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1. Introduction
Sea Surface Temperature (SST) is a fundamental variable of the Earth climate system due to its role in regu-
lating climate and weather (Deser et al., 2010) and its dynamical connection to ocean currents (Isern-Fontanet 
et al., 2014). Moreover, the availability of a long time series of global high resolution satellite measurements of 
SST (Merchant et al., 2019) makes it well suited for addressing a wide range of problems such as monitoring 
Climate Change (Gulev et al., 2021); retrieving ocean currents (Isern-Fontanet et al., 2017); or calibrating and 
validating ocean and climate models (Skákala et al., 2019). It is, therefore, of major importance to understand 
how ocean processes contribute to SST statistics to exploit such a wealth of data and get insight into the function-
ing of the ocean and climate.

A prominent feature of SST is the presence of fronts, which are known to be sinks of energy (D’Asaro et al., 2011; 
Isern-Fontanet & Turiel, 2021) and significantly contribute to the vertical transport of nutrients and, thus, to 
primary production (Mahadevan, 2016). The variability of the characteristics of fronts, such as the density of 
fronts or their intensity, are expected to be mirrored by the variability of some SST statistics. A popular approach 
is based on the spectral slope of SST because it can be connected to theories of turbulence. Nevertheless, they 
provide an incomplete framework, if only because different theories may predict the same slope (Callies & 
Ferrari, 2013) and the underlying turbulence regime may not change in spite of the seasonal changes in the prop-
erties of fronts.

The structure functions of a turbulent variable, that is, the moments of the differences between two points, are 
also at the core of theories of turbulence (Pope, 2000) and extend the information provided by spectral slopes 
(Sukhatme et al., 2020; Yu et al., 2017). Moreover, the anomalous scaling of the power laws deduced from the 
structure functions, that is, its deviation from a straight line, can be related to the geometry of gradients making 
use of the multifractal framework (Isern-Fontanet & Turiel, 2021). The relevance of this approach has already 
been demonstrated in the oceanic context (Isern-Fontanet et al., 2007), and it has been used to develop metrics for 

Abstract The contribution of ocean fronts to the properties and temporal evolution of Sea Surface 
Temperature (SST) structure functions have been investigated using a numerical model of the California 
Current system. First, the intensity of fronts have been quantified by using singularity exponents. Then, leaning 
on the multifractal theory of turbulence, we show that the departure of the scaling of the structure functions 
from a straight line, known as anomalous scaling, depends on the intensity of the strongest fronts. These fronts, 
at their turn, are closely related to the seasonal change of intensity of the coastal upwelling characteristics 
of this area. Our study points to the need to correctly reproduce the intensity of the strongest fronts and, 
consequently, properly model processes such as coastal upwelling in order to reproduce SST statistics in ocean 
models.

Plain Language Summary Forecasting the evolution of the Earth's climate requires to predict the 
evolution of the statistical characteristics of essential climate variables such as the Sea Surface Temperature. 
In this study, it has been found that some of such statistical properties depend on the intensity of the strongest 
fronts in the ocean. This implies that those ocean, or climate, models that fail to correctly predict their intensity 
will not be able to correctly reproduce the statistical characteristics of key variables such as temperature. 
The area analyzed in this study is the California Current system, where the strongest fronts are modulated by 
the seasonal evolution of the upwelling. Therefore, our results imply that such a system has to be correctly 
modeled, or parametrized, in order to properly reproduce the statistics of ocean temperatures.
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model validation (Ivanov et al., 2009; Skákala et al., 2016), although it has not been yet exploited to investigate 
the contribution of fronts to SST statistics.

Here, we introduce a metric to measure the intensity of SST fronts in numerical simulations of the California 
Current System (Capet et al., 2008), which is dominated by cross-shore gradients generated by coastal upwelling 
(Chenillat et al., 2018). This metric is then connected to the scaling of the structure functions using the multi-
fractal framework (Frisch, 1995) and used to investigate how the temporal variability of front intensity contribute 
to the variability of anomalous scaling and spectral slopes. The paper is organized as follows: Section 2 puts the 
multifractal theory of turbulence in the context of oceanography; Section 3 describes the numerical simulations 
and the algorithms used for this study; Sections 4 and 5 describe results and discuss them, respectively; and 
Section 6 list the conclusions.

