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Improved Kalman-Particle Kernel Filter on Lie Groups Applied to Angles-Only UAV Navigation

Kalman-Particle Kernel Filter (KPKF) is a sub-class of Particle Filter (PF) that uses Gaussian kernels as particles, which enables a local Kalman update for each measurement in addition to the usual weight update. Besides, recent research about filtering on Lie groups brought powerful theoretical results, and showed the superiority of this approach. Hence, this paper extends the Euclidean KPKF to a new formulation on Lie groups and introduces substantial improvements based on Lie groups Kalman filters theory and Laplace Particle Filters on Lie groups (LG-LPF) for improved resampling. The proposed algorithm is tested on an angles-only UAV navigation scenario with challenging initial errors. It shows superior robustness and accuracy compared to Lie group Extended Kalman Filter (LG-EKF), with near-to optimal performance, even with a limited amount of particles.

I. INTRODUCTION

Nonlinear state estimation is an active field of research in robotics. It consists of fusing data from multiple sensors to obtain the evolution of variables of interest, aiming to minimize the impact of sensor flaws. A general formulation of this problem is the optimal filter, described by the Chapman-Kolmogorov equation and the Bayes rule. Sampling-based approaches such as Particle Filters (PF) are suitable to solve the optimal filter in non-Gaussian and highly nonlinear cases [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF], whereas algorithms based on the Extended Kalman Filter (EKF) or Unscented Kalman Filters (UKF) are popular choices for Gaussian cases. Kalman-Particle Kernel Filter (KPKF) principle is to use weighted Gaussian kernels as particles [START_REF] Dahia | Application of the kalman-particle kernel filter to the updated inertial navigation system[END_REF]. Thus, the particles can be propagated and updated using EKF equations, and another step adjusts their weights with respect to the measurement likelihood. To cope with the EKF framework, each particle covariance is chosen small enough to assume that the system is locally Gaussian [START_REF] Dahia | Application of the kalman-particle kernel filter to the updated inertial navigation system[END_REF]. However, for particle filters in general, particles weights degenerate after a few updates. Thus, a resampling step is often triggered to select a new set of particles. In its original implementation, KPKF showed improved accuracy and robustness compared to classic PF, as it provides better coverage of the estimated posterior density and requires fewer resampling steps [START_REF] Pham | A Kalman-particle kernel filter and its application to terrain navigation[END_REF] [START_REF] Dahia | Application of the kalman-particle kernel filter to the updated inertial navigation system[END_REF].

outperformed their Euclidean counterparts on many aspects including robustness, accuracy and computational load [START_REF] Bourmaud | Discrete Extended Kalman Filter on Lie groups[END_REF] [5] [START_REF] Brossard | Unscented Kalman filtering on Lie groups[END_REF]. Besides, the Invariant Extended Kalman Filter (IEKF) demonstrated original stability and observability properties that are beyond the reach of Euclidean EKF [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF]. In addition, the novel Laplace Particle Filter (LPF) [START_REF] Musso | Introducing the Laplace approximation in particle filtering[END_REF] significantly enhanced particle filters resampling step, as it accounts for the measurement likelihood to select new particles. A Lie group version of the LPF (LG-LPF) was lately established in [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF] showing the interest of Lie groups in stochastic filtering. This paper introduces the Lie groups Laplace KPKF (LG-KPKF) which uses powerful results from IEKF theory, and accurate resampling from LG-LPF. In particular, the propagation step uses invariance properties introduced in the IEKF theory [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF] for fast and accurate particles propagation. The KPKF Kalman update [START_REF] Pham | A Kalman-particle kernel filter and its application to terrain navigation[END_REF] is performed with an extended kalman filter on the Lie group (LG-EKF), leading to improved precision and robustness. Finally, the KPKF particle update uses the Laplace method on Lie group for a close-to-optimal resampling. In the sequel, section II states the estimation problem and provides basic definitions about Lie groups, alongside specific properties of IEKF. Then, section III details the improved LG-KPKF algorithm, which is the main contribution of this paper. Finally, this filter is tested in section IV on the simulated optimal navigation of a fixed-wing drone with angles-only measurements and section V concludes the paper.

