to C1, C2 and C3 (but of course, different)

have been found for the Hamiltonian closure obtained using the dimensional analysis (see

Ref. 10).

The advantage of working in the variables Γi instead of the variables Si is that the

closure functions S4 and S5 are no longer present in the Poisson bracket. They are now

in the Hamiltonian through the change of variables (S2, S3) 7→ (Γ2,Γ3). If we truncate the

closure functions S4 and S5 –a natural step since these functions are given as series in S3– the

system remains Hamiltonian in the variables Γi whereas if these truncations are performed

in the bracket in the variables Si, the system would likely loose the Hamiltonian property.

C. Parametric expression for the Hamiltonian closure

There is another significant advantage to working with normal variables Γi: What is not

fully satisfactory with the variables Si is that the closure is given as a relatively complex

expansion, and consequently we were not been able to check the Jacobi identity at all orders

in the expansion. The origin of this complication is due to the search for an explicit closure

function S4(S2, S3), not to the search of a Hamiltonian closure per se. Here instead we are

looking at a parametric expression of the closure, and we consider the normal variables as

13



parameters of the closure. More precisely, we consider an arbitrary change of coordinates

from some variables Γi to variables Si:

S2 = S2(Γ2,Γ3),

S3 = S3(Γ2,Γ3),

and the closure functions are given by

S4 = S4(Γ2,Γ3),

S5 = S5(Γ2,Γ3).

We start with the bracket (14) which is a Poisson bracket since the matrix β̃ is constant. The

question of finding Hamiltonian closures is reformulated as follows: What are the functions

Si for which the bracket (14) expressed in the variables Si is the original bracket (6)? The

answer is given by two sets of equations

∂Si
∂Γk

β̃kl
∂Si
∂Γl

= βij, (15)

∂2Si
∂Γn∂Γk

β̃kl
∂Si
∂Γl

=
∂γij
∂Γn

, (16)

for all i, j and n. The first set of equations (15) defines parametrically the functions S3, S4

and S5:

S3 =
1

2

∂S2

∂Γ2

∂S2

∂Γ3

,

S4 =
9

5
S2

2
+

1

5

∂S2

∂Γ2

∂S3

∂Γ3

+
1

5

∂S2

∂Γ3

∂S3

∂Γ2

,

S5 = 4S2 S3 +
1

3

∂S3

∂Γ2

∂S3

∂Γ3

.

Once the function S2 is specified, all of the other functions Si are uniquely determined by

the above equations. By inverting the equations Γi = Γi(S2, S3) or by solving one of the

constraints (16), we obtain the following expression for S2(Γ2,Γ3):

S2(Γ2,Γ3) = Γ3
2 + Γ2(κ− Γ2)Γ

2
3. (17)

14



Inserting this expression in the parametric equations for S3, S4 and S5 leads to the following

expressions:

S3(Γ2,Γ3) = Γ2Γ3(κ− Γ2)
(
3Γ2

2 + (κ− 2Γ2)Γ
2
3

)
, (18a)

S4(Γ2,Γ3) =
9κ

5
Γ5
2 + 6Γ3

2(κ− Γ2)
2Γ2

3

+ Γ2(κ− Γ2)
(
κ2 − 3Γ2(κ− Γ2)

)
Γ4
3, (18b)

S5(Γ2,Γ3) = 9κΓ5
2(κ− Γ2)Γ3 + 10Γ3

2(κ− Γ2)
3Γ3

3

+ Γ2(κ− Γ2)(κ− 2Γ2)(κ
2 − 2κΓ2 + 2Γ2

2)Γ
5
3. (18c)

We notice that the closure is no longer given as an infinite series. In particular, the functions

Sn for n = 2, 3, 4, 5 are polynomials in the two variables Γ2 and Γ3, and the degree in Γ3 is n

and the degree in Γ2 is n+1. Using Mathematica23, we have checked that the constraints (16)

are all satisfied. The code is available at Ref. 17. The series expansion of the explicit closure

S4 = S4(S2, S3) given in Eqs. (9) is obtained by inverting Eqs. (17) and (18a), and inserting

them in Eq. (18b). As a consequence, this proves the Jacobi identity for the explicit closure

S4 = S4(S2, S3).

For S2 to be positive, a necessary and sufficient condition is that κ > Γ2 > 0 or if Γ2 > κ,

Γ2
3 < Γ2

2/(Γ2 − κ). This means that S2 can take arbitrarily large values, provided that S3 is

not too large. We notice that the point (S2 = κ, S3 = 0) in Fig. 1 is obtained for Γ2 = κ

regardless of the value of Γ3.