2. Theoretical Framework
Coarse-grained SST gradients are built by filtering the module of the thermal gradient as
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as ℓ/ℓ0 → 0, where ℓ0 is the integral scale of the flow (Isern-Fontanet et al., 2007). The scaling exponents 𝐴𝐴 𝐴
(
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 , 
known as singularity or Hölder exponents, quantify the degree of continuity of SST. Indeed, if 𝐴𝐴 𝐴
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 is derivable n times but not n + 1 (Arneodo et al., 1995). Consequently, 
we propose the use of singularity exponents as a proxy measure for the intensity of fronts, on the basis that 
the strongest fronts are those with the most marked singularity, hence, also those with the smallest singularity 
exponents.

The domain of the turbulent flow can be, then, divided into subsets according to their singularity exponent. This 
gives rise to the singularity spectrum, a concave function of h defined as
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where dF(A) is the fractal dimension of set A. It follows that, the singularity spectrum D(h) characterizes the 
“volume” occupied by fronts with intensity h. Moreover, the singularity spectrum D(h) provides information 
about the statistical properties of SST. Indeed, the scaling properties of the moments of SST gradients are defined 
by a continuous function τ(p) of the moment order p
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which is related to the singularity spectrum by a Legendre transform pair

𝜏𝜏(𝑝𝑝) = 𝑝𝑝𝑝 + 𝑑𝑑 −𝐷𝐷(𝑝), with 𝑝𝑝 =
𝑑𝑑𝐷𝐷
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 (5)

and

𝐷𝐷(ℎ) = 𝑝𝑝ℎ + 𝑑𝑑 − 𝜏𝜏(𝑝𝑝), with ℎ =
𝑑𝑑𝜏𝜏

𝑑𝑑𝑝𝑝
, (6)

as shown by Parisi and Frisch (1985). It is worth mentioning that Equation 4 implies that the Probability Density 
Functions (PDF) of thermal gradients are dependent on the analysis scale ℓ, which is a signature of intermittency 
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(Frisch, 1995). As a consequence, care must be taken when analyzing PDF and kurtosis and when comparing 
PDF from data with different resolutions.

The singularity spectrum can also be related to the scaling of the structure functions of temperature, which are 
defined as

��(�) ≡ ⟨|��
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with ℓ0 being a constant, and consequently, both scaling functions are related by

𝜁𝜁 (𝑝𝑝) = 𝑝𝑝 + 𝜏𝜏(𝑝𝑝). (10)

Recall that, the scaling of the structure function of order p = 2 gives the spectral slope of SST,

𝐸𝐸(𝑘𝑘) ∝ 𝑘𝑘
−𝜁𝜁 (2)−1 = 𝑘𝑘
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, (11)

where E(k) is the energy spectrum and k the wavenumber (Frisch, 1995).

Guided by the recent work of Isern-Fontanet and Turiel (2021), here, we focus on two properties of the singularity 
spectrum: the most singular exponent h∞,

ℎ∞ ≡ min(ℎ), (12)

which is a measure of the intensity of the strongest fronts; and the width of the singularity spectrum defined as

Δℎ−
≡ ℎ𝑑𝑑 − ℎ∞, (13)

where hd is the mode. This quantity corresponds to the difference of slopes of ζ(p) between the origin (p = 0) and 
large orders (p → ∞). Indeed, using Equation (6) and Equation (10), it can be seen that
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. (14)

Therefore, the anomalous scaling, that is, the departure from a straight line increases with growing Δh −.

3. Data and Procedures
SST fields were taken from numerical simulations of the circulation in the California Current System (see 
Figure 1a) generated with the ROMS oceanic model (Shchepetkin & McWilliams, 2005). The model was config-
ured with a horizontal resolution of ∼2.5 km (1,025 × 625 grid points) and 32 vertical levels with higher resolu-
tion in the upper layers. The boundary and initial conditions, as well as the forcing at the air-sea interface (wind 
stress and heat and freshwater fluxes) were derived from climatologies as in Capet et  al.  (2008). Singularity 
analysis was applied to snapshots of SST taken every two days of simulation spanning a period of two years.

