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ABSTRACT

The cosmological principle asserts that the Universe looks spatially homogeneous and isotropic on sufficiently large scales.
Given its fundamental implications, it is important to empirically test its validity. In this paper, we use the Type la supernova
(SN Ia) magnitude—redshift relation, from both the Pantheon and joint light-curve analysis compilations, to constrain theoretically
motivated anisotropies in the Hubble flow. In particular, we constrain the quadrupole in the effective Hubble parameter and the
dipole in the effective deceleration parameter. We find no significant quadrupole term regardless of the redshift frame used. Our
results are consistent with the theoretical expectation of a quadrupole moment of a few percent at scales of ~100 h~! Mpc. We
place an upper limit of an ~ 10% quadrupole amplitude relative to the monopole, Hy, at these scales. We find that we can detect
an ~ 7% quadrupole at the 5o level, for a forecast low-z sample of 1055 SNe Ia. We find the signficance of an exponentially
decaying dipole of the deceleration parameter depends on the redshift frame used. In the heliocentric frame, as expected, it is
detected at ~30 significance. In the cosmic microwave background (CMB) rest frame, we find a marginal ~2¢ dipole, however,
after applying peculiar velocity (PV) corrections, the dipole is insignificant. Finally, we find the best-fitting frame of rest relative
to the supernovae to differ from that of the CMB at ~2¢ for both compilations, which reduces to <lo when including PV

covariance.

Key words: cosmological parameters —dark energy —distance scale.

1 INTRODUCTION

The cosmological principle is the backbone of modern cosmology,
stipulating that the spatial distribution of matter in the Universe is ho-
mogeneous and isotropic on sufficiently large scales. A broad range
of independent cosmological observations, such as fluctuations in the
temperature and polarization of the cosmic microwave background
(CMB; Planck Collaboration VI 2020b) as well as observations
of large-scale structure and matter fluctuations in the Universe —
including baryon acoustic oscillations (Macaulay et al. 2019) —
have provided compelling support for the current standard Lambda
cold dark matter (ACDM) model. Within the ACDM paradigm,
the interpretation of the cosmological principle is that, on large
scales, distances and light propagation are asymptotically described
by the spatially homogeneous and isotropic Friedmann-Lemaitre—
Robertson—Walker (FLRW) general-relativistic metric solution. This
is a fundamental assumption of the standard cosmological model, and
it is therefore crucial to test against our observations.

The CMB strongly disfavours global departures from isotropy
(as quantified within Bianchi models; see Saadeh et al. 2016).
Late Universe probes present complimentary constraints on the
cosmological principle at small and intermediate scales, where some
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studies have claimed a significant detection of a dipolar anisotropy
in quasar, galaxy cluster, and supernova data (Colin et al. 2019a;
Migkas et al. 2021; Secrest et al. 2021). An overview of cosmic
dipoles and their possible tensions with the ACDM model is pre-
sented in Perivolaropoulos & Skara (2021). The transition to < 1%
correlations at scales ~100 4~' Mpc has been found in Luminous
Red Galaxies (Hogg et al. 2005), blue galaxies (Scrimgeour et al.
2012), and quasars (Laurent et al. 2016) — consistent with the ACDM
transition to cosmic homogeneity. However, coherent orientations of
quasar polarization directions on 500 A~! Mpc scales have been
detected (Hutsemékers et al. 2005, 2014), which could indicate
the existence of correlation lengths larger than expected within the
ACDM model.

Type Ia supernovae (SNe la), owing to their standardizable lumi-
nosity, are excellent cosmological probes in the late-time Universe
(see Leibundgut & Sullivan 2018, for a review of SN Ia cosmology).
The SN Ia magnitude—redshift relation — or Hubble diagram (HD)' —
is an independent probe of isotropy in the late Universe. A number of
analyses using SN Ia data have found significant dipolar anisotropies
in the HD that are difficult to reconcile with ACDM (e.g Cai &
Tuo 2012; Bengaly 2016; Colin et al. 2019b), while others found

'In this paper, we focus on the relative distance measurements of SNe Ta and
do not consider the absolute luminosity calibration. Hence, we use the terms
magnitude—redshift relation and HD interchangeably.
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signals consistent with isotropy (e.g. Kalus et al. 2013; Bengaly,
Bernui & Alcaniz 2015; Andrade et al. 2018b, a; Rubin & Heitlauf
2020). In these analyses, the FLRW distance-redshift cosmography
was modified empirically in order to allow for anisotropic signatures.

In this work, we constrain anisotropic signatures in the Pantheon
(Scolnic et al. 2018) and joint light-curve analysis (JLA; Betoule
et al. 2014) SN Ia data using a theoretically motivated cosmographic
relation. Specifically, we use the general distance-redshift cosmog-
raphy from Heinesen (2020), which makes no assumptions on the
form of the metric tensor or field equations. This allows for analysis
of cosmological data outside of the FLRW models. We simplify this
cosmography using the results of a recent study into local anisotropies
in fully general-relativistic cosmological simulations (Macpherson &
Heinesen 2021). A key prediction of this work was that the anisotropy
in the generalized Hubble and deceleration parameters should be
dominated by a quadrupole and a dipole, respectively. Heinesen &
Macpherson (2022) further showed that this dipole is expected to be
aligned with the local gradient in the density field.

Previous studies have focused on constraining the dipolar signature
in SN Ia data. Constraints of a quadrupole anisotropy have, to the
best of our knowledge, not been done. This quadrupolar anisotropy
is of particular interest in SN Ia studies since it can be constrained
with relative distance measurements, unlike the monopole, Hj, which
is degenerate with the absolute calibration of the SN Ia luminosity.
Additionally, this quadrupolar anisotropy is distinct in signature from
that of a special-relativistic boost due to our motion with respect to
the CMB frame — unlike a dipolar anisotropy which is expected
to be degenerate with such a boost. The potential presence of a
quadrupolar anisotropy is also interesting in light of the discrepancy
in the inferred ACDM Hubble parameter between early- and late-
Universe probes (Planck Collaboration I 2020a; Riess et al. 2021),
since it could impact local inferences of the Hubble parameter which
assume isotropy.

