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We propose a general framework for a sufficient condition of the existence of the principal eigenpair to the eigenvalue problem L[u]+H[u] = λu, (λ, u) ∈ R×X, where L : X → X is a positive bounded linear operator and H : D(H) ⊂ X → X a closed, possibly unbounded linear operator in the Banach space (X, ∥ • ∥). Criteria for (i) the existence of a principal eigenpair, (ii) Asynchronous Exponential Growth (AEG) and, (iii) continuity result of the spectral bound are given, without necessarily specifying forms of operators for the above problem. The criteria are then applied to generalize some results in the existing literature in context of nonlocal dispersal operators. Our results are applied to a model of a chemostat and a model of a spatial evolution of a man-environment disease.

Introduction

This work is devoted to a sufficient condition for the existence of the principal eigenpair of the following eigenvalue problem

L[u] + H[u] = λu, (λ, u) ∈ R × X (1) 
where L : X → X is a positive bounded linear operator and H : D(H) ⊂ X → X a closed, possibly unbounded linear operator in the Banach space (X, ∥ • ∥). Problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF] was motivated by the emergence, during the last decade, of a trend in mathematical evolutionary epidemiology aiming to simultaneously model the epidemic and the evolutionary dynamics arising in population dynamics, essentially inspired by quantitative genetics and epidemiology, eg. [START_REF] Yang | Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions[END_REF][START_REF] Sun | A nonlocal dispersal equation arising from a selection-migration model in genetics[END_REF][START_REF] Yang | Principal eigenvalues for some nonlocal eigenvalue problems and applications[END_REF][START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF][START_REF] Kuniya | Global dynamics of an SIR epidemic model with nonlocal diffusion[END_REF][START_REF] Yang | Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions[END_REF][START_REF] Zhao | Spatial and Temporal Dynamics of a Nonlocal Viral Infection Model[END_REF][START_REF] Restif | Evolutionary epidemiology 20 years on: Challenges and prospects[END_REF][START_REF] Day | A general theory for the evolutionary dynamics of virulence[END_REF][START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF]. Problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF] is particularly relevant when dealing with the asymptotic behaviour of solutions for the model of interest 1 involving nonlocal diffusion, where L usually represents a compact kernel operator and H a multiplication operator, eg. [START_REF] García-Melián | On the principal eigenvalue of some nonlocal diffusion problems[END_REF][START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Kuniya | Global dynamics of an SIR epidemic model with nonlocal diffusion[END_REF][START_REF] Shen | On Principal Spectrum Points/Principal Eigenvalues of Nonlocal Dispersal Operators and Applications[END_REF][START_REF] Zhao | Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period[END_REF][START_REF] Yang | Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Shen | Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications[END_REF][START_REF] Bao | Criteria for the existence of principal eigenvalues of time periodic cooperative linear systems with nonlocal dispersal[END_REF][START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF][START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF]. The existence and a variational characterisation of the principal eigenvalue of Problem (1) have been studied for particular cases of the form of operators L and H. More precisely, in [START_REF] García-Melián | On the principal eigenvalue of some nonlocal diffusion problems[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Bao | Criteria for the existence of principal eigenvalues of time periodic cooperative linear systems with nonlocal dispersal[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF] authors proved, under certain conditions, the existence of a principal eigenvalue for the operator L + H, where L[u] = Ω k(x, y)u(y)dy and H[u] = b(x)u, k being a probability distribution kernel, and b a continuous bounded function on Ω ⊂ R n . While an assumption on the symmetry of the kernel k is required, for eg. by [START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF], to characterise the principal eigenpair of Problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF]; such a symmetry property of the kernel is relaxed in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. In particular, in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], the author established a rather general criterion for the existence of a principal eigenpair of Problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF], and explore the relation between the sign of the largest element of the spectrum with a strong maximum property satisfied by the operator L + H.

In this work, we propose a more general framework for a sufficient condition of the existence of the principal eigenpair to the eigenvalue problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF]. Such an approach is not yet addressed in the above-mentioned works. Compared to the existing literature, which considers particular cases of operators for the eigenvalue problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF], our results are more general without necessarily specifying the forms of operators for Problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF]. Importantly, such an approach can be applied to the evolutionary dynamics of various problems. More precisely, before stating our main results, we first introduce the below assumptions on operators L and H of Problem [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF]. Assumption 1.1 We assume that, 1) L : X → X is a positive bounded linear operator that is not identically zero.

2) The spectrum σ(H) of the operator H is such that σ(H) ̸ = ∅, and H is resolvent positive i.e., there exists λ 0 ∈ R such that if λ ≥ λ 0 then λ -H is invertible and

(λI d -H) -1 X + ⊂ X + , where X + is the positive cone of the Banach space (X, ∥ • ∥), assumed normal and reproducing.

We recall that a positive cone X + is normal if there exists an equivalent norm ∥

• ∥ 1 in X such that x ≤ y ⇒ ∥x∥ 1 ≤ ∥y∥ 1 ; while X + is reproducing if X = X + -X -.
Denote by s(H), the spectral bound of H, defined by

s(H) = sup {ℜ(λ) : λ ∈ σ(H)} .
Moreover, Assumption 1.1 mainly allows to state that if H is resolvent positive with σ(H) ̸ = ∅ then, (λI d -H) -1 exists for all λ > s(H) and (λI d -H) -1 X + ⊂ X + . The above statement is quite well known in the context of resolvent positive operators and will be more precise later (but, for eg., see [START_REF] Thieme | Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity[END_REF]). Next, we also assume that Assumption 1.2 X is a Banach lattice, the operator L : X → X is compact and, i) There exists λ > s(H) such that, the spectral radius r (L(λI d -H) -1 ), of the operator

L(λI d -H) -1 , satisfies r (L(λI d -H) -1 ) > 1.
ii) H generates a strongly continuous semigroup of bounded linear operators.

iii) The Banach lattice X is either a) an abstract L space, b) an abstract M space, or c) X = L p (Ω, µ) with 1 ≤ p < ∞ and some positive σ-finite measure µ.

iv) The strongly continuous semigroup {T (t)} t≥0 of bounded linear operators generated by L + H is irreducible.