Although very appealing, Equation (2) cannot be used directly to compute singularity exponents due to long-
range correlations and discretization effects (Turiel et al., 2008). To avoid these difficulties, we used the method 
proposed by Pont et al. (2013) to compute singularity exponents (see Figure 1b). Then, the singularity spectrum 
of each snapshot of SST was computed within the domain of analysis (see red rectangle in Figure 1b) using the 
histogram method
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𝐷𝐷 (ℎ𝑖𝑖) ≈ 𝑑𝑑 −
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, (15)

where Ni is the number of grid cells having a singularity exponent in the range [ℎ� − �ℎ
2
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) , Nmax the number 

of valid ocean grid cells in the analysis domain, and 𝐴𝐴 𝓁𝓁∕𝓁𝓁0 =
(
∑

𝑖𝑖
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)
1

𝑑𝑑 (Turiel et  al.,  2006). The grid points 
surrounding the land mask were removed to avoid spurious values due to the land-sea transition and we used 
d = 2 and δh = 0.02 in the range from h = −1 to h = 3 for computing D(h). Translational invariance was imposed 
to each singularity spectrum to correct for any shift that may exist in the singularity exponents (Isern-Fontanet 
& Turiel, 2021). This invariant condition consists in imposing that the 𝐴𝐴 ⟨|∇𝑇𝑇 |𝓁𝓁⟩ does not depend on ℓ, that is, 
τ(1) ≡ 0. Finally, the mode hd was estimated by locally adjusting a parabola around the maximum of D(h) and 
then, analytically calculating its maximum.

The function ζ(p) was derived from the instantaneous D(h) by first applying the Legendre transform Equa-
tions (5) and, then, Equation (10). To reduce the spurious oscillations due to noise, we used a similar approach to 
the computation of hd, that is, the Legendre transform was obtained by locally fitting a second order polynomial 
to the surroundings of each value of D(hi) and, then, analytically inverting it. On the contrary, the SST spectrum 
was computed independently from D(h) using SST anomalies in the black box shown in Figure 1a, that is,
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≡ 𝑎𝑎𝑥𝑥(𝑥𝑥)𝑥𝑥 + 𝑎𝑎𝑦𝑦(𝑥𝑥)𝑦𝑦 + 𝑎𝑎𝑥𝑥𝑦𝑦(𝑥𝑥)𝑥𝑥𝑦𝑦 + 𝑎𝑎0(𝑥𝑥) was estimated by least-squares fitting to SST in the whole 
domain. This form for 𝐴𝐴 �̃�𝑇

(

�⃗�𝑥𝑥 𝑥𝑥
)

 was selected due to the rotation of the grid to respect the geographical North. With 
the aim of having a simple measure of the intensity of the coastal upwelling, the temperature anomaly associated 
with it was defined as the mean temperature anomaly close to the coast, that is,

𝛿𝛿𝛿𝛿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) ≡ ⟨𝛿𝛿𝛿𝛿
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Figure 1. (a) Example of instantaneous Sea Surface Temperature (SST) corresponding to July 10th of the first year analyzed (t = 20 days) with the area used to 
compute Fourier spectra (black, dashed) and δTupwelling (purple, solid). The inset globe shows the geographical limits of the numerical simulations. (b) singularity 
exponents for the SST image with the area used to compute singularity spectra (red, dashed). The areas with blurred fronts in the open limits of the model are due to 
the low-resolution information imposed at the model open boundary conditions. (c) distance from coast of the h∞ observed for the whole analyzed period with the color 
corresponding to δTupwelling.



Geophysical Research Letters

ISERN-FONTANET ET AL.

10.1029/2022GL098038

5 of 8

This area was taken as the area between the coast and 10 grid points seawards (∼25 km) and between y = 810 km 
and y = 1,720 km, which corresponds to the purple area marked in Figure 1a.

4. Results
Figure 1b unveils the complex structure of thermal fronts observable in a snapshot of SST, with the most intense 
fronts, bright lines in the figure, being those with smaller singularity exponents. The intensity of fronts has some 
spatial variability. On one side, the areas with blurred fronts found in the North, West, and South limits of the 
domain are due to the low-resolution information imposed at the model open boundary conditions. On the other, 
the intensity of fronts tend to be higher within the area strongly influenced by coastal upwelling (the area within 
[600 km, 1,150 km] × [700 km, 1,700 km] approximately). Moreover, results shown in Figure 1c reveal that the 
smallest values of h∞ are concentrated close to the coast and correspond to large values of |δTupwelling|, while larger 
values of h∞ can be found away from the coast for and correspond to small values of |δTupwelling|.