Recently, there have been discrepancies in the literature with
respect to the significance of a dipole anisotropy in the deceleration
parameter of the distance-redshift law (e.g. Colin et al. 2019a; Rubin
& Heitlauf 2020). With an aim to resolve this recent debate, we
also independently constrain this dipole anisotropy under various
assumptions. Specifically, we study the impact of distance bias cor-
rections, peculiar velocity (PV) corrections, and the statistical model
used to define the likelihood for parameter estimation. The paper
is structured as follows: In Section 2, we describe the generalized
cosmographic framework and the simplifications that we make within
it, in Section 3, we describe the statistical methods and data sets used
in our analysis. We present our results in Section 4 and discuss and
conclude in Section 5.

2 THEORY

In this section, we describe the theoretical basis of our cosmographic
analysis. In Section 2.1, we review the cosmographic representation
of luminosity distance in a general space—time, and in Section 2.2,
we introduce some approximations within this formalism, which we
use in our analysis of SN Ia data. We use Greek letters to represent
space—time indices which take values 0. .. 3, and repeated indices
imply summation. We occasionally use bold-face notation and index
notation interchangeably, i.e. e and e*.

2.1 The general cosmographic framework
Cosmographic expressions for cosmological observables that remain

agnostic about the space—time curvature — and thus can incorporate
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arbitrary cosmic bulk flows, lensing effects, etc., in the prediction of
observables — have been examined in various works (e.g. Kristian &
Sachs (e.g. Kristian & Sachs 1966; MacCallum & Ellis 1970; Ellis
et al. 1985; Bonvin, Durrer & Gasparini 2006; Clarkson & Umeh
2011; Clarkson et al. 2012; Umeh 2013; Heinesen 2020, 2021), see
also Capozziello et al. (2013) for a review. Here, we briefly review
the general cosmographic framework for the luminosity—distance
redshift relation formulated in Heinesen (2020), which is particularly
convenient for the analysis of SN Ia data. This framework will form
the basis of our anisotropic constraints.

We consider a general space—time congruence description of
observers and emitters with four-velocity field u, and consider
observations made from a space—time event o. The geometric Taylor
series expansion of the luminosity distance, dr, to an astrophysical
source at redshift z and in direction e on the observer’s sky is

duz o) =di @z +d () +d @ + O, (1
where the inhomogeneous and anisotropic coefficients are
1 —9Q,(e)
di’(e) = L AP = S,
- H,(e) - 29,(e)
—1 3 2 0 - ~o E)(‘to
d¥e) = +30Q5(e) + Q,(e) — Jole) + (e)’ @)
65,(e)
and the generalized cosmological parameters are
5ie) = — L4 (3a)
@
Q(e)z—l—%%, (3b)
Ree) = 1 +9 — LT (e
25

Je) =545 —40-3. (3d)
Here, E = —u"k, is the observed photon energy, A is the affine

parameter of the geodesic, % = k"V,, is the directional derivative
along the incoming null ray, R,,, is the Ricci curvature of the space—
time, and the photon four-momentum can be decomposed as k" =
E(u" — e"). The inverse energy function, 1/E, replaces the FLRW
scale factor in the luminosity distance cosmography for a general
space—time, and can thus be thought of as a natural ‘scale-factor’ on
the observer’s past light cone. The parameters {$), Q, J, 23} represent
inhomogeneous, anisotropic generalizations of the FLRW Hubble,
deceleration, jerk, and curvature parameters. We shall therefore refer
to {9, Q, J, R} as the effective observational Hubble, deceleration,
jerk, and curvature parameters. These effective cosmological param-
eters include information about regional kinematics and curvature
effects; for instance, bulk flow motions or the lensing of photons. In
the strictly homogeneous and isotropic limit of (3), we recover the
well-known FLRW cosmographic results of Visser (2004).

The anisotropic signatures of the effective cosmological param-
eters can be represented by multipole series in the direction vector
e. For instance, the effective observational Hubble parameter can be
expanded as follows:?

1
f.)(e) = 50 - euap. + e“eUO‘/w ) (4)
where 0 is the volume expansion rate of the observer congruence,

0 v 18 its volume-preserving deformation (shear), and a* is its four-
acceleration. We emphasize that the multipole expansion (4) is exact,

2See Heinesen (2020) for details on regularity requirements of the series.
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and represents all contributions of anisotropy to the effective Hubble
parameter. The effective deceleration parameter can be decomposed
into multipoles in a similar way, and reads

1 0 1 2
Qe) = —1 — 7@ (q +elq, +ee’q,,
3 4
+el'e’e’q,,, + e“e”e/’e"qu,(> , 5)
with coefficients
o 1do 1 w2 2 "
1250 T3 T3 T s
1 — 1 2 v da# v v
q, = _gDue — gDVUM 4 +a'wy, + ga O s
2 do,, w 6
v = dr + Dyuay) + ayuay) — 204,05 — 70au%y) »
3
Qo = —D)00p) — 3),00p)
4
Duvpe = 20),000p1) » (6)

where % = u"V, is the directional derivative along the observer
four-velocity field and w,,, is the vorticity tensor describing the
rotation of the observer congruence. Triangular brackets )) around
indices single out the traceless and symmetric part of the tensor
in those indices. In this work, we focus on the effective Hubble
and deceleration parameters, and we therefore refer the reader to
Heinesen (2020) for the multipole series expressions for J and 9.

This formalism has the advantage of being general, and can, in
principle, be applied for a fully model-independent data analysis of
standardizable candles. However, as detailed in Heinesen (2020),
such an analysis would require the determination of 61 independent
degrees of freedom. This level of constraining power is not achievable
with current SN Ia catalogues, and assumptions are therefore nec-
essary to apply the framework to available data. In the next section,
we will make physically motivated approximations to simplify the
above multipole expansions for our analysis.