In Fig. 2, we have represented the closure function S4 given parametrically by Eqs. (18)

for a selected range of parameters (Γ2,Γ3). The surface gets more complicated, with more

branches, as the range of (Γ2,Γ3) is extended (see the Mathematica code available at

Ref. 17). We notice that there is a central brighter patch where there is a single value

of S4 for a given (S2, S3). It corresponds to the explicit closure S4 = S4(S2, S3) as depicted

in Fig. 1.
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FIG. 2. Parametric representation of S4 given by Eqs. (18) as a function of S2 and S3 for κ = 1.

The Mathematica code is available at Ref. 17

D. Equations of motion

The Poisson bracket (14) becomes

{F,G} =

∫
dx

[
δG

δu
∂x
δF

δρ
− δF

δu
∂x
δG

δρ
− 4πe

(
δG

δu

δ̃F

δE
− δF

δu

δ̃G

δE

)

− ∂xΓi
ρ

(
δG

δu

δF

δΓi
− δF

δu

δG

δΓi

)
+

1

ρ

δG

δΓ2

∂x

(
1

ρ

δF

δΓ3

)
− 1

ρ

δF

δΓ2

∂x

(
1

ρ

δG

δΓ3

)]
,

and the Hamiltonian is

H[ρ, u,Γ2,Γ3, E] =
1

2

∫
dx

[
ρu2 + ρ3S2(Γ2,Γ3) +

E2

4π

]
,

16



where S2 is given by Eq. (17). The equations of motion are given by Ḟ = {F,H}:

∂tρ = −∂x(ρu), (19a)

∂tu = −u∂xu−
1

ρ
∂x
(
ρ3S2

)
+ eẼ (19b)

∂tΓ2 = −u∂xΓ2 −
1

2ρ
∂x

(
ρ2
∂S2

∂Γ3

)
, (19c)

∂tΓ3 = −u∂xΓ3 −
1

2ρ
∂x

(
ρ2
∂S2

∂Γ2

)
, (19d)

∂tE = −4πeρ̃u. (19e)

Remark 1: In the case of an external time-dependent electric field E0(x, t), the closure

is identical. First we need to autonomize the bracket. For the Vlasov–Poisson equation,

the variables are the fields f(x, v, t) and E1(x, t), together with t and K (K being the

canonically conjugate variable to time t), such that the total electric field is E = E0 + E1.

The Hamiltonian is

H[f, E1, t,K] =

∫
dxdvf

v2

2
+

∫
dx
E2

1 + 2E1E0

8π
+K,

and the Poisson bracket

{F,G} =

∫
f

[
∂x
δF

δf
∂v
δG

δf
− ∂v

δF

δf
∂x
δG

δf
− 4πe

(
δ̃F

δE1

∂v
δG

δf
− ∂v

δF

δf

δ̃G

δE1

)]
dxdv

+ FtGK − FKGt.

For the reduced fluid equations, the Hamiltonian becomes

H[ρ, u,Γ2,Γ3, E1, t,K] =
1

2

∫
dx

[
ρu2 + ρ3S2 +

E2
1 + 2E1E0

4π

]
+K,

and the Poisson bracket

{F,G} =

∫
dx

[
δG

δu
∂x
δF

δρ
− δF

δu
∂x
δG

δρ
− 4πe

(
δG

δu

δ̃F

δE1

− δF

δu

δ̃G

δE1

)

− ∂xΓi
ρ

(
δG

δu

δF

δΓi
− δF

δu

δG

δΓi

)
+

1

ρ

δG

δΓ2

∂x

(
1

ρ

δF

δΓ3

)
− 1

ρ

δF

δΓ2

∂x

(
1

ρ

δG

δΓ3

)]
+ FtGK − FKGt.

The equations of motion consists in changing E by E0 + E1 in the Vlasov equation and in

the momentum equation, and replacing E by E1 in the Ampère equation.
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Remark 2: By rescaling the parameters Γ2 and Γ3, and by rescaling the density ρ in the

following way

Γ2 = κΓ
(r)
2 ,

Γ3 =
√
κΓ

(r)
3 ,

ρ = κ−3/2ρ(r),

the equations of motion (19a)-(19d) are not longer explicitly depending on κ. The parameter

κ appears only in Ampère’s equation or equivalently in Gauss’ law. This means that the

parameter of the closure κ can be viewed as the coupling parameter between the fluid part

and the electrostatic part. The parameter κ can also be removed completely from the

equations of motion by rescaling the charge and the electric field as

e = κ3/4e(r),

E = κ−3/4E(r).