Singularity spectra D(h) are asymmetric functions of h, whose properties change over time as revealed by 
Figure 2a. Indeed, the value of h∞ ranges between −0.6 and −0.35 for the two years of simulation and the width 
Δh − between 0.4 and 0.7. The changes in the width of D(h) are related to changes in the anomalous scaling of the 
structure functions (Figure 2b) as expected from Equation 14. Such changes are more pronounced for moments 
larger than p = 2 (which provide the spectral slope of SST; Equation 11). Moreover, the slope of the instantaneous 
spectra of SST for k < 10 −4 rad/m, which has been computed independently, is close to the value given by the 
average 〈ζ(2)〉 computed from the singularity spectra D(h) (Figure 2c). The observed spectral slope is somewhat 
steeper than k −2, in contrast to Capet et al. (2008). A shallower spectral slope can be recovered by reducing the 
spectral analysis to the area dominated by the upwelling, where fronts are stronger and more energy is present at 
the smaller resolved scales (not shown).

The two properties analyzed in this study, h∞ and Δh − are not independent but are strongly correlated with a 
linear correlation of −0.98 and a slope between them of −1.13 (Figure 3a). A closer look, however, shows that 
the snapshots with h∞ < −0.5 have weaker slopes between h∞ and Δh − (−1.11) and a tendency to have larger 
values of |δTupwelling| (3.56 deg C on average) than snapshots with h∞ > −0.5 (−1.14 and 1.66 deg C on average, 
respectively). Besides, the temporal evolution of h∞ follows a seasonal cycle (Figure 3b), which has associated 
with a seasonal variation of the width of the singularity spectrum of SST gradients and thus, a seasonal variation 
of the anomalous scaling of the structure functions of temperature. Moreover, the close relation between the 
spatial location of h∞ and δTupwelling shown in Figure 1c suggests a strong relationship between them, which is 
confirmed statistically: the Pearson correlation coefficient between the temporal evolution of h∞ and δTupwelling 
(Figure 3b) is 0.87.

Figure 2. (a) Singularity spectra D(h). (b) scaling of the structure functions of temperature ζ(p) derived from the singularity spectra. The black dot corresponds to 
〈ζ(2)〉. (c) normalized Fourier spectra. The black dashed line has a slope given by − 〈ζ(2)〉 − 1. Energy spectra are normalized by E0 ≡ E(k0), where k = 10 −4 rad/m. 
Gray lines correspond to the observations for the full period, while orange and green lines correspond to the examples of two particular days: March 4th (green, 
t = 246 days) and August 23rd (orange, t = 418 days) of the second year.



Geophysical Research Letters

ISERN-FONTANET ET AL.

10.1029/2022GL098038

6 of 8

5. Discussion
In this study, we have proposed, for the first time, to measure the intensity of fronts in SST using the singularity 
exponents of thermal gradients. Singularity exponents characterize the scaling at small scales, are independent of 
the gradient magnitude, and measure the degree of continuity of the field. Moreover, singularity exponents have 
the advantage over other popular approaches for detecting fronts, such as those based on histograms or gradient 
filters like the Sobel filter (Chang & Cornillon, 2015; Kirches et al., 2016), that they can be easily connected to 
statistical quantities that are central to turbulence theories (Section 2). Indeed, the singularity spectrum, which 
gives the fractal dimension of those points with the same exponent, emerges as a fundamental property of the 
ocean providing the link between anomalous scaling and the intensity of fronts. Here, we have exploited this rela-
tionship to understand the seasonal variability of the scaling of the structure functions in the California Current 
System.