2.2 Approximations

We consider geodesic astrophysical sources, such that a = 0, and
consider scales where expansion dominates over anisotropic defor-
mation of space, such that shear and vorticity are subdominant to the
isotropic expansion. More specifically, we assume |ee" o, |, <K 6,,
et e 0, 0%, K 02, |eMe’0,,0%|, K 62, and |e*e"doy,, /dt|, K 62
for all directions on the observer’s sky. However, we shall not impose
any smallness conditions on the spatial gradients of the kinematic
variables. In particular, |e*D, 0|, and |e'e"e’ D, 05|, might be of
order 62 or larger. Indeed, for weak-field expansions in cosmology,
spatial gradients tend to increase the order of magnitude of the metric
perturbation on scales below the Hubble horizon (Buchert, Ellis &
van Elst 2009; Rasanen 2009, 2010).

Under the above weak-anisotropy approximations, including only
the leading-order anisotropic terms in (4) and (5) leads to

1
H(e) = 59 +eleop, (7
and

0 1 3
n LaVal
_q+e q, +ele’e’q,,,

‘[(e) =-—1 é@z ) (8)

with coefficients

1do I 2 s
1 qll,z_gDue_gDVUpJ q;tvpz_D)MaVP)’ (9)

Quadrupole with SNe la 4843
where we have defined $)(e) — H(e) and Q(e) — ¢(e) in this limit
of weak anisotropy. In the following analysis, we shall further assume

. .3 .
that the traceless part of ee”e¢”D,0,, (incorporated in q,,,) is

subdominant to its trace (incorporated in é )» and thus set a wvp = 0.
‘We shall make this assumption from a practical viewpoint because of
the sparsity of the data we use (see Section 3.3), making it unrealistic
to resolve an octupole feature on the sky. For the same reason,
we shall also not investigate anisotropic terms in the higher order
effective observational parameters J and R. For future surveys with
more data and improved sky coverage, we will be able to include a
more complete hierarchy of anisotropies.

‘We note that D,,O‘Z = %Due for a general-relativistic irrotational
dust space—time (Buchert 2000), which in this case makes the

interpretation of the dipole term, éw in (9) clearly related to
the spatial gradient of the expansion rate, . Furthermore, spatial
gradients of the expansion rate are expected to be proportional to
spatial gradients of the density field in large-scale cosmological
modelling (Heinesen & Macpherson 2022), which implies that we
expect the dipole in the effective deceleration parameter to be aligned
with the spatial gradient of the local density field.

2.3 Anisotropic cosmography

The JLA catalogue covers a wide range of redshifts 0.01 < z < 1.3.

As discussed in appendix A of Macpherson & Heinesen (2021),
cosmography for anisotropic space—time models is best suited for
narrow redshift intervals. Thus, in order to apply the above formalism
to a wide redshift range, we shall allow for decaying anisotropic
signatures with redshift. This results in a cosmography that might be
highly anisotropic at small scales, but which transitions into the well-
known isotropic cosmography at the largest scales of observation.

With the simplifications given in the previous section, the cosmo-
graphic expansion of d;. becomes

F4 {1+ [1—-g(e)lz

di(z,e) =

H(e) 2
1 _ 2
n [1—gq(e) 31(8) + Jjo QK]Zz}, (10)

where we have applied the notation 9i(e) — 2, and J(e) — jo from
FLRW cosmography, since we are only considering the monopolar
contributions to R(e) and J(e) in this analysis. Since j, and Qk are
degenerate in the expression (10), we will constrain the combination
jo— Q.3

We now express the anisotropic Hubble parameter by re-writing
(7) as

H(e) = Hm+Hq'ee]:quad(Z» S) (11)

where H, = Hy and Hg are the the monopole and quadrupole compo-
nents, respectively, and Fqu.a(z, S) describes the scale dependence
of the quadrupole. We denote the eigenvalues of the normalized
quadrupole tensor Hy/Hy as Ay, Ay, and A3 = —A; — Ay, and the
eigendirections as 6, 6,, and 63, such that

H(e) = Hm{l + |:}L1 . COSZGI + As - COSZGZ

—(M + 22) - cos%} Fuad (2, S)}, (12)

3In the analysis of Colin et al. (2019b), the direction of the source is indicated
by the variable 7, which in our notation reads e.

MNRAS 519, 4841-4855 (2023)
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where 0; are the angular separations between the coordinates of
the supernova and the eigendirections ;. In the following analysis,
we will quote the total amplitude of the quadrupole component of H
(relative to the monopole Hy,) as the norm of the tensor Hy multiplied
by the decay function F, namely

Aq = |1H || Fquaa(z, S) 13)

= B 234 O+ 200 Pz 9, (14)

for some redshift scale z. We also express the anisotropic deceleration
parameter by re-writing (8) as

q(€) = qm + qa - € Fgp(z, S), (15)

where ¢, and g4 are the monopole and dipole components, respec-
tively, and Fyip(z, S) describes the scale dependence of the dipole.
The ansatz (15) for the deceleration parameter coincides with that of
Colin et al. (2019b).

Previous anisotropy searches in the literature have employed
various forms of F, including constant, linear, and exponential laws
in redshift (Colin et al. 2019b). Recent Bayesian model comparison
studies strongly disfavour a constant-in-redshift dipole in data over
scales of ~1Gpc (Rahman et al. 2021). The redshift range of the
survey is important for the interpretation of the (amplitude of)
anisotropic coefficients in the cosmographic fit (Macpherson &
Heinesen 2021). The data sets that we investigate span redshifts up
to z ~ 1, and we thus expect a transition towards an approximately
isotropic cosmography for the most distant SNe Ia in the sample. We
therefore assume the exponential form F(z, §) = exp( %), where
S is the decay scale, for both the dipole in ¢ and the quadrupole
in H. For our fiducial case, we fit the scales for the dipole and
quadrupole as distinct parameters Sq and S, respectively. We also fit
two other parametrizations of J in the quadrupole: a step function
with a fixed width in redshift and the exponential model with a
fixed decay scale Sy. The former is expressed as F(z, Zgep), Where
Fz = Isteps Zstep) = land F(z > Zsteps Zslep) =0.