Let B(X) denotes the Banach space of bounded linear operators defined from X into X.

We recall that a semigroup

{T (t)} t≥0 ⊂ B(X) is irreducible if for each u ∈ X + \ {0} and u * ∈ X * + \ {0} (the dual of the positive cone X + ), there exists t 0 ≥ 0 such that (T (t 0 )[u], u * ) > 0.
We also recall the definition of the Asynchronous Exponential Growth (AEG) as follows (see also [START_REF] Webb | An Operator-Theoretic Formulation of Asynchronous Exponential Growth[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF])

Definition 1.3 Let {T (t)} t≥0 ⊂ B(X)
be a strongly continuous semigroup. {T (t)} t≥0 has asynchronous exponential growth with intrinsic growth constant λ 0 ∈ R if and only if there is a nonzero finite rank projection P 0 ∈ B(X) such that lim t→+∞ e -λ 0 t T (t) = P 0 where the above limit is in the operator norm topology.

We then have the following result Theorem 1.4 Let Assumptions 1.1 and 1.2 be satisfied. Then, the strongly continuous semigroup {T (t)} t≥0 ⊂ B(X) generated by L+H has an AEG with intrinsic growth constant λ 0 = s(L + H). Furthermore, λ 0 is the principal eigenvalue of L + H. Remark 1.5 Theorem 1.4 implies that λ 0 is the principal eigenvalue of L + H with eigenfunction φ ∈ X + . The projector P 0 associated to the AEG is of rank one with

R(P 0 ) = N (λ 0 -L -H),
where R(P 0 ) is the range of P 0 and N (λ 0 -L -H) is the kernel of λ 0 -L -H.

We also have (P 0 [u], u * ) > 0 for all u ∈ X + , u * ∈ X * + both non-zero. Moreover we have the following properties [START_REF] Webb | An Operator-Theoretic Formulation of Asynchronous Exponential Growth[END_REF] T (t)P 0 = e λ 0 t P 0 , ∀t ≥ 0.

Compared to some works on eigenvalue problems which consider particular cases of operators (eg., [START_REF] García-Melián | On the principal eigenvalue of some nonlocal diffusion problems[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF]), Theorem 1.4 provides a quite general framework for the existence of a principal eigenpair for some class of operators as soon as Assumptions 1.1 and 1.2 are satisfied. More precisely, the results provided by Theorem 1.4 can be applied to some eigenvalue problem arising in evolutionary dynamics of some various phenomena. For instance, for all p ∈ [1, ∞), let us introduce the following eigenvalue problem

M p [u] = λu, (λ, u) ∈ R × L p (Ω), (2) 
where M p : L p (Ω) m → L p (Ω) m (with m ≥ 1) is a linear operator such that M p = (M i p ) 1≤i≤m , and for i ∈ {1, • • • , m},

M i p [u](x) = Ω J i (x -y)u i (y)dy + m j=1 h ij (x)u j (x), a.e x ∈ Ω,
with Ω ⊂ R n an open, bounded, connected subset of R n ; J i ,s and h ij ,s are functions satisfying the following assumption Assumption 1.6 We assume that, (H1) The functions J i ,s are Lipschitz continuous on Ω for i = 1, . . . , m and J i (x) > 0 for all x ∈ Ω.

(H2) The functions h ij ,s are continuous on Ω for 1 ≤ i, j ≤ m,

(H3) The matrix H(x) = {h ij (x)} 1≤i,j≤m satisfies h ij (x) > 0, ∀x ∈ Ω, i ̸ = j.
Next, the operator M ≡ M p rewrites

M p = L p + H p , (3) 
with L p [u](x) = Ω J i (x -y)u i (y)dy 1≤i≤m , and

H p [u](x) = m j=1 h ij (x)u j (x) 1≤i≤m .
Then, we have the following result Theorem 1.7 Let Assumption (1.6) be satisfied. Set

λ + (x) = sup {ℜ(λ) : λ ∈ σ(H(x))} , ∀x ∈ Ω, and s + = max x∈Ω λ + (x). (4) 
If

1 s + -λ + (x) ̸ ∈ L 1 loc (Ω), then λ p = s(L p + H p ) is the principal eigenvalue of L p + H p with the associated eigenfunction u p = (u i p ) 1≤i≤m ∈ C + (Ω) m such that, u i p (x) > 0 for all x ∈ Ω.
Moreover, the semigroup {T p (t)} t≥0 generated by L p + H p on L p (Ω) m has AEG with the intrinsic growth constant λ p .

The proof of the above Theorem 1.7 consists in showing that conditions of Theorem 1.4 hold true. Furthermore, Theorem 1.7 then allow to generalize the criterion for the existence of a principal eigenpair to Problem (2) in L p (Ω) m , with m ≥ 1, compared, for eg., to [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] where the case m = 1 is addressed. A special case of the eigenvalue problem (2) has been considered [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF] for m = 2 and H(x) a symmetric matrix independent of x.

This article is organized as follows. Section 2 is devoted to some preliminary results including a sufficient condition on the existence of a positive eigenpair to Problem (1), and the convergence result of the spectral bound. In Section 3, we then state the result on a sufficient condition for the existence of a principal eigenpair for the eigenvalue problem [START_REF] Bao | Criteria for the existence of principal eigenvalues of time periodic cooperative linear systems with nonlocal dispersal[END_REF]. Finally, in Section 4, we discuss two case studies where our general results are applied. The first case concerned a model of a chemostat and the second a model of the spatial evolution of a man-environment disease.

Preliminaries

Let us first recall some definitions that will be used in the manuscript.

Definition 2.1 A real number λ ∈ R is called principal spectrum point of L + H if it is an eigenvalue of L + H and λ = sup {ℜ(λ) : λ ∈ σ(L + H)} where σ(L + H) is the spectrum of L + H.
From the above definition, one can see that the existence of principal spectrum point is equivalent of showing that s(L + H) is an eigenvalue of L + H.

Definition 2.2 A real number λ ∈ R is called principal eigenvalue of L + H if it is an
algebraically simple eigenvalue of L + H with positive eigenfunction and for each µ ∈ σ(L + H) \ {λ} we have ℜ(µ) < λ. Definition 2.3 Let (X, ∥ • ∥) be a Banach space with the positive cone X + .