II. PROBLEM STATEMENT

A. Introduction to Lie groups 1) Preliminary definitions: A Lie group (G, •) is a differential manifold endowed with a group structure [START_REF] Hilgert | Structure and Geometry of Lie Groups[END_REF]. It admits a tangent space at its identity point, which is called the Lie algebra and denoted g. Besides, in the case of matrix Lie groups, there exist two bijective maps at the vicinity of I d , namely the group exponential exp G : g → G and the group logarithm log G : G → g, whose expressions reduce to the following matrix power series [START_REF] Hilgert | Structure and Geometry of Lie Groups[END_REF]:

exp G (X) = ∞ k=0 X k k! ; log G (X) = ∞ k=1 (-1) k+1 k (X -Id) k .
(1) Since g is a linear space, there exist linear mappings:

[•]

∧ : R d → g, and

[•] ∨ : g → R d , (2) 
and their compositions with exp G and log G are denoted: A summary of these mappings is provided in Figure 1.

exp G ([•] ∧ ) = exp ∧ G (•) ; log G ([•] ∨ ) = log ∨ G (•). (3) 
2) Group errors: Let (X, X) ∈ (G, •) two state matrices. The group error between X and X can be defined on the right η R = X • X -1 and the left η L = X -1 • X as the group law does not commute. Besides, the representation of the (left or right) group error η in the Euclidean space denoted ε is defined as:

ε = log ∨ G (η). (4) 
3) Uncertainties on Lie groups: Let ∼ ϕ(0, P ) be a centred random vector following the probability law ϕ of covariance P , and µ ∈ G a matrix. A random matrix X ∈ G follows a left concentrated distribution of mean µ and covariance P on G if:

X ∼ ϕ L G (X; µ, P ) ; X = µ • exp ∧ G ( ). (5) 
This definition holds when the density is concentrated around its mean, that is to say, all eigenvalues of P are small enough [START_REF] Chirikjian | Gaussian approximation of non-linear measurement models on Lie groups[END_REF] to stay in the bijective area of exp G . For the sake of brevity, the sequel only describes the left distribution case. Adaptation to the right distribution case is possible with minor adjustments. Let X ∼ N L G (µ, P ) a left random variable on a Lie group, and || • || P the Mahalanobis norm with respect to P . The probability density function of a concentrated Gaussian distribution on a Lie group writes [START_REF] Bourmaud | Estimation de pramètres évoluant sur des groupes de Lie : application la cartographie et la loalisation d'une caméra monoculaire[END_REF] [17]:

p G (X) ≈ 1 (2π) d det [P ] e -1 2 || log ∨ G (µ -1 X)|| 2 P . (6) 
B. State Estimation 1) Stochastic Filtering Scheme: Let the discrete-time hidden state describing a Markov process {X k } k∈N ∈ G, where G is a Lie group, according to a set of observations {y k } k∈N ∈ G , all mutually independent given X k :

X k+1 = f (X k , n q,k ), y k+1 = h(X k+1 , n r,k+1 ), (7) 
where (n q,k , n r,k ) are noise vectors, G is the Lie group of the measurement, and (f, h) two possibly nonlinear smooth mappings. The filtering problem lies in the estimation of the posterior density p(X k |y 1:k ), where p(X 0 ) is known, and

y 1:k = [y 1 , ... , y k ].
First, the state density is propagated using the Chapman-Kolmogorov equation:

p(X k+1 |y 1:k ) = p(X k+1 |X k )p(X k |y 1:k )dX k . (8)
Then, an update step computes the posterior density based on the Bayes rule:

p(X k+1 |y 1:k+1 ) = p(y k+1 |X k+1 )p(X k+1 |y 1:k ) p(y k+1 |X k+1 )p(X k+1 |y 1:k )dX k+1
.