3 METHODOLOGY AND DATA

The distance modulus of an astrophysical object is defined in terms of
the absolute magnitude, M, of the object and the apparent magnitude,
m, as measured by the observer. SNe Ia corrected magnitudes are
inferred in the B band and are related to the luminosity distance, d|,
in the following way

dy,
=mh — My =51 P 25. 16
n=my B OglO(IOMpC>+ (16)

Observationally, the standardized SNe Ia peak magnitude m7 is
estimated from correcting the peak apparent magnitude, mjp, for
correlations with the light-curve width, x;, and colour, ¢, to infer the
distance modulus using the following relation (Tripp 1998; Betoule
et al. 2014)

Mobs = Mp — (MB —ax; + ﬁc)v (17)

where My is the mean absolute magnitude of the SNe Ia in the B
band.* Following Betoule et al. (2014), we apply a step correction,
Aw, depending on the host galaxy stellar mass. This step correction
accounts for the observation that after stretch and colour correction,

4These corrections are already applied to the Pantheon data set, however, we
test their impact on the cosmological parameters in Appendix A and find no
correlation.

MNRAS 519, 4841-4855 (2023)

the SNe Ia in high-mass hosts are on average brighter than those in
low-mass hosts (e.g. see, Betoule et al. 2014). We note that «, B, Mp
and Ay are nuisance parameters in the fit for the cosmology. >We
insert the geometrical prediction for ¢, given in (10) into (16) for our
anisotropic analysis. We emphasize that the parameters describing
the anisotropies that we constrain, for example Hy and ¢gq, are not
degenerate with the SN Ia absolute B-band magnitude. The monopole
of the Hubble parameter, H,,, is, however, degenerate with My and
is thus not constrained by our analysis.

In order to ensure that our results are robust, we constrain the
anisotropic parameters using two independent statistical methods,
namely a constrained x> method (detailed in Section 3.1) and a
maximum-likelihood estimation method (detailed in Section 3.2).

3.1 Constrained x> method

We use the observed distance modulus (17) to constrain a
parametrized geometric prediction of the distance modulus by con-
structing the test statistic with an assumed x 2 distribution, namely

Xon = ATCGIA, (18)

where A = gy, — Mops 1S the residual vector of the theoretical
distance moduli gy and observed distance moduli g, of the
sample, and Cgy is the covariance matrix of the observations.
We use (10) and (16), in place of the FLRW relation usually
employed in isotropic analyses, to compute py. The estimate of
the complete covariance matrix, Cgy, is described in Betoule et al.
(2014). We use PyMultiNest (Buchner et al. 2014), a python
wrapper to MultiNest (Feroz, Hobson & Bridges 2009), to derive
the posterior distribution of the anisotropic parameters. We also
compute the Bayesian evidence for the third-order cosmographic
expansion in (1) as compared to the fourth-order expansion that
includes information about the cosmological ‘snap” sg, the fourth
derivative of the scale factor (see Visser 2004). We find a Alog Z
of 2.8 in favour of the model in (1), suggesting that the third-order
truncation of dy, in redshift is sufficient.

3.2 Maximum likelihood estimation

We use the likelihood construction of Nielsen, Guffanti & Sarkar
(2016) (see also section 3.1 of Dam, Heinesen & Wiltshire 2017),
in which the SNe Ia are assumed to be standardizable such that the
intrinsic magnitude, colour, and shape parameters describing the light
curve of the individual SNe Ia may be drawn from identical Gaussian
distributions. In the final likelihood, it is thus the expectation value of
the intrinsic Gaussian distributions that enter in the relation (17), and
not the measured SN Ia parameters themselves, which are subject to
scatter. As in Section 3.1, the geometric prediction of the distance
modulus p is given by the cosmography in Section 2, and the
experimental covariance matrix of the likelihood function is that
described in Betoule et al. (2014). In addition to the cosmographic
parameters of interest, the analysis contains a number of nuisance
parameters. Namely, the coefficients « and B of the relation (17), and
the parameters describing the hypothesized Gaussian distributions of
the true SN Ia light-curve parameters. In the likelihood optimization,
we will marginalize over these nuisance parameters.

SWe note that the Ay parameter is only implemented in the x> method
discussed below.
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Figure 1. Sky coverage of the supernova samples used in this work. Crosses
show the sky location of Pantheon supernovae and circles show the JLA
supernovae in galactic coordinates (/, ). Each point is coloured according to
the redshift of that supernova in the CMB frame, zcmg.-

3.3 Data sets

We use the most recent SN Ia light-curve parameters and redshift data
from the JLA (Betoule et al. 2014) and Pantheon (Scolnic et al. 2018)
compilations. Fig. 1 shows the sky coverage of the two samples, with
crosses showing Pantheon supernovae directions and circles showing
JLA supernovae directions. All points are coloured according to the
redshift of the supernova in the CMB frame, zcvp (as defined below).

The cosmographic representation of the luminosity distance (1)
is generically expected to be divergent for z > 1 (Cattoen & Visser
2007; Macpherson & Heinesen 2021). However, the approximation
of the Taylor series to the exact distance formula in isotropic
cosmology is expected to be reasonable for redshifts close to 1 (e.g.
see Arendse et al. 2020), at least for testing cosmologies close to
the ACDM model (Aviles et al. 2014). Most Over 97 per cent of
SNe Ia in the JLA and Pantheon data sets have z < 1, with the
SN Ia with the largest redshift has highest redshift SN la being z
= 1.3 and 2.3, respectively. Hence, for the majority of SNe Ia, the
Taylor series should provide a valid description of the distances. We
therefore adopt the cosmographic representation for all SNe Ia in
both samples. The anisotropic features that we are constraining are
exponentially decaying with redshift and thus the main results of our
analysis are predominantly determined by the lowest redshift SNe Ia
in the sample.