As a consequence, the one-parameter family of Hamiltonian closures can be seen as a unique

Hamiltonian model, and the parameter κ is now in the initial condition.

E. Stability of the symmetric and homogeneous equilibria

We have found a one-parameter family of closures which fulfill the first requirement,

namely, the resulting models are Hamiltonian. The second requirement is the stability of

the equilibria q0 = 0. The linearized equations of motion reduce to Eq. (3) with

A =



0 −ikρ0 0 0 0

0 0 −ikρ−10 0 e/m

0 −3ikP0 0 −2ik 0

0 0 −3ik(κP
2/3
0 − ρ−10 P0)/2 0 0

0 −4πeρ0 0 0 0


.

From the dispersion relation, we define

ω2
0 = ω2

p + 3κP
2/3
0 k2,

where ωp =
√

4πe2ρ0/m is the plasma frequency. The eigenvalues of A are all purely

imaginary if

ω2
0 > ω2

BG,
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where ωBG(k) is the Bohm-Gross dispersion relation given by

ω2
BG = ω2

p + 3
P0

ρ0
k2.

The non-zero eigenvalues of A are

iω = ± i√
2

(
ω2
0 ±

√
ω4
0 − 4ω2

p(ω
2
0 − ω2

BG)
)1/2

.

Therefore the homogeneous equilibria are stable for ω2
0 > ω2

BG, which is equivalent to requir-

ing that S2 < S
(c)
2 or Γ2 < κ. In terms of the parameters of the equilibrium, this means that

the pressure P0 is such that P
1/3
0 /ρ0 < κ. A crucial factor is that the closure R(ρ, P, q = 0)

does not depend on ρ, and in this case, the necessary and sufficient condition for stability is

ω2
p + k2

∂R

∂P
> ω2

BG.

We recall that

R(ρ, P, 0) = ρ5S4

(
P

ρ3
, 0

)
.

The fractional exponent 5/3 in the closure comes from the requirement that R does not

depend on ρ, ensuring the stability of the equilibria. More general cases for stability would

be that at q = 0

∂R

∂P
>

3P

ρ
,

∂R

∂ρ
≤ 0,

for all ρ > 0 and P > 0. However, these conditions do not ensure that the resulting model is

Hamiltonian. As expected, the requirement that the model is Hamiltonian is more stringent

than requiring that homogeneous equilibria are stable.

III. NUMERICAL APPLICATIONS

The objective of this section is not to offer a detailed comparison between the numerical

implementation of the Hamiltonian fluid model and the one of the parent kinetic model.

The objective is more modest since we limit ourselves to a couple of illustrations of the

Hamiltonian fluid model, demonstrating the feasibility and practicality of the fluid model,

which could trigger further questions of a more practical nature than the ones we consider

in what follows. We consider two applications, one where the fluid model leads to stable

plasma oscillations and the other one where it is unstable. In all the simulations, we consider

a domain x ∈ [−Lx, Lx] and v ∈ [−Lv, Lv] with Lv = 10.
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A. Plasma oscillations

We consider the following initial distribution function, built from a skew-normal distri-

bution,

f(x, v, 0) =
1√
2π

(1− A cos k x)

[
1 + erf

(
αv√

2

)]
e−v

2/2,

with A = 10−4, k = λD/2 and α = 0.1 (where λD is the Debye length). Here the velocities

are in units of the thermal velocity vth =
√
kBT . Given that the equilibrium has some initial

fluid velocity, the Bohm-Gross dispersion relation is becomes

ωBG = ±ωp
[
1± u k

ωp
+

3

2
ρ2S2

k2

ω2
p

± 2ρ3S3
k3

ω3
p

+O

(
k4

ω4
p

)]
.

This is the same dispersion relation given by the fluid and the kinetic models. For the

skew-normal equilibrium,

ρ = 1,

u = α

√
2

π(1 + α2)
,

S2 = 1− 2α2

π(1 + α2)
,

S3 =
α3

(1 + α2)3/2

√
2

π

(
4

π
− 1

)
.