(9) Equations ( 8) and ( 9) are referred to as the optimal filter.

2) Particle kernel filters: An interesting approach to solve the optimal filter is to represent the probability densities with a set of kernels. Different methods address this problem [START_REF] Pham | A Kalman-particle kernel filter and its application to terrain navigation[END_REF] [10] [START_REF] Merlinge | A Box Regularized Particle Filter for state estimation with severely ambiguous and non-linear measurements[END_REF]. This paper focuses on Gaussian kernels, as shown in Figure [START_REF] Dahia | Application of the kalman-particle kernel filter to the updated inertial navigation system[END_REF]. The mixture of N p Gaussian kernels denoted ϕ writes:

p(X k ) ≈ Np i=1 w i k ϕ(X k ; X i k , P i k ), (10) 
When a new measurement is available, the weights are updated using the likelihood density:

w i k+1 ∝ w i k p(y k+1 |X i k+1|k ) , i ∈ [1, N p ]. (11) 
The weights degeneracy phenomenon, which occurs after a few updates, is monitored using the criterion [START_REF] Kong | Sequential Imputations and Bayesian Missing Data Problems[END_REF]:

N eff = 1 Np i=1 (w i ) 2 < N th . (12) 
When N eff goes below a given threshold N th = θ.N p where θ ∈ (0, 1), the particles are considered degenerated [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF] and a resampling step is triggered. 3) Laplace Resampling: The resampling step is critical for the accuracy and robustness of the filter. The weak point of most resampling strategies lies in the selection criteria for the new particles, which mostly account for the prior density. The idea developed in Laplace Particle Filter (LPF) [START_REF] Quang | Particle filtering and the Laplace method for target tracking[END_REF] is to harness measurement likelihood to select an importance function q, which improves accuracy and robustness. Indeed, the optimal importance sampling approximation is obtained for qopt = p(x k+1 |y 1:k+1 ), which is the density to be estimated [START_REF] Musso | Introducing the Laplace approximation in particle filtering[END_REF]. To that extent, the Laplace resampling method uses the conditional expectancy x L ≈ E [x k+1 |y 1:k+1 ] and variance (J L ) -1 ≈ V [x k+1 |y 1:k+1 ] of p(x k+1 |y 1:k+1 ) as the mean and covariance of q. It ensures the latter to be close to p. Then, a new sample is drawn according to the importance density q(x; x L , (J L ) -1 ) [START_REF] Quang | Particle filtering and the Laplace method for target tracking[END_REF].

C. Log-linear error

The log-linear error property applies to a specific class of nonlinear systems from which are derived the Invariant Extended Kalman Filter (IEKF). Let X ∈ G a Gaussian state matrix following [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF], with the further assumption that f verifies:

∀X 1 , X 2 ∈ G : f (X 1 • X 2 ) = f (X 1 ) • f (I d ) -1 f (X 2 ). (13)
Let X be the variable representing the true state trajectory. The left error on the Lie group G is η L k = X -1 k X k , thus the corresponding error on the Euclidean space is

ε k = log ∨ G (η L k ).
Then, [START_REF] Barrau | Linear observed systems on groups[END_REF] shows that η L follows an autonomous evolution with respect to the estimated state, i.e. there exists a function a k : G → G such that:

η L k+1|k = a k (η L k ). (14) 
In addition, ε follows a linear and exact evolution during the propagation:

∃A k : ε k+1|k = A k ε k , (15) 
in which A k is a square matrix independent of X k . Thus, the propagated covariance is independent of the estimated state. This unique property in non-linear filtering is at the gist of the IEKF theory and one of the keys to its stability properties.

Note that [START_REF] Barrau | Linear observed systems on groups[END_REF] proves that it is only applicable to the class of Gaussian systems on Lie groups with a dynamical model verifying [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF].