Two main results have been reported in this study. First, there is a seasonal variability in the value of the most 
singular (the smallest) singularity exponent h∞, which is well correlated with the evolution of the temperature 
anomaly associated with the upwelling δTupwelling (Figure 3b). Moreover, it has been observed that, for strong 
upwelling events, the strongest fronts are located close to the coast, while for weak upwelling events they can also 
be located offshore (Figure 1c), confirming then that the strongest fronts are generated by the upwelling process. 
The second main result is the existence of a linear correlation between the anomalous scaling of the structure 
functions measured by Δh − and the most singular exponents h∞ (Figure 3a). With the interpretation of singularity 
exponents as normalized measures of front intensity in mind (Section 2), our results imply that anomalous scaling 
are linearly anti-correlated to the intensity of the strongest fronts. Putting these two results together, it implies that 
some statistical properties of the flow in the area under study, including the spectral slopes of SST, are correlated 
to the intensity of the upwelling.

The seasonal variability of the upwelling front has been documented in previous studies (e.g., García-Reyes & 
Largier, 2012; Weber et al., 2021), so it could be foreseen that it was responsible for the seasonal variability of 
h∞. Nevertheless, the present research unveils additional results that emphasize the importance of upwellings in 
setting up some of the statistical properties of the flow. This is due to the connection between front intensity and 
the anomalous scaling. Such a connection implies that those models unable to resolve the upwelling system would 
require some kind of parametrization to restore the variability of h∞, as with other unresolved processes (e.g., 
Fox-Kemper et al., 2019). Still, the connection between h∞ and Δh − has more general implications since it gives 
also some clues on how to adjust ocean models. Indeed, according to the results presented here, the modification 
of eddy viscosity and eddy diffusivity not only would act on the intensity of fronts (e.g., Bodner et al., 2020) but 
also on the scaling properties of the structure functions (Figure 3a). Alternatively, those models with wrong front 
intensities will show wrong scaling properties of the structure functions. Besides, the scale independence of the 
framework used in the present study and the robustness of the algorithms for computing singularity exponents 

Figure 3. (a) Scatter plot between h∞ and Δh −. The black line corresponds to a slope of −1.13. (b) temporal evolution of h∞ and δTupwelling. Gray points correspond to 
the observations for the full period, while orange and green points correspond to the examples of two particular days: March 4th (green, t = 246 days) and August 23rd 
(orange, t = 418 days) of the second year.
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(Pont et al., 2013) point to the use of the proposed approach to compare data and models with different resolutions 
and provide additional tools to investigate the dynamics of ocean fronts (McWilliams, 2021).

An important question that emerges is whether the correlation and slope between h∞ and Δh − is universal. A 
preliminary answer would be positive for two main reasons: the same correlation between h∞ and Δh − has been 
found for different variables, SST and velocities; and it has been found in regions with different dynamical 
regimes, the California Current System and the Gulf stream (see Isern-Fontanet & Turiel, 2021). To confirm this 
answer it would be necessary to analyze global numerical simulations (Su et al., 2020) or observations (Merchant 
et al., 2019). However, before using infrared SST measurements, it is necessary to address the problems generated 
by data gaps due to cloud coverage (Isern-Fontanet et al., 2021); the masking out of strong fronts by the failure 
of cloud mask algorithms (Kilpatrick et al., 2019); and the changes in Δh − induced by noise (Isern-Fontanet & 
Hascoët, 2014). Among them, the most critical problem is the masking of strong fronts because it has a direct 
impact on the estimation of h∞ and thus, Δh − = hd − h∞. Alternatively, the scale independence of these quantities 
opens the door to use microwave SST instead of infrared SST to assess the global validity of the results presented 
here.

6. Conclusions
Singularity exponents provide a measure of the intensity of SST fronts that can be connected to the scaling of the 
structure function and the spectral slope of SST through the singularity spectrum. When analyzing the numer-
ical simulations of the California Current System, results show that the intensity of the most singular fronts is 
correlated to the anomalous scaling of the structure functions. These fronts, at their turn, are closely related to 
the seasonal change of intensity of the coastal upwelling characteristic of this area. Our study points to the need 
to correctly reproduce the intensity of the strongest fronts and, consequently, properly model processes such as 
coastal upwelling in order to reproduce correctly SST statistics in ocean models.

Data Availability Statement
The details of the model configuration, as well as, the simulated Sea Surface Temperatures generated for this 
study, and the singularity analysis described in Section  3 are available in https://doi.org/10.20350/digital-
CSIC/14487 (Isern-Fontanet et al., 2022).
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