PV corrections based on estimates within the ACDM model are
usually applied to the measured redshifts of nearby SNe Ia in order
to alleviate the motions of these SNe la with respect to the CMB
frame. There has been a recent debate in the literature about the
consistency of these corrections and their impact on the evidence
for cosmic acceleration (Colin et al. 2019a; Rubin & Heitlauf
2020). Therefore, we evaluate the impact of PV corrections on our
constraints by presenting results inferred from three different redshift
frames. We consider: (1) Heliocentric (Hel) redshifts: the measured
redshifts of each SN Ia in the heliocentric frame; (2) CMB-frame
redshifts: the heliocentric redshifts corrected via a boost of the Earth
to the CMB frame (using the CMB dipole as inferred by Planck
Collaboration I 2020a); and (3) HD redshifts: CMB-frame redshifts
with PV corrections applied to individual SNe Ia. We will adopt the
CMB-frame redshifts in our fiducial analysis. While redshifts in the
heliocentric frame are not usually used for parametrizing distances
at cosmological scales, they are useful as a reference in model-
independent analysis, for example, in cases where we might not wish
to assume that the dipole in the CMB is a purely observer-kinematic
effect. As part of our analysis, we will also fit for the best-fitting rest
frame — i.e. not a priori constraining this to be the CMB frame — for
both samples of SNe Ia.

Quadrupole with SNe la 4845

Table 1. Parameter priors used in the inference for each of the models tested
in this work in both the JLA and Pantheon analyses.

Multipole model
Parameter Prior implemented in
dm U[4, 4] Quadrupole and dipole
Jo — Sx U[-10, 10] Quadrupole and dipole
qd U[-10, 10] Dipole
Sa U[0.0, 0.1] Dipole
A1 U[-2, 2] Quadrupole
Ao U[-2, 2] Quadrupole
Sq U[0.01, 4] Quadrupole

Previous studies using various SN Ia compilations and data-
reduction methods have reached differing conclusions about the
significance of a dipole in the deceleration parameter. Some works
have found no significant dipole and report consistency with the
ACDM model (Soltis et al. 2019; Zhao, Zhou & Chang 2019; Rubin
& Heitlauf 2020), while others claim a deviation from isotropy at a
level that challenges the use of the FLRW geometry at low redshift
(Cai & Tuo 2012; Bengaly 2016; Colin et al. 2019b). Motivated
by this discrepancy, we study the impact of different analysis
assumptions on the constraints of the dipole in the deceleration
parameter. In particular, we test the impact of the PV corrections
(through the use of the three different redshift frames outlined above)
on both data sets.For the JLA data set, we also analyse the role of
the PV covariance matrix and distance bias corrections. The latter
are applied to my after the corrections to light-curve width, colour,
and host galaxy mass, in order to account for systematics arising
from survey selection criteria (see Betoule et al. 2014; Scolnic et al.
2018, for more details on these corrections). For the Pantheon data
set, corrections for the width- and colour—luminosity relation and
distance biases to the SN Ia distances have been applied before the
data was made public. Therefore, we only test the impact of PV
corrections on results using the JLA sample. In Appendix A, we
fit the nuisance parameters simultaneously with the cosmology and
show that we obtain similar constraints as in our main analysis of the
Pantheon sample.

4 RESULTS

We present our inferred constraints on the quadrupole of the Hubble
parameter in Section 4.1, and on the dipole of the deceleration
parameter in Section 4.2. We constrain these independently, i.e. when
constraining the quadrupole, we set the dipole term to zero, and
vice versa. We perform Bayesian analysis based on the constrained
%2 method for both the JLA and the Pantheon sample of SNe Ia,
and consider an independent frequentist MLE analysis for the JLA
sample. The priors that we use for each model parameter in the
Bayesian analyses are summarized in Table 1.

4.1 Constraints on the quadrupole

For the constraints on the quadrupole, we use the exponential decay
model for F(z, Sy) as the fiducial case with the scale as a free
parameter. We also evaluate the constraints with the scale parameter
fixed as well as a step function in redshift, as described in Section 2.3.

Parnovsky & Parnowski (2013) constrained the dipole,
quadrupole, and octupole moments of the bulk motion of a set
of nearby galaxies, using the Revised Flat Galaxy Catalogue
(RFGC; Karachentsev et al. 1999). We fix the eigendirections of
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the quadrupole in the Hubble parameter to coincide with their best-
fitting results of #,=(118, 85)°, ,=(341, 4)°, and 65=(71, —4)° in
galactic angular coordinates (I, b). With these eigendirections, we
then constrain the eigenvalues of the quadrupole, A; and X, and
its decay scale Sy, along with the monpolar parameters g, and jo
— Qg of the analysis. We have repeated the analysis allowing the
eigendirections 6, #,, and @5 to vary, and have found no significant
improvements in the profile likelihood for any alternative eigenbasis.

Fig. 2 shows our constraints on the quadrupole in the Hubble
parameter as obtained from the JLA and the Pantheon data sets
using the x? method. We show the amplitude of the quadrupole
contribution at redshift z = 0.035 (or on scales of ~100k~" Mpc),
namely A; exp(—0.035/S,) and A, exp(—0.035/S,). Dashed black
contours show constraints using the heliocentric redshifts, solid red
contours show those using CMB-frame redshifts, and dotted green
contours show those using HD redshifts. Our results are consistent
with zero in all cases and show no significant change between redshift
frames.

In Table 2, we summarize our constraints on all parameters for both
the JLA and Pantheon data sets obtained with the x> method. We
show constraints using heliocentric, CMB-frame, and HD redshifts
for both data sets. For all cases, we find results consistent with A; =
A, = 0 at the ~1o level. From the 95% confidence level in Fig. 2
and using (14), we place an upper limit on the total quadrupole
amplitude of ~ 10% at scales of ~ 1004~ Mpc (or z = 0.035).
Therefore, the few-percent quadrupole predicted in (Macpherson &
Heinesen 2021) is consistent with current data. In Section 4.3, we
forecast improvements on our constraint for upcoming low-redshift
surveys such as the Zwicky Transient Facility (ZTF; Dhawan et al.
2022) or the Young Supernova Experiment (YSE; Jones et al. 2021).

The cosmographic expansion using the redshift z as a parameter
has a radius of convergence of z < 1, however, we have included
SNe Ia with redshifts z > 1 in our analysis. While we have justified
the validity of the third-order truncation of the cosmography of (1) in
Section 3.3, we also test the impact of excluding SNe Ia with z > 0.5
on the inferred quadrupole feature. We find no significant shift in the
best-fitting values and only a 10 per cent increase in the 1o and 20
confidence regions. We conclude that there is no significant impact
of using the highest-z SNe Ia on our conclusions for the quadrupole.