III. THE KALMAN-PARTICLE KERNEL FILTER ON LIE GROUPS

This section aims to derive a generic formulation of a Kalman-Particle Kernel Filter on Lie groups (LG-KPKF) with invariant propagation. Also, it introduces the Laplace method on Lie groups for KPKF. These are the main contributions of this paper. The core idea of a KPKF [START_REF] Pham | A Kalman-particle kernel filter and its application to terrain navigation[END_REF] is to solve (8) and ( 9) with a mixture of Gaussian kernels as shown in Figure [START_REF] Dahia | Application of the kalman-particle kernel filter to the updated inertial navigation system[END_REF]:

p(X k ) ≈ Np i=1 w i k ϕ G (X k ; X i k , P i k ), (16) 
where

X i k ∈ G, ∀i ∈ [1, N p ] and ϕ G (X k ; X i k , P i k
) is a concentrated distribution on G as defined in [START_REF] Snoussi | Particle Filtering on Riemannian Manifolds[END_REF] which follows the state model of [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF]. This approach keeps the genericity of the particle filter, and benefits from the accuracy of the Kalman filter. Besides, the particles cover a broader area of the state space and their means are updated at each measurement, whereas only the weights are updated in classic particle filters. The sequel details the steps of the Lie groups KPKF (LG-KPKF) which is described Algorithm 1.

1) Sampling: The particles means are sampled around the posterior mean µ ∈ G according to [START_REF] Snoussi | Particle Filtering on Riemannian Manifolds[END_REF]. Then, their covariances are scaled with respect to the posterior covariance such that P i = h 2 1+h 2 P where h is the bandwidth [START_REF] Green | Density Estimation for Statistics and Data Analysis[END_REF].

2) Propagation: Since the particles are Gaussian kernels, their propagation is similar to the one of a local EKF on G:

X i k+1|k = f (X i k ), P i k+1|k = F i k P i k F i k T + Q k . (17) 
In the general case, the matrix F i k must be computed for each particle according to [START_REF] Bourmaud | Discrete Extended Kalman Filter on Lie groups[END_REF]. However, when (13) holds, the error log-linearity described in paragraph II-C implies that F i k does not depend on X i k , and since the particles follow the same determinisitc dynamical model:

∀i ∈ [1, N p ] : F i k = F k . ( 18 
)
When applicable, this property spares the computation of N p -1 Jacobians at each propagation and with increased precision as the computation of F k is exact.

3) Kalman Update: The Kalman update consists in performing an extended Kalman filter update on each particle when a new measurement y ∈ G is available. In the general case, the framework described in [START_REF] Bourmaud | Discrete Extended Kalman Filter on Lie groups[END_REF] is applied:

           K i k+1 = P i k+1|k H i,T k+1 H i k+1 P i k+1|k H i,T k+1 + R k+1 -1 , m i k+1 = K i k+1 log ∨ G (h(X i k+1|k ) -1 y), X i k+1 = X i k+1|k • exp ∧ G (m i k+1 ), P i k+1 = Φ G (m i k+1 )(I d -K i k+1 H i k+1 )P i k+1|k Φ T G (m i k+1 ). (19) 
Where Φ G is the group exponential Jacobian defined as:

Φ G (x) = ∂ exp ∧ G ( ) ∂ =x , (20) 
and H i k+1 is the functional Jacobian of h, computed for each particle:

H i k+1 = ∂h(X i k+1|k exp ∧ G (ε))y -1 ∂ε ε=0 . ( 21 
)
4) Particle Update: The PF update enables the mixture to be consistent with respect to the posterior density. It consists in a weight update for each particle using the likelihood:

w i k+1 ∝ w i k p(y k+1 |X i k+1 ). (22) 
5) Gaussian Laplace Resampling: This resampling step occurs when the criteria ( 12) is triggered. The Laplace resampling algorithm on Lie groups fits a concentrated Gaussian on G to the posterior density using a Gauss-Newton algorithm (GN) and uses it as an importance function for resampling [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF]. The Gaussian assumption suits most practical cases and enables a simplified process to compute the information matrix J * and the Maximum A Posteriori (MAP) on the Lie group, denoted X * . However, if the model is strongly non-Gaussian, the framework detailed in [START_REF] Musso | Introducing the Laplace approximation in particle filtering[END_REF] provides a general method for Laplace resampling. The introduction of a Laplace resampling step for a KPKF is a novelty of this paper.