• Let A : D(A) ⊂ X → X be a closed linear operator in the Banach space X. The resolvent ρ(A), spectrum σ(A), point spectrum σ p (A), spectral bound s(A), and spectral radius r(A) of A is respectively defined by

ρ(A) = {λ ∈ C : (λ -A) is invertible} , σ(A) = C \ ρ(A), σ p (A) = {λ ∈ C : (λ -A) is not injective} , s(A) = sup {ℜ(λ) : λ ∈ σ(A)} , r(A) = sup {|λ| : λ ∈ σ(A)} . • A closed linear operator A : D(A) ⊂ X → X is called resolvent positive if there exists λ 0 ∈ R such that if λ ≥ λ 0 then λ -A is invertible and (λ -X) -1 X + ⊂ X + . Definition 2.4 Let A : D(A) ⊂ X → X be a closed linear operator in the Banach space X. If λ ∈ σ(A), then the generalized eigenspace of A with respect to λ, denoted by N λ (A), is the smallest closed subspace of X containing ∞ k=1 N ((λ -A) k )
where N ((λ -A) k ) is the kernel of (λ -A) k . The essential spectrum of A, denoted by σ ess (A) is the set of λ ∈ σ(A) such that at least one of the following holds:

i) R(λ -A) the range of λ -A is not closed; ii) λ is a limit point of σ(A); iii) N λ (A) is infinite dimensional.
The essential spectral radius of A is defined as

r ess (A) = sup {|λ| : λ ∈ σ ess (A)} . Definition 2.5 Let {T (t)} t≥0 be a C 0 -semigroup of bounded linear operators in the Banach space X with generator A : D(A) ⊂ X → X. Then the growth bound of {T (t)} t≥0 is ω 0 (A) := lim t→+∞ ln ∥T (t)∥ B(X) t and the essential growth bound of {T (t)} t≥0 is ω 0,ess (A) := lim t→+∞ ln (α[T (t)])
t where α is the Kuratowski measure of noncompactness (see [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] ).

In the sequel, the positive cone X + of the Banach space (X, ∥ • ∥) is always assumed normal and reproducing. The following theorem is well known in the context of resolvent positive operators (see eg. [START_REF] Thieme | Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity[END_REF]) Theorem 2.6 Let A : D(A) ⊂ X → X be a closed linear operator and resolvent positive in X. Assume that σ(A) is non-empty. Then we have s(A) > -∞ and s(A) ∈ σ(A).

Moreover λ > s(A) if and only if λ ∈ ρ(A) and (λ -

A) -1 X + ⊂ X + i.e., s(A) = inf λ ∈ R : λ ∈ ρ(A), (λ -A) -1 X + ⊂ X + .
Next we derive the following condition that will be used in the proof of our main results. Lemma 2.7 Let Assumption 1.1 be satisfied. Then the following conditions are equivalent i) there exists λ > s(H)

such that r (L(λ -H) -1 ) > 1, ii) s(L + H) > s(H). Proof. Let λ > s(H) be given such that r ((λ -H) -1 L) > 1. Note that H -λ is resolvent positive with s(H -λ) = s(H) -λ < 0. Since L is a positive perturbation of H -λ, it follows from [36, Theorem 3.5] that r (L(λ -H) -1 ) -1 and s(L + H -λ) have the same sign. Therefore s(L + H -λ) > 0 ⇒ s(L + H) > λ > s(H). (5) 
Assume that s(L + H) > s(H) and let λ 0 ∈ (s(H), s(L + H)) be fixed. Then we have s(H -λ 0 ) < 0. Using again [START_REF] Thieme | Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity[END_REF]Theorem 3.5] one knows that r (L(λ 0 -H) -1 ) -1 and s(L + H -λ 0 ) have the same sign. The result follows because s(L + H -λ 0 ) > 0.

Next, we give a simple criteria for s(L + H) to be an eigenvalue. Indeed, this is a consequence of [START_REF] Thieme | Remarks on resolvent positive operators and their perturbation[END_REF] and Lemma 2.7.

Theorem 2.8 (Sufficient condition) Let Assumption 1.1 be satisfied. Assume in addition that L(λ -H) -1 is compact for all λ > s(H) and there exists λ > s(H) such that r (L(λ -H) -1 ) ≥ 1. Then λ 0 := s(L + H) is an eigenvalue of L + H associated with

u 0 ∈ X + and u 0 = (λ -H) -1 [φ] for some φ ∈ X + satisfying L(λ 0 -H) -1 [φ] = φ.
Let us note that if there exists λ > s(H) such that r (L(λ -H) -1 ) > 1 then by Lemma 2.7 we have s(L + H) > s(H) and the result comes from [35, Theorems 4.7 and 4.9]. If r (L(λ -H) -1 ) = 1 for some λ > s(H) then using similar arguments of the proof of Lemma 2.7 we get s(L + H + λ) = 0 i.e. λ = s(L + H) and the conclusion of Theorem 2.8 follows by applying Krein-Rutman's theorem to the compact positive operator L(λ -H) -1 . It is worth mentioning that recently in [START_REF] Ducrot | Age-structured Models with Nonlocal Diffusion of Dirichlet Type, I: Principal Spectral Theory and Limiting Properties[END_REF], the authors discovered s(L + H) > s(H) as a sufficient condition for the existence of a principal eigenpair. It is sometimes more simpler to estimate the spectral radius r (L(λ -H) -1 ) rather that comparing the spectral bound of s(L + H) and s(H). We can also note that in population dynamics models, such that s(H) < 0 we can define the basic reproduction number by R 0 := r (L(-H) -1 ) according to [START_REF] Thieme | Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity[END_REF]. Hence, we can automatically derive the existence of principal eigenpair when R 0 > 1. Moreover, it is often important to have a convergence result on the spectral bound in order to perform asymptotic analysis such as global stability and uniform weak/strong persistence. This motivates the next investigations. Theorem 2.9 Let Assumption 1.1 be satisfied. Assume in addition that L : X → X is compact and the following conditions are satisfied i) H ∈ B(X) and there exists µ ≥ 0 such that µ + H is a positive operator.

ii) There exists λ > s(H) such that r (L(λ -H) -1 ) > 1 or s(L + H) > s(H).