Further, we also test an additional parametrization of the cos-
mographic expansion which allows for higher redshift constraints.
Namely, we use the expression for di expanded in the transformed
redshift variable y = z/(1 4 z) as introduced in Cattoen & Visser
(2007). We find our constraints using y as a parameter in the
expansion to be consistent with those using z as a parameter at
the ~0.60 level. Since we consider here an exponential decay of
anisotropic features, the lower redshift SNe Ia have the strongest
constraining power for the anisotropies. Thus, we expect these tests
on the higher redshift SNe Ia to have little effect on the anisotropic
constraints.

Table 3 shows our constraints on the quadrupole parameters using
the MLE method for all three redshift frames. For all cases, our
results are consistent with isotropy (zero quadrupole) at the ~1o
level, which can be seen from the p-value for the isotropic null
hypothesis as quoted in the right-most column of the table.

We also test two different parametrizations of the quadrupole that
determine the redshift region where the quadrupole dominates. First,
we fix the exponential decay scale to Sy = 0.03/In(2), 0.06/In(2), and
0.1/In(2). These choices imply exp(— z/S,) = 1/2 for redshifts z =
0.03, 0.06, and 0.1, respectively. Second, we treat the quadrupole
as a step function in redshift, i.e. we set F(z < Zgep, Zsiep) = 0 and
F(Z > Zstep» Zsiep) = 1 for zgep = 0.03, 0.06, and 0.1. These redshift
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values all lie in the low-z (i.e. z < 0.1) regime — where we expect
the anisotropy to be strongest — while still being sufficiently above
the minimum redshift in the SN Ia compilations. The left-hand panel
of Fig. 3 shows the posterior distribution for the eigenvalues of the
quadrupole, using the x? method, for the three exponential decay
profiles for the Pantheon sample. The right-hand panel of Fig. 3
shows the same constraints for the three cases of the step function.
We find similar constraints for the both the fixed redshift step and
the exponential decay model with the fixed decay scale. For all
cases shown here, we use the CMB frame redshifts, however, we
find similar results for the Helicentric and HD frame redshifts, all
indicating a quadrupole feature consistent with zero at the ~1o level.
In all of these cases, we thus find no significant deviation from the
isotropic null hypothesis. We also find that performing the same fits
with the JLA sample gives consistent results.

4.2 Dipole of the deceleration parameter

In our main analysis, we set the direction of the dipole in the effective
deceleration parameter to coincide with the CMB dipole as found by
Planck Collaboration (2020a), namely (/, b) = (264.021, 48.523)°.
In order to ensure that the CMB dipole direction is indeed an optimal
direction for the dipolar signature, we test for the best-fitting direction
by varying the dipole direction and comparing the likelihood of the fit
for different directions on the sky (see Appendix B). Using the MLE
method, we find the direction that optimizes the profile Likelihood
function to closely coincide with the direction of the CMB dipole, as
was also found in Colin et al. (2019b).

The left-hand panel of Fig. 4 shows our constraint contours
in the gq—qgm plane for the JLA data set using the x> method,
including the PV covariance matrix. The right panel shows the
same constraints for the Pantheon data set. In both panels, solid
red contours show the results from CMB-frame redshifts, dotted
green contours show HD redshifts, and thick dashed black contours
show heliocentric redshifts. All constraints include the distance bias
corrections, with the exception of the thin dashed red contours in
the left-hand panel, which show the CMB-frame constraints for JLA
with these corrections removed. Removing these corrections does
not significantly impact our constraints, and so we retain them for
the rest of our analysis.

We summarize our constraints on the deceleration parameter using
the x2 method in both the JLA and Pantheon data in Table 4. We
show constraints on the monopole gy,, the dipole amplitude ¢4, the
decay scale Sg4, and the (isotropic) jerk minus curvature parameter jo
— Qg. We show all three redshift cases with PV covariance included
in the estimated errors, as well as the CMB and heliocentric redshifts
without PV covariance contributions (see Betoule et al. 2014, for
details on the components of the covariance matrix). For the JLA
data set, we find ¢, = 2.187335; for the CMB frame redshifts, and
when adding the PV corrections we find ¢; = —0.0047,%. . In all
but one case, the JLA data set yields a dipole consistent with zero.
In the case of JLA heliocentric redshifts without the PV covariance
matrix, we find a significant dipole at the 3.3 level. For the rest of
this work, we compute the significance of our results as /2 times in
the inverse error function of the nth percentile that is consistent with
isotropy, i.e. ga¢ = 0. For Pantheon, both heliocentric and CMB-
frame redshifts yield a dipole at 3.430 and 2.170 significance,
respectively (including the PV covariance matrix). After applying
the PV corrections (i.e. using HD redshifts), the dipole is consistent
with zero within 1o for both samples.

Comparing the constraints from the JLA and Pantheon compi-
lations in the left- and right-hand panels of Fig. 4, respectively,
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Figure 2. Constraints on the eigenvalues of the quadrupole of the Hubble parameter using the JLA (left-hand panel) and Pantheon (right-hand panel) data sets.
The contours are obtained with the 2 method with redshifts in the CMB frame (solid red), heliocentric frame (dashed black), and HD redshifts (dotted green).
The contours show the 1o and 20 limits. We find no significant evidence for deviation from isotropy (marked with the blue star) in any of the cases studied here.

Table 2. Summary of constraints on the isotropic deceleration and curvature minus jerk parameters gn, and jo — S, the
eigenvalues of the quadrupole in the Hubble parameter A; and X,, and the exponential decay scale of the quadrupole, Sq. All

results shown here are found using the x> method.