6) Covariance and mean:

As Lie groups are not a linear space, the computation of the mean is done through a non-linear process described in [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF]. Also, the covariance of the prior density is required for the Laplace resampling. It is defined with respect to the state error on the Lie algebra and computed as [START_REF] Pham | A Kalman-particle kernel filter and its application to terrain navigation[END_REF]:

P k = Np i=1 w i (P i k + ε i k ε i k T ), (23) 
where

ε i k = log ∨ G ( X -1 k X i k )
, and X k is the mean of the posterior density.

Algorithm 1:

The LG-KPKF Result: X 0:T and P 0:T Init particles means: X i 0 ∼ p 0 (X; X 0 , 1 1+h 2 P 0 ) ; Init particles covariances:

P i 0 = h 2 1+h 2 P 0 ; Init weights: sample w i 0 = 1/N p ; Propagation: (X i k+1|k , P i k+1|k ) from (17) Kalman Update: (X i k+1 , P i k+1 ) from (19) PF Update: w i k+1 ∝ w i k • p(y k+1 |X i k+1|k ) if N eff < N th then
Compute prior mean: X k+1|k Compute prior covariance: P k+1|k from (23) Compute: X * k+1 , J * k+1 from the Gauss-Newton Algorithm [START_REF] Chahbazian | The Laplace particle filter on Lie groups applied to angles-only navigation[END_REF] Drawn:

X i,L k+1 ∼ q(X k+1 ; X * k+1 , (J * k+1 ) -1 ), i ∈ [1, N p ] Weights Update: wi k+1 = p(y k+1 |X i,L k+1 )p(X i,L k+1 |y k ) q(X i,L k+1 ) Normalize: w i k+1 = wi k+1 / Np i=1 wi k+1
Covariances Update:

P i k+1 = h 2 w i k+1 ε i k+1 ε iT k+1
where :

ε i k+1 = log ∨ G (X * k+1 ) -1 X i k+1 end
Compute mean: X k+1 Compute covariance: P k+1 from (23)

A first-order approximation on the conditional expectancy and variance often provides sufficient accuracy. Thus this algorithm takes X L ≈ X * and J L ≈ J * . If higher precision is required, [START_REF] Quang | Particle filtering and the Laplace method for target tracking[END_REF] provides the complete framework in the Euclidean case.

IV. APPLICATION TO ANGLES-ONLY NAVIGATION

A. Context

The LG-KPKF is applied to the optimal navigation of an Unmanned Aerial Vehicle (UAV) whose trajectory is shown in Figure 3 

       C e b,k+1 = C e b,k exp SO(3) (δtΩ b eb,k ), v e eb,k+1
= v e eb,k+1 + δt(C e b,k f b eb,k + g e ), x e eb,k+1 = x e eb,k+1 + δtv e eb , p e,i n,k+1

= p e,i,n n,k , ∀n ∈ [1, N l ], (24) 
where Ω b eb is the skew-symmetric matrix of the rotation rate, and f b eb is the acceleration, both measured by a class-A IMU. An antenna on the UAV measures the angles of arrival with respect to each landmark. The situation is shown in Figure 3, and the angular measurements equations are:

α b n = arctan 2 ∆ b n,y , ∆ b n,x , β b n = arctan 2 ∆ b n,z , (∆ b n,x ) 2 + (∆ b n,y ) 2 , (25) 
where