Then λ 0 := s(L + H) is an eigenvalue of L + H and a pole of the resolvent of L + H with finite rank residuum.

Proof. Since µ + H is a bounded linear positive operator we have r(µ

+ H) ∈ σ(µ + H) so that r(µ + H) = s(µ + H) = µ + s(H) ∈ σ(µ + H). (6) 
Moreover, because µ + L + H is a bounded linear positive operator, we also have

r(µ + L + H) = s(µ + L + H) = µ + s(L + H) ∈ σ(µ + L + H). (7) 
Next, using the fact that L is compact, we have

r ess (µ + H) ≥ r ess (µ + L + H). (8) 
Thus, it follows from item ii) and ( 6), ( 7) and (8) that

r(µ + L + H) = µ + s(L + H) > µ + s(H) = r(µ + H) ≥ r ess (µ + H) ≥ r ess (µ + L + H). (9) 
Therefore, using (9), we infer from [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]Proposition 4.11] that r(µ + L + H) is an eigenvalue of µ + L + H and a pole of the resolvent of µ + L + H with finite rank residuum. Recalling that r(µ + L + H) = µ + s(L + H), we conclude that s(L + H) is an eigenvalue of L + H and a pole of the resolvent of L + H with finite rank residuum.

Using the foregoing Theorem 2.9, we can prove a convergence result of the spectral bounds. Such a convergence results will be very useful in analyzing the asymptotic behavior of certain epidemic models with nonlocal diffusion.

Theorem 2.10 (Convergence of the spectral bound) Let Assumption 1.1 be satisfied. Assume in addition that X is a Banach lattice, L : X → X is compact and the following conditions are satisfied i) H ∈ B(X) and there exists µ ≥ 0 such that µ + H is a positive operator.

ii) There exists λ > s(H) such that r (L(λ -H) -1 ) > 1 or s(L + H) > s(H).

Let (L n ) ⊂ B(X) be a sequence of positive linear operators and (H n ) ⊂ B(X) a sequence of linear operators with the following properties iii) There exists µ ≥ 0 (independent of n) such that (µ + H n ) is a sequence of positive linear operators iv) L n + H n → L + H, as n → +∞ in the operator norm topology.

Then we have lim

n→+∞ s(L n + H n ) = s(L + H).
Proof. Using similar arguments as for the proof of Theorem 2.9, one obtains that r(µ + L + H) is a pole of the resolvent of µ + L + H with residuum of finite rank. Therefore using item iii) and iv), one can apply [START_REF] Aràndiga | Approximations of positive operators and continuity of the spectral radius III[END_REF] to conclude that

lim n→+∞ r(µ + L n + H n ) = r(µ + L + H).
Since µ + L n + H n and µ + L + H are positive operators, we have r(µ

+ L n + H n ) ∈ σ(µ + L n + H n ) so that r(µ + L n + H n ) = s(µ + L n + H n ) = µ + s(L n + H n ) and r(µ + L + H) = s(µ + L + H) = µ + s(L + H).
The result follows.

The next result concerns AEG for the semigroup generated by L + H.

Theorem 2.11 (Asynchronous exponential growth) Let Assumption 1.1 be satisfied. Assume in addition that X is a Banach lattice, L : X → X is compact and the following conditions are satisfied i) There exists λ > s(H) such that r (L(λ -H) -1 ) > 1 or s(L + H) > s(H).

ii) H generates a strongly continuous semigroup of bounded linear operators.

iii) The Banach lattice X is one of the following a) an abstract L space, b) an abstract M space, c) X = L p (Ω, µ) with 1 ≤ p < ∞ and some positive σ-finite measure µ.

iv) λ 0 = s(L + H) is a simple pole of the resolvent of L + H.

Then, the strongly continuous semigroup {T (t)} t≥0 ⊂ B(X) generated by L + H has AEG with intrinsic growth constant λ 0 = s(L + H).

Proof. We first note that condition iii) ensures (see [START_REF] Thieme | Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity[END_REF]Theorem 3.14]) that

ω 0 (L + H) = s(L + H) and s(H) = ω 0 (H). (10) 
Thus, it follows from condition ii) that

ω 0 (L + H) = s(L + H) > s(H) = ω 0 (H).
Thanks to ii), H generates a strongly continuous semigroup of bounded linear operators. By bounded linear perturbation theory, it follows that L + H generates a strongly continuous semigroup of bounded linear operators {T (t)} t≥0 ⊂ B(X). Since L is compact, one can use the result of [START_REF] Ducrot | Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems[END_REF][Theorem 1.2] to obtain

ω 0 (H) ≥ ω 0,ess (L + H). (11) 
Thus, [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] and [START_REF] Day | A general theory for the evolutionary dynamics of virulence[END_REF] imply that

λ 0 = s(L + H) > ω 0,ess (L + H).
Since L + H is a resolvent positive operator, it follows that the C 0 -semigroup generated by L + H is positive. Therefore, [38, Proposition 2.5] applies providing that {λ 0 } = {λ ∈ σ(L + H) : ℜ(λ) = λ 0 }.

To conclude, we now claim that (see [START_REF] Webb | An Operator-Theoretic Formulation of Asynchronous Exponential Growth[END_REF])

Claim 2.12 {T (t)} t≥0 ⊂ B(X) has AEG with intrinsic growth constant λ 0 ∈ R if and only if

1) ω 0,ess (L + H) < λ 0 2) {λ 0 } = {λ ∈ σ(L + H) : ℜ(λ) = λ 0 }
3) λ 0 is a simple pole of the resolvent of L + H.

Consequently, by iv), we apply Claim 2.12 to obtain the result. Note that Theorem 1.4 is a consequence of the above result. Furthermore, in condition iv) of the above Theorem 2.11, only the order of the pole is necessary. Indeed, the fact that λ 0 is a pole of the resolvent comes from the other hypothesis of the theorem. Therefore, condition iv) can be replaced by a irreducible property of the C 0 -semigroup {T (t)} t≥0 ⊂ B(X).