Data set Redshift gm Jo— QK Al Ao Sq

JLA CMB -0316 7015 0373 04 0.005 T90)7 0.002 70022 0.974 7098,
JLA HD -0.392 00 ~0.109 T033 0.003 T5-012 0.005 *5013 1.258 9%
JLA Hel 0404 T8 0115 102 0.006 £9013 0.001 £0013 1.253 1095
Pantheon CMB -0.448 0076 0.264 70289 0.011 T00% -0.003 T8 1.564 10833
Pantheon HD -0.481 7078 0.38 79331 0.072 £1352 -0.136 19663 0.002 F9001
Pantheon Hel ~0.49 TO078 0.408 70283 -0.007 T0% 0.003 T01 0.275 13996

Table 3. Constraints on the isotropic deceleration and curvature minus jerk
parameters ¢m and jo — 2, the eigenvalues and exponential decay of the
quadrupole in the effective Hubble parameter, A1, A2, and Sq. Results here
are found using the MLE method and the JLA SN Ia data set. The mp bias
corrections are removed and o ; is set to zero. The p-value in the right-most
column is the probability of the null hypothesis (isotropic universe model)
relative to the model with a non-zero quadrupole.

Redshift qm  Jo — 2k A Ao Sq p-value
CMB —0.160 —0.455 0.109 —0.0396 0.0110 0.67
HD —0.260 —0.159 4.78 —4.27 0.0028 0.67
Hel —0.151 —0.496 —0.00713  0.0095 24.8 0.81

we find that the posterior distributions are similar for the CMB
and HD redshifts, with the 1o contours of the two samples (close
to) overlapping. For redshifts in the heliocentric frame, we find an
overlap of the 2o contours (but not the 1o contours), which indicates

a moderate inconsistency between the two samples. We note that
there have been several updates between the two compilations, e.g.
the redshift measurements for a subsample, additional objects at
high-z photometric calibration, retraining of the light-curve fitting
method. We remade the constraints in Fig. 4 using only the SNe Ia
in common between the two compilations as well as using the same
redshift measurement reported for zye) — i.€. by using zpe reported in
one sample for all objects with the respective magnitudes from each
sample, and vice versa. However, in both of these tests, we still find an
inconsistency between the samples at the < 20 level (see Appendix C
for details). We therefore cannot attribute this inconsistency to the
difference in objects between the samples or in any difference in
reported redshifts. The source of the systematic differences pointed
out here is important to clarify and should be further investigated
with larger, improved samples such as the Pantheon+ compilation
(Brout et al. 2022).

For the Pantheon data set, the reported magnitudes have already
been calibrated for stretch, colour, and host galaxy properties of the
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Figure 3. Constraints on the eigenvalues of the quadrupole A1, A, for the parametrizations with a fixed scale (left-hand panel) and fixed redshift step value

0.03  0.06

(right-hand panel). The scale values are varied between 0y Ty 12&1

and mes] and the redshift steps at 0.03, 0.06, and 0.1. As expected, the constraints are

worsened for small step values since there are fewer SNe Ia in the redshift range. All cases are consistent with isotropy.
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Figure 4. Left-hand panel: constraints on the monopole and dipole terms of the deceleration parameter using the JLA compilation. The constraints are shown
for the heliocentric (thick dashed black), CMB frame redshift (solid red), and the HD redshifts (dotted green). All contours contain the PV covariance matrix.
Thin dashed red contours in the left-hand panel show the CMB frame constraints without the distance bias corrections. Right-hand panel: The same constraints

for the Pantheon compilation. All contours represent the 1o and 20 constraints.

SNe Ia, within a cosmological model. We can therefore only use the
constrained y2 model for the Pantheon data set. In Appendix A, we
test the impact of these magnitude calibrations on the cosmological
constraints, by repeating the analysis using the light-curve parameters
provided with the Pantheon compilation. We find no correlation
between the SN Ia standardization and the cosmological parameters
of our analysis. Our results with the corrected m Pantheon data in the
main analysis are thus recovered within the more model-independent
approach examined in Appendix A.

Table 5 shows our constraints on the deceleration parameter for
the JLA data set using the MLE method. Again, we consider all three
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redshift cases. For the HD redshifts, the dipole signal is consistent
with zero. For the heliocentric redshifts, we find a significant dipole
with best-fitting values g = —8.13 and S; = 0.0261 and p-value
= 7.9 x 1075, This result is consistent with the equivalent case in
Table 4 (heliocentric redshifts without PV cov) using the x> method.
In the CMB frame, we find a preferred dipole with opposite sign of

®We note that the constrained x2 results in Table 4 contain the distance
bias corrections, whereas the MLE results in Table 5 do not contain them.
However, the addition of bias corrections makes little difference on our results
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Table 4. The median and 68% C.L. constraints on the monopole and dipole moments of the deceleration parameter for both JLA and
Pantheon compilations. Here, we compute the parameters for the CMB frame, HD (see the text for details), and heliocentric frame
redshifts. We also evaluate the parameters with and without the covariance matrix for the PV corrections (for the CMB and heliocentric

frames) for the JLA compilation.

Data set Covariance Redshift Jjo— QK qd Sa

JLA With PV cov CMB -0.348 T0138 -0.28 4% 1.016 +3-262 0.143 T30
JLA With PV cov HD 0413 10128 _0.048 THH0 0.034 H0737 0.141 0007
JLA With PV cov Hel -0399 0113 01290 03T —0.066 TS 0.142 T0:006
JLA Without PV cov CMB 0343019 _0.296 4% 2.379 72868 0.026 10033
JLA Without PV cov Hel -0315T013 0380 042 —6.806 T3 0% 0.028 T0008
Pantheon With PV cov CMB -0.439 F9:07¢ 0.240 1033 5.414 1380 0.020 0000
Pantheon With PV cov HD -0.481 T00H 0.373 102% 0.696 1902 0.021 T0034
Pantheon With PV cov Hel ~0.445 0076 0.252 7933 -6.001 2937 0.027 0007

Table 5. Constraints on the isotropic deceleration and curvature minus jerk
parameters gy, and jo — 2, and the magnitude and exponential decay scale
of the dipole in the effective deceleration parameter, ¢q and Sq. Results here
are obtained with the MLE method and the JLA SN Ia data set. The mp bias
corrections are removed and o ; is set to zero. The p-value in the right-most
column is the probability of the null hypothesis (isotropic universe model)
relative to the model with a non-zero dipole.