∆ b n = ∆ b n,x ∆ b n,y ∆ b n,z T = C b e (p e n -x e eb )
is the relative distance between a landmark and the UAV resolved in the body frame [b], and arctan 2(y, x) is such that ∀(x, y) = (0, 0): 

arctan 2(y, x) =    sign(y) arctan y x x ≤ 0, sign(y) π 2 x = 0, sign(y)(π -arctan y x ) x ≤ 0. (26) 

B. Filter's Implementation

To design the filter, the considered Lie group is SE 2+N l (3) in which the state matrix writes:

X = C e b v e eb x e eb [p e n ] n∈[1,N l ] 0 2+N l ,3 I 2+N k (27) 
With this group structure, (24) verifies the property [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF]. Thus, the covariance of the particles can be propagated with a single and exact Jacobian F k = exp(δtF k ), where F k is such that:

F k =     -Ω b eb,k 0 0 0 -[f b eb,k ] × -Ω b eb,k 0 0 0 I 3 -Ω b eb,k 0 0 0 0 -I N l ⊗ Ω b eb,k     , (28 
) where ⊗ is the Kronecker product, and [u] × denotes the skew-symmetric matrix of the vector u The last element required to implement the filter is the measurement Jacobian of (25), which has to be computed for each particle according to (21):

H n k =   H i k (1) ... H i k (N l )   , (29) 
where, ∀n ∈ [1, N l ] : H i k (n) = J n M n such that:

J n =     - ∆ b n,y ρ 2 n ∆ b n,x ρ 2 n 0 ∆ b n,x ∆ b n,z ρ n ||∆ b n || 2 ∆ b n,y ∆ b n,z ρ n ||∆ b n || 2 -ρ n ||∆ b n || 2     , (30) 
M n = [∆ b n ] × 0 3 -I 3 0 0:3n-3 I 3 0 3n+4:3N l , ( 31 
) with ρ n = (∆ b n,x ) 2 + (∆ b n,y ) 2 .

C. Simulations

The simulations were completed with the parameters detailed in Table I the LG-KPKF introduced in this paper and the LG-EKF of [START_REF] Bourmaud | Discrete Extended Kalman Filter on Lie groups[END_REF] on SE 2+N l (3) with an IEKF propagation. The latter can be directly reproduced using [START_REF] Chirikjian | Gaussian approximation of non-linear measurement models on Lie groups[END_REF] for propagation and [START_REF] Green | Density Estimation for Statistics and Data Analysis[END_REF] for the update step where the jacobians are given in (28) and (21). The filters robustness is evaluated with the percentage of convergent Monte Carlo runs, while their precision can be assessed with the Average RMSE (ARMSE) after convergence. Note that RMSE are only computed on the convergent runs in the sense of (32).

The initial states are taken according to a uniform law centred on the true state, in a ±3σ 0 interval, where σ 0 is the initial standard deviation of the state. A run is considered convergent if the mean position of the state is contained inside the confidence ellipsoid Γ k computed by the Posterior Cramer-Rao Bound (PCRB) [START_REF] Tichavský | Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[END_REF], for the last five measurement iterations as follows:

Γ k = x e be,k |(x e be,k -x e be,k ) T PCRB -1 k (x e be,k -x e be,k ) ≤ κ , (32) where the threshold κ is chosen from the test p(χ 2 (d) ≤ κ 2 ) = 0.99 with d = 9 + 3N l the dimension of the state vector. The RMSE at time k is computed from convergent runs only based on the criterion (32) as:

RMSE e (k) = 1 N conv Nconv m=1 ||e(k)|| 2 2 , (33) 
where N conv represents the number of convergent runs, and the error vector e(k) is defined as:

e(k) =      log ∨ SO(3) (C e b,k ) T C e b,k,m v e be,k -v e be,k,m
x e be,k -x e be,k,m

The RMSE of each filter is computed according to (33) and displayed in Figure 4. The ARMSE is computed from (33) over the time period T of N T steps ranging from k ini to k end :

ARMSE T = 1 N T kend k=kini RMSE e (k). (35) 
In the later, k ini starts after 60 seconds of simulation, which is sufficiently large to compare the filters after the simulations have converged, and k end is the last point of the trajectory.