Eigenvalue problem for nonlocal diffusion

In this section, we give a sufficient condition for the existence of principal eigenpair for the eigenvalue problem [START_REF] Bao | Criteria for the existence of principal eigenvalues of time periodic cooperative linear systems with nonlocal dispersal[END_REF]. The main result of such a problem is given by Theorem 1.7. The proof of Theorem 1.7 consists of showing that the conditions of Theorem 1.4 hold true.

To this end, we divide the proof into subsections. In the first subsection, we give some properties concerning the multiplication operator H p . In the second subsection we show that there exists λ > s(H) such that r(L p (λ -H p ) -1 ) > 1. The third subsection is devoted to the proof of the irreduciblility property of the positive semigroup generated by L p + H p .

Some properties of the multiplication of operator H p

It is well known that, under the condition (H2), the multiplication operator H p is a bounded linear operator on X = L p (Ω) m . More precisely we have

∥H p ∥ B(X) = sup x∈Ω ∥H(x)∥ (12) 
where ∥H(x)∥ is the usual matrix norm. Moreover, using [20, Proposition 1] and [20,

Corollary 2], one knows that

σ(H p ) = x∈Ω σ(H(x)) (13) 
and

s(H p ) = sup x∈Ω s(H(x)). (14) 
The below proposition is due to [START_REF] Hardt | Spectral Properties of a Multiplication Operator[END_REF] and summarize some spectral properties of H p .

Proposition 3.1 The following statements are equivalent

i) λ ∈ ρ(H p ), ii) λ -H(x) is invertible for all x ∈ Ω and sup ∥λ -H(x)∥ -1 : x ∈ Ω < +∞ iii) inf {| det(λ -H(x))| : x ∈ Ω} > 0.
The next lemma shows that H p is resolvent positive.

Lemma 3.2 Let Assumptions (H2)-(H3) be satisfied. Then H p is resolvent positive. Moreover for all λ > s(H p ), (λ -H(x)) -1 exists for all x ∈ Ω, is a matrix with strictly positive entries, and

(λ -H p ) -1 [u](x) = (λ -H(x)) -1 u(x), a.e. x ∈ Ω, u ∈ L p (Ω) m .
Proof. The first part of the lemma follows from Theorem 2.6 by combing the equality s(H p ) = sup x∈Ω s(H(x)) together with the fact that H(x) is quasipositive and irreducible for each x ∈ Ω.

Proof. Let us first note that

(λ -H(x)) -1 = 1 det(λ -H(x)) adj(λ -H(x)), ∀x ∈ Ω (16) 
with adj(λ -H(x)) the adjugate of λ -H(x) i.e. the transpose of its cofactor matrix.

Recalling that H(x), x ∈ Ω has positive off-diagonal entries for all x ∈ Ω we infer from [28, Theorem A.2] that 1. For each λ > s + ≥ λ + (x) = s(H(x)), (λ -H(x)) -1 has strictly positive entries for all x ∈ Ω.

For each λ > s

+ ≥ λ + (x) = s(H(x)), det(λ -H(x)) > 0 for all x ∈ Ω.
3. adj(λ -H(x)) has strictly positive entries for all x ∈ Ω and λ ≥ λ + (x).

Step 1: Our goal is to prove that λ-λ + (x) det(λ-H(x)) is uniformly bounded from below with respect to λ ∈ (s + , s + + 1] and x ∈ Ω by a positive constant. Since H(x) has strictly positive off diagonal entries for x ∈ Ω, it follows that λ + (x) = s(H(x)) is algebraically simple so that

det(λ -H(x)) = (λ -λ + (x)) m-1 k=1 (λ -λ k (x)) n k (x) , ∀x ∈ Ω (17) 
for all λ > s + ≥ λ + (x). Hence, using the fact that det(λ-H(x))

λ-λ + (x)
is real positive it follows from (17) that the map

λ ∈ (s + , +∞) → det(λ -H(x)) λ -λ + (x)
is increasing for each fixed x ∈ Ω. Therefore, thanks to item 2. we obtain

λ -λ + (x) det(λ -H(x)) ≥ α 0 = inf x∈Ω s + + 1 -λ + (x) det(s + + 1 -H(x)) > 0, ∀λ ∈ (s + , s + + 1], ∀x ∈ Ω. ( 18 
)
Step 2: Noting that for all λ > s + we have

(λ -H(x)) -1 = 1 λ -λ + (x) λ -λ + (x) det(λ -H(x)) adj(λ -H(x)), ∀x ∈ Ω it follows from Step 1 that (λ -H(x)) -1 ≥ α 0 λ -λ + (x) adj(λ -H(x)), ∀x ∈ Ω, ∀λ ∈ (s + , s + + 1].
Moreover, thanks to [24, Theorem 2] and [4, Corollary 2.13 and Theorem 3.1] ], for each fixed x ∈ Ω, the map λ → adj(λ

-H(x)) is increasing in [s + , s + + 1] so that adj(λ -H(x)) ≥ adj(s + -H(x)), ∀x ∈ Ω, ∀λ ∈ [s + , s + + 1].
The proof is completed because adj(s + -H(x)) has strictly positive entries that are continuous in Ω.

Lemma 3.5 Let Assumption (H2)-(H3) be satisfied. Then, there exists λ > s(H p ) such that r(L(λ -H p ) -1 ) > 1.

Proof. The idea of the proof is a somehow generalization of the idea in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. Thanks to Lemma 3.3 and Theorem 2.8 we only need to prove that there exists λ > s + such that r(L p (λ -H p ) -1 ) > 1. We start with some observations. Let λ > s + be given and fixed.