Redshift dm Jjo— Rk qd M p-value
CMB —0.174 —0.416 14.1 0.0122 0.024
HD —0.256 —0.174 10.4 0.00084 0.67
Hel —0.158 —0.488 —8.13 0.0261 7.9 %1073

that in the heliocentric frame, albeit the significance of the signature is
lowered. The change of sign of the preferred dipole in the deceleration
parameter is due to the partial degeneracy between this dipole and the
special-relativistic boost of the observer (see section 5 of Heinesen
2020). This result differs from that of the analogous analysis
using the x? method, for which we found no significant dipole
signature.

So far in our analysis, we have maintained the velocity of the
observer to coincide with the best-fitting velocity as inferred from
the dipole in the CMB. If the dipole anisotropy in SN Ia data is
purely due to our kinematic motion and the CMB dipole is of purely
kinematic origin as well, we should infer a similar observer velocity
to that obtained from the CMB. We now leave the amplitude of
the observer velocity as a free parameter in an isotropic analysis,
while maintaining its to coincide with the boost direction of the
CMB dipole. We have repeated the analysis, allowing the direction to
vary, and find the maximum likelihood direction to closely coincide
with that of the CMB dipole (see Appendix B). For this test, we
neglect the PV covariance contributions to the total error covariance
matrix. Inclusion of PV covariance increases the error bars by ~
20%, but gives overall similar results to those quoted below. For
the JLA SNe Ia, we find a velocity v = 258.1573/9 kms™' relative
to the heliocentric frame using the constrained x> method and v =
252 kms~! using the MLE method (with a p-value of 0.018). Both of
these velocities are consistent with the recent result in Horstmann,
Pietschke & Schwarz (2021), however, both are discrepant from
that inferred from the CMB dipole (369.82 4 0.11 kms™!; Planck

for both statistical methods, and we therefore may still safely compare results
between statistical methods.

Collaboration 12020a). Using the x 2 method for the Pantheon SNe Ia,
we find a expectation value of the velocity of 240 "3/ kms™', which
is in agreement with our other results. This suggests an additional
contribution to the dipole in SNe Ia data beyond that of a special-
relativistic boost of the observer to the rest frame of the CMB.

As shown in Table 5, we found a significant dipole in the
deceleration parameter using the MLE method for the case of JLA
SNe Ia in the heliocentric frame and in the CMB frame, respectively,
albeit the the significance drops to ~20¢ in the later case. Introducing
the amplitude of the observer velocity as a free parameter, while
keeping its direction fixed to the CMB dipole direction as in the above
analysis, removes the significance of the dipole in the deceleration
parameter. We find that the allowance of a non-zero dipole in this
case increases the logarithm of the likelihood by ~1.6 in the best
fit and is thus not enough to justify the introduction of the two
free parameters associated with the dipole. Thus, in this analysis,
we find that the dipole in the deceleration parameter is consistent
with zero. This comes at the price of a best-fitting magnitude of
the velocity of 252 kms—!, which differs from the CMB with a
significance of ~20.

The HD frame results in Table 5 also show an insignificant dipole
in the deceleration parameter. Thus, we conclude that the SN Ia PV
corrections in standard analyses can account for the dipole in the
deceleration parameter that we find here. Peculiar flows are indeed
expected to give rise to anisotropies in the Hubble law of the type
investigated in this paper, as we comment on in the discussion
section.

In Fig. 5, we show the exponentially decaying dipole amplitude
as a function of redshift for the different statistical methods and data
sets used here. Different colours represent the three redshift frames
we use, as indicated in the legend. Solid lines show best-fitting values
obtained using the x? method with JLA SNe Ia, dotted lines show
best-fitting values for Pantheon SNe Ia, and dot—dashed lines show
results using the MLE method with JLA SNe Ia. Shaded regions
show the 20 bounds for the x? constraints. The horizontal magenta
line shows the magnitude of the monopole, for comparison, and
the vertical blue line marks the scale z = 0.035 corresponding to a
distance scale of ~1004~" Mpc. The Pantheon data using the CMB
frame redshifts marginally suggests a non-zero dipole at the ~2¢
level, whereas we find no suggestion of a dipole when using the HD
redshifts. We find a significant dipole in both data sets when using the
heliocentric redshifts. This figure is a summary of our main results,
while illustrating the redshift ranges for which a non-zero dipole
(with this parametrization) might be important.
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Figure 5. The evolution of the deceleration parameter dipole with redshift.
‘We show the dipole amplitude as a function of redshift in the CMB (red), HD
(green), and heliocentric (black) frames. The solid lines are the inferred values
from the x> method applied to the JLA data (without PV covariance matrix
for a direct comparison with the MLE method), whereas the dotted lines are
for the x> method applied to the Pantheon data. The dash—dotted lines are the
result from the MLE method applied to the JLA data. Shaded regions show
the 20 bounds for the x 2 constraints. The magenta line shows the magnitude
of the monopole in the standard cosmological model, for comparison with
the dipole amplitude.

Crucially, we find that in both left- and right-hand panels of Fig. 4,
the posterior distribution of the monopole ¢g,, is not significantly
correlated with the value of the dipole gq4. Hence, the assumption
on the value of gg = 0 in the isotropic cosmography does not
significantly impact the inferred ¢,,. Further, from both Fig. 4 and
Table 4, we can see that the boost to the CMB frame, and the
PV corrections, do not significantly impact the inferred value of
the monopole, g, when using the x? method. Inferences of ¢
using isotropic cosmography in the literature (e.g. Bernal, Verde
& Riess 2016; Feeney et al. 2019; Lemos et al. 2019) are consistent
with the g, value we find with the x? method at the 120 level.
Our results using the MLE method also show minimal change in
the value of the monopole ¢, with redshift frame (see Table 5).
However, the values of the monopole in the heliocentric and CMB
frames are g, = —0.158 and —0.174, respectively, which deviate
from the value within ACDM of ¢y ~ —0.55 with a statistical
significance of ~2¢; see also Colin et al. (2019a). The likely cause
of this difference between the two methods is the assumption of
the redshift evolution of the population of SNe Ia light-curve width
(x1) and colour (c) parameters. The