We consider the fluid model with κ = 1. Given the initial values of S2 and S3, we compute

the initial values for Γ2 and Γ3. We represent the values of E(x, t) in Fig. 3 obtained with

the fluid and the kinetic model. We notice some qualitative similarities between the kinetic

and the fluid model, such as plasma oscillations. However, as expected, the fluid model does

not capture the damping of the field (clearly visible for Lx/λD = 2π), which is a purely

kinetic effect. For larger values of Lx, i.e., Lx/λD = 3π the damping is reduced as expected,

and the agreement between the kinetic and the fluid simulations is improved.

B. Two-stream instability

Next, we consider the two-stream instability with the initial distribution

f(x, v, 0) = (1− A cos kx)
v2e−v

2/2v20
√

2π v30
.
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(a) (b)

(c) (d)

FIG. 3. Contour plot of E(x, t): Panel (a): Hamiltonian fluid model with κ = 1 and Lx/λD = 2π.

Panel (b): one-dimensional Vlasov–Poisson equation with Lx/λD = 2π. Panel (c): Hamiltonian

fluid model with κ = 1 and Lx/λD = 3π. Panel (d): one-dimensional Vlasov–Poisson equation

with Lx/λD = 3π.

For this distribution, vth =
√

3 v0. To simplify comparison with the existing literature, we

take λ̄ = λD/
√

3 and v0 to be our length and velocity scales, respectively. We set A = 10−6

and k λ̄ = 1/2. From the previous section, we know that the Hamiltonian fluid model leads

to an instability if κ < 31/3 ≈ 1.44 (since ρ0 = 1 and P0 = 3). Here we consider the fluid

model with κ = 1.30834.

In Fig. 4, we compare the growth of the first four Fourier modes of the electric field, i.e.,

with k λ̄ = 1/2 (fundamental), k λ̄ = 1, k λ̄ = 3/2 and kλ̄ = 2 for Lx/λD = 2π. As expected,

both models, fluid and kinetic, display the instability, i.e., the growth of the electric field

with time. The numerical algorithm for the fluid model fails at ωpt ≈ 47, at which time

particle trapping becomes predominant in the kinetic model.

The parameter κ has been chosen such that the slope of the linear part of the first

mode k λ̄ = 1/2 obtained with the fluid model matches the one obtained with the linear
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FIG. 4. The left panel shows magnitude of the Fourier modes Ek(t) of the electric field E(x, t) as

functions of time for k λ̄ = 1/2 (blue curves), k λ̄ = 1 (orange curves), k λ̄ = 3/2 (green curves)

and k λ̄ = 2 (read curves). The continuous curves are for the kinetic model, and the dashed curves

are for the Hamiltonian fluid model with κ = 1.30834. The right panel shows the amplitudes for

k λ̄ = 1/2 for Hamiltonian fluid model (dashed violet), kinetic (blue) and unstable mode from

linear kinetic theory (red).

kinetic model, i.e., a growth rate of 0.25924553ωp (which has been corrected for the effects

of the spatial grid). We notice that both models display some similar features, such as the

oscillations at the beginning. Also, the slope of the higher-order modes corresponds rather

well, despite the fact that these modes are higher in amplitude for the fluid model.

The main discrepancy between both models occur when the amplitude of the field satu-

rates, which is when the kinetic effects are predominant, and these cannot be described by

the fluid model. In addition, all wavenumbers are unstable in the Hamiltonian fluid model

while only the fundamental mode is unstable in the kinetic model (the higher harmonics are

driven by the fundamental mode through nonlinear couplings). For both models, the initial

electric field has the same initial amplitude. Nonetheless, the amplitude of the fundamental

mode is slightly larger in the fluid model compared to the kinetic model (cf. the blue curves

on the left panel of Fig. 4). This is due to differences in how the initial condition projects

onto the system modes in the two models. In both cases, a linear analysis produces mode

amplitudes that are in excellent agreement with the numerical results.
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CONCLUSIONS

We have exhibited a one-parameter family of Hamiltonian fluid models with the first

four fluid moments – fluid density, fluid velocity, pressure and heat flux – as a result of the

reduction of the one-dimensional Vlasov–Poisson equation. The closure involves an equation

for the kurtosis in velocity of the distribution function. In the course of the reduction to

a Hamiltonian fluid model, we have identified some normal variables in which the closure

expressed parametrically is found to be polynomial in the normal variables. Each reduced

Hamiltonian fluid model possesses three Casimir invariants, two of the entropy type and

one generalized velocity. We have shown that some of these models ensures the stability

of symmetric homogeneous equilibria, depending on the parameter of the closure and the

initial conditions.
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