Then we have

(λ -H p ) -1 [u](x) = (λ -H(x)) -1 u(x), ∀x ∈ Ω, ∀u ∈ L p (Ω) m . ( 19 
)
Thanks to Lemma 3.4, there exists a matrix C with strictly positive entries and

α 0 > 0 such that (λ -H(x)) -1 ≥ α 0 λ -λ + (x) C, ∀x ∈ Ω, ∀λ ∈ (s + , s + + 1].
Since C is a primitive matrix, it admits a positive eigenvalue µ 0 > 0 associated with eigenfunction e ∈ int(R n + ). By identifying e with the constant function in Ω we obtain

Ω J(x -y)(λ -H(y)) -1 e dy ≥ µ 0 α 0 Ω 1 λ -λ + (y) J(x -y)dy e, ∀x ∈ Ω ∀λ ∈ (s + , s + + 1].
(20) Recalling that J k (0) > 0 and x → J k (x) is continuous in Ω for k = 1, . . . , m we deduce that there exists a constant c 0 > 0 and r > 0 such that

|z| < r, z ∈ Ω ⇒ J k (z) > c 0 . ( 21 
)
Next, using the fact that 1 s + -λ + (y) ̸ ∈ L 1 loc (Ω), we deduce that there exists x 0 ∈ Ω and ϵ ∈ (0, 1), small enough, such that

µ 0 c 0 α 0 B(x 0 ,r)∩Ω 1 ϵ + s + -λ + (y) dy > 1. (22) 
Combining ( 21) and ( 22) it comes

B(x 0 ,r)∩Ω µ 0 α 0 c 0 ϵ + s + -λ + (y) J k (x -y)dy > 1, ∀x ∈ Ω, k = 1, 2 (23) 
and therefore, setting λ = s + + ϵ we deduce from ( 20) and ( 23) that

Ω J(x -y)(λ -H(y)) -1 e dy > e, ∀x ∈ Ω. (24) 
Since u → L p (λ -H p ) -1 [u] is non supporting, one can use the results in [START_REF] Inaba | Age-Structured Population Dynamics in Demography and Epidemiology[END_REF] to deduce from (24) that r(L p (λ -H p ) -1 ) > 1. The proof is completed.

The irreducibility of the semigroup generated by L p + H p

In this section, we prove that the semigroup generated by L p + H p is irreducible. This will be performed by using the well known properties of positive semigroup in Banach lattice. Let us recall J is a closed ideal of L p (Ω) if and only if (see [START_REF] Schaefer | Orderings of vector spaces[END_REF]) there exists a subset Ω 0 ⊂ Ω such that J = L p (Ω 0 ) with

L p (Ω 0 ) = {u ∈ L p (Ω) : u vanishes on Ω \ Ω 0 } . A bounded linear operator K on L p (Ω) is irreducible if for any closed ideal J of L p (Ω) we have K(J) ⊂ J ⇔ J = {0 L p } or J = L p (Ω). Since L p (Ω)
is a Banach lattice and the semigroup generated by L p + H p is positive, it suffices to prove that (see [START_REF] Clément | One-Parameter Semigroups[END_REF]Proposition 7.6]) the resolvent of L p + H p is irreducible for some λ > s(L p + H p ). Lemma 3.6 Let Assumption (H2)-(H3) be satisfied. Then the semigroup generated by L p + H p is irreducible.

Proof. Using Lemma 2.7 and 3.5 one knows that s(L p + H p ) > s(H p ). Then we have

λ -L p -H p = (id -L p (λ -H p ) -1 )(λ -H p ), ∀λ > s(L p + H p ).
Since L p (λ -H p ) -1 tends to 0 when λ → +∞ in the operator norm topology, we deduce that for λ > s(L p + H p ) large enough

(id -L p (λ -H p ) -1 ) -1 = ∞ k=0 (L p (λ -H p ) -1 ) k so that (λ -L p -H p ) -1 = (λ -H p ) -1 ∞ k=0 (L p (λ -H p ) -1 ) k .
Hence, for λ > s(L p + H p ) large enough we have

(λ -L p -H p ) -1 ≥ (λ -H p ) -1 L p (λ -H p ) -1
and the result follows from Lemma 3.2 and 3.3.

Case study

In this section, we provided two cases study where the results presented here can be applied to easily study some properties of evolution problems. Indeed, Theorem 1.7 can be used to study the stability of the zero solution and existence of positive solutions of the following evolution problem

du(t) dt = M[u(t)], t > 0 u(0) = ū ∈ L p + (Ω) m . ( 25 
)
where M is the operator defined by (3) and m ≥ 1. One consequence of Theorem 1.7 on Problem (25) reads 

(L p + H p ) > 0. Moreover, if s(L p + H p ) > 0 then for each ū ∈ L p + (Ω) m \ {0 L p } we have lim t→+∞ Ω ∥u(t, x)∥ p R m dx = +∞.
Proof. Let ū ∈ L p + (Ω) m be given. Since the semigroup {T p (t)} t≥0 generated by L p + H p on L p (Ω) m has AEG with intrinsic growth constant λ p = s(L p + H p ) associated with projector P , by Remark 1.5, it follows that

u(t) = T p (t)[ū] = T p (t)[P ū] + T p (t)[(id -P )ū] = e λpt P [ū] + T p (t)[(id -P )ū], ∀t ≥ 0.
The statement of the theorem follows since T p (t) • (id -P ) goes to 0 when t → +∞ in the operator norm topology and

P [ū] ∈ L p + (Ω) m \ {0 L p } for all ū ∈ L p + (Ω) m \ {0 L p }.
We now introduce two cases to further discuss our results.

Model of a chemostat

In the first case study, we consider a model of a chemostat where the phenomenon of attachment and detachment to the wall (or other marked surface) is allowed. More precisely, it is assumed that the flow does not prevent the growth of microorganisms on the wall. The chemostat is subject to a constant dilution rate d > 0 with an input concentration of substrate s in > 0. To this possible phenomenon of the chemostat we add the possibility of having a biomass composed of a continuum phenotypic traits represented by a variable

x ∈ Ω, an open connected set of R. Let s(t) denote the quantity of substrate at each instant t, v 1 (t, x) and v 2 (t, x) the concentration of microorganisms at time t with phenotypic trait x in the flow media and on the wall, respectively. The mathematical model of interest is then given by