D. Results

The simulation results are gathered table II, and the plots of LG-KPKF are compared to LG-EKF for different numbers of particles.

LG 

1) Position and Attitude:

The LG-KPKF converges at the vicinity of the PCRB just after the first measurement, whereas LG-EKF takes more time. This is due to the KPKF structure which guides the particles towards the best area (Kalman update) and selects those making sense with respect to the posterior density (PF update and Laplace resampling). Thus, LG-KPKF shows close-to-optimal performance at the very beginning of the estimation process. After the Fig. 4: RMSE and PCRB for the LG-KPKF with 100, 500 and 1000 particles, and the LG-EKF. RMSE are only computed on the convergent runs in the sense of (32). convergence of the filters, LG-KPKF still demonstrates an improved precision. Note that the LG-KPKF is very competitive even with 100 particles, while conventional particle filters require several thousand particles to converge.

2) Velocity: Despite a challenging start (see Figure ( 4)), LG-EKF manages to converge thanks to its intrinsic robustness coming from the invariant propagation and the linearization on the Lie group for the update. On the other hand, LG-KPKF shortly converges toward the PCRB and shows improved accuracy even after convergence.

V. CONCLUSION

This paper describes LG-KPKF, a novel algorithm on Lie groups with several improvements compared to the original method. When applicable, the invariant filtering theory provides a lighter propagation step, and the Laplace method provides an accurate and robust resampling step. Besides, LG-KPKF was applied to an angles-only UAV navigation scenario with challenging initial errors, and shows improved robustness, fast convergence, and close-to-optimal accuracy compared to LG-EKF, even with a limited number of particles. Future work will focus on strategies for multimodal scenarios and different measurement models.

Fig. 1 :

 1 Fig. 1: Illustration of the Lie group structure. The group exponential exp G and logarithm log G define a bijection of G into R d , and the algebra g is the tangent space at I d .

Fig. 2 :

 2 Fig. 2: Illustration of a Gaussian (left) and a Dirac (right) mixture as approximations of p.

  . The ground frame [e] is fixed with respect to the Earth and its axis are pointing East, North, Up at its local position. The frame attached to the vehicle is denoted [b] and its axis are pointing forward, rightward and downward. The aim of the sequel is to estimate the position of the UAV x e eb , its velocity v e eb , and its attitude represented with the rotation matrix C e b . We consider a set of N l landmarks [p e n ] n∈[1,N l ] well initialized in the filter and continuously observed through the flight. The discretized kinematics equations give, with a time-step δt:

Fig. 3 :

 3 Fig. 3: Horizontal velocity and Euler angles evolution over time (top-left), horizontal position trajectory with the three landmarks (top-right), and parametric illustration of the angle of arrival measurements (bottom).

  . Two filters are compared in the sequel:

		Sensor Parameters	
	Sensor rates (Hz)	IMU:	100 Hz	Angles:	1 Hz
	IMU noise (1σ)	Gyro:	2 • /h	Accel:	10 -4 m/s 2
	Angles noise (1σ)	Azimuth: 0.6 •	Elevation: 0.6 •
		Filter parameters	
	Initial errors	Attitude	Velocity	Position	Landmarks
	(1σ)	11.50 •	10 m/s	1 km	10 m
	Process noise (1σ)	Attitude	Velocity	Position	Landmarks
		0.6 •	10 -4 m/s ∅	∅
	Update noise (1σ)	Azimuth	1.8 •	Elevation 1.8 •
	Resampling threshold	N th = 0.6Np	

TABLE II :

 II Comparison of the ARMSE and convergence rate of the LG-KPKF and LG-EKF for different amounts of particles. ARMSE are computed starting 60s of simulation and only on the convergent runs in the sense of (32).
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