             ds(t) dt = d(s in -s(t)) -µ(s(t)) Ω β 1 (y) γ 1 v 1 (t, y)dy -µ(s(t)) Ω β 2 (y) γ 2 v 2 (t, y)dy ∂v 1 (t, x) ∂t = µ(s(t)) Ω J(x -y)β 1 (y)v 1 (t, y)dy -D 1 v 1 (t, x) -α 1 (x)v 1 (t, x) + α 2 (x)v 2 (t, x) ∂v 2 (t, x) ∂t = µ(s(t)) Ω J(x -y)β 2 (y)v 2 (t, y)dy -D 2 v 2 (t, x) + α 1 (x)v 1 (t, x) -α 2 (x)v 2 (t, x) (26 
) In the foregoing model, the term -α 2 (x)v 2 (t, x) account for the shearing of the microorganism from the wall while +α 1 (x)v 1 (t, x) is for the adhesion to the wall. The kernel function J(x -y) represents the probability of mutation from phenotype y to phenotype x, β i (x),s are the ability of a microorganism of trait x to consume the substrate s, γ i ,s are yield constants, and D i ,s the removal rates of the microorganisms. Note that the model [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF] without the phenotypic traits has been considered in [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Pilyugin | The Simple Chemostat with Wall Growth[END_REF] where a system of ordinary differential equations has been used. We assume that µ takes the form µ(s) = µ 0 s κ + s , with µ 0 , and κ positive constants. We also assume that the kernel function J(x -y) satisfies conditions (H1) and (H2) of Assumption 1.6.

Setting v = (v 1 , v 2 ), γ = diag(γ 1 , γ 2 ), β = diag(β 1 , β 2 ), and H = -D 1 -α 1 α 2 α 1 -D 2 -α 2 ,
the system (26) rewrites

     ds(t) dt = d(s in -s(t)) -µ(s(t)) Ω γ -1 β(y), v(t, y) dy, ∂v(t, x) ∂t = µ(s(t))L[v(t, •)](x) + H[v(t, •)](x), (27) 
with L[v](x) = R J(x -y)β(y)v(y)dy and H[v](x) = H(x)v(x). We have the following result

Theorem 4.2 Let R 0 = r (µ(s in )L(-H) -1 ). 1. If R 0 < 1 then, v(t, •) → 0 when t → +∞ in L 1 (Ω).
That is, the washout equilibrium of System (26) is globally asymptotically stable.

2. If R 0 > 1 then, there exists a unique positive equilibrium (s, v(•)) of System [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF]. Furthermore, we can find η > 0, such that for any nonnegative initial condition, with

Ω (v 1 (0, x) + v 2 (0, x))dx > 0 we have lim sup t+∞ Ω (v 1 (t, x) + v 2 (t, x))dx > η. (28) 
Proof.

Global stability of the washout equilibrium. Since

s(H) = sup x∈Ω λ + (x) < 0, with λ + (x) := 1 2 (D 1 + α 1 (x) -D 2 -α 2 (x)) 2 + 4α 1 (x)α 2 (x) -(D 1 + D 2 + α 1 (x) + α 2 (x)) < 0 it comes, sign (s(µ(s in )L + H)) = sign r µ(s in )L(-H) -1 -1 . (29) 
Assuming that R 0 = r (µ(s in )L(-H) -1 ) < 1 then leads to s(µ(s in )L + H) < 0. Let (s 0 , v 0 ) be a nonnegative initial condition of System [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF]. Since s ′ (t) ≤ d(s in -s(t)), it follows that for each ϵ > 0 there exists t 0 := t 0 (ϵ, s 0 ) > 0 such that s(t) ≤ s in + ϵ for all t ≥ t 0 . Therefore, we have

∂v(t, x) ∂t ≤ µ(s in + ϵ) Ω J(x -y)β(y)v(t, y)dy + H(x)v(t, x), ∀t ≥ t 0 . (30) 
Using the upper semicontinuity of the spectral radius together with the equality (29), it is straightforward that s(µ(s in + ϵ)L + H) < 0, for ϵ > 0 small enough. Using comparison principle, we infer from Lemma 4.1 that v(t, •) → 0 when t → +∞ in L 1 (Ω).

Positive equilibrium of System (26). Let (s, v(•)) be a positive equilibrium of System [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF]. Then, for all

x ∈ R, µ(s)L[v](x) + H(x)v(x) = 0, i.e., µ(s)L(-H) -1 [v](x) = v(x). (31) 
By [START_REF] Shen | On Principal Spectrum Points/Principal Eigenvalues of Nonlocal Dispersal Operators and Applications[END_REF] and noting that µ(s)L(-H) -1 is a positive compact operator, we infer from the Krein-Rutman's theorem that v = c 0 ū, where c 0 is a positive constant, and ū ∈ C + (Ω) 2 is the normalized positive eigenfunction of µ(s)L(-H) -1 associated to eigenvalue µ(s)r (L(-H) -1 ) = 1. Let s 0 > 0 be given and fixed. By the compacity of the operator µ(s 0 )L(-H) -1 , the map g :

s 0 → r (µ(s 0 )L(-H) -1 ) is continuous. Note that g(0) = 0, g(s in ) = r (µ(s in )L(-H) -1
), and µ(•) is an increasing function. Therefore, g(s in ) > 1 gives s ∈ (0, s in ). To conclude, it remain to determine the constant c 0 . By the s-equation of ( 27), we have

c 0 = D(s in -s) µ(s) Ω (γ -1 β(y), ū(y)) dy > 0.
Weak uniform persistence. We argue by contradiction for the proof of estimate [START_REF] Rass | Spatial deterministic epidemics[END_REF]. We assume that

lim sup t+∞ Ω (v 1 (t, x) + v 2 (t, x))dx ≤ η (32) 
with η > 0 a positive constant to be fixed later on. Assume that R 0 > 1 i.e., s(µ(s in )L + H) > 0. Since we are in the situation of Theorem 2.10, there exists ϵ > 0 small enough such that λ ϵ := s(µ(s in -ϵ)L + H) > 0. Noting that µ(s) = µ 0 s κ+s , we can fix η > 0 small enough such that η 1+η ∈ (0, ϵ s in ) and if [START_REF] Shen | Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications[END_REF] is satisfied with initial condition (s 0 , v 0 ) then s ′ (t) ≥ d(s in -s) -dηs.

Hence, there exists t 0 := t 0 (ϵ, s 0 ) such that s(t) ≥ s in -ϵ for all t ≥ t 0 . As a consequence, we get

∂v(t, x) ∂t ≥ µ(s in -ϵ) Ω J(x -y)β(y)v(t, y)dy + H(x)v(t, x), ∀t ≥ t 0 . (33) 
Using comparison principles, we infer from Lemma 4.1 that

lim t→+∞ Ω (v 1 (t, x) + v 2 (t, x))dx = +∞ if Ω (v 1 (0, x) + v 2 (0, x))dx > 0 (34) 
which is a contradiction to (32).

Model of the spatial evolution of a man-environment disease

Here, we introduce a model for the spatial evolution of the man-environment-man epi-to the environment, and the infectious agent is transmitted to the human via the infected environment (eg. see [START_REF] Capasso | A mathematical model for the 1973 cholera epidemic in the European Mediterranean region[END_REF][START_REF] Capasso | A reaction-diffusion system arising in modelling man-environment diseases[END_REF][START_REF] Capasso | Analysis of a Reaction-Diffusion System Modeling Man-Environment-Man Epidemics[END_REF]). The model reads, 

where u(t, x) denotes the spatial density the infectious agent in the environment, and v(t, x) denotes the spatial density of infectious human at time t and at location x ∈ Ω = (0, l), l > 0. The diffusion process within the human population and infectious agents in the environment is captured by probability density functions J 2 and J 1 respectively. Human and infectious agents death rate at the location x are a 1 (x) and a 2 (x). The term b 1 (x)v accounts for the contribution of infectious humans to the density of infectious agents in the environment at the location x. Finally, the term b 2 (x)u gives the 'force of infection' on the human population due to the concentration of the infectious agent in the environment. Note that System [START_REF] Thieme | Remarks on resolvent positive operators and their perturbation[END_REF] has been considered in [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF] for a non fixed domain but with coefficient a k ,s and b k ,s independent of the location x.

Setting, µ k (x) = Ω J k (x -y)dy -a k (x), w = (u, v), J = diag(J 1 , J 2 ), and 

H(x) = -µ 1 (x) b 1 (x) b 2 (x) -µ 2 (
with L[w](x) = Ω J(x -y)w(y)dy, and H[w](x) = H[x]w(x). Let us note that, in [START_REF] Thieme | Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity[END_REF], the trace of the matrix H(x) is negative and its determinant is det(H(x)) = µ 1 (x)µ 2 (x)b 1 (x)b 2 (x). Therefore, the dominant eigenvalue is positive if det(H(x)) < 0, for some x ∈ Ω = (0, l). Consequently, in such a case, and compared to the case study in Section 4.1, it becomes impossible to inverse the operator (-H). Thus, it is more difficult in having the equivalence between threshold conditions, s(L + H) < 0 and r(L(-H) -1 ) < 1, by applying classical results based Krein-Rutman's type theorem. In order to apply our result, we assume that a k , b k , k = 1, 2 are Lipschitz continuous in Ω = [0, l] and the principal eigenvalue of H(x) reach its maximum in Ω = (0, l). This implies that the conditions of Theorem 1.7 is satisfied (see [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]Theorem 1.2]).

We then have the following result. The proof of the above theorem is a direct consequence of Lemma 4.1.

Note that the study of the eigenvalue problem of ( 35) is of great importance as can be seen in [START_REF] Nguyen | Dynamics for a two phases free boundaries system in an epidemiological model with nonlocal dispersals[END_REF]. More precisely, the study of the principal eigenvalue problem of (35) combined with maximum principles will allows to construct subsolution and supersolution in order to prove the existence and nonexistence of endemic equilibrium to [START_REF] Thieme | Remarks on resolvent positive operators and their perturbation[END_REF]. However, these facts are out of the scope of the paper.

Lemma 4 . 1

 41 Let Assumptions (H1)-(H3) be satisfied. Then the zero solution to (25) is globally asymptotically stable if s(L p + H p ) < 0 and unstable if s

J 1 ΩJ 2

 12 (x -y)u(t, y) -u(t, x))dy -a 1 (x)u + b 1 (x)v ∂v(t, x) ∂t = (x -y)(v(t, y) -v(t, x))dy -a 2 (x)v + b 2 (x)u u(0, •) = u 0 ∈ L 2 + (Ω), v(0, •) = v 0 ∈ L 2 + (Ω),

Theorem 4 . 3

 43 The zero solution to[START_REF] Thieme | Remarks on resolvent positive operators and their perturbation[END_REF] is globally asymptotically stable if s(L + H) < 0 and unstable if s(L+H) > 0. Furthermore, when s(L+H) > 0, for any nonnegative initial condition with Ω w(0, x)dx > 0, it comes lim t→+∞ Ω ∥w(t, x)∥dx = +∞.

demic, i.e. infected human acts as a multiplier of the infectious agent which is returned

Existence of the principal spectrum point

In this section we proceed to the proof of Theorem 1.7. The proof is given throughout several steps.

Step 0: Lemma 3.3 Let Assumption (H1)-(H3) be satisfied. Then the following properties hold true:

ii) L p is a compact positive operator;

iii) For all λ > s + , L p (λ -H p ) -1 is nonsupporting in particular

Thus, we infer from ( 14) that s + = s(H p ).

ii). This follows from the fact that L p is a diagonal matrix of operators where each components is compact as an operator form L p (Ω) into L p (Ω) [START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF][START_REF] Ducrot | Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems[END_REF].

iii). This comes from Lemma 3.3 and (H1). iv). Assume that λ p = s(L p + H p ) satisfies r(L p (λ p -H p ) -1 ) = 1. Since L p is compact, it follows that L p (λ p -H p ) -1 is also compact. Therefore, we infer from the Krein-Rutman theorem that 1 is an eigenvalue of L p (λ p -H p ) -1 with eigenfunction φ p ∈ L p + (Ω) m , that is

The property iii) implies that u p (x) ∈ int(R m + ) for a.e x ∈ Ω. Moreover, the Lipschitz continuity of the kernels J k together with the uniform boundedness of (λ -H(y)) -1 (see Proposition 3.1) easily imply that u p is continuous in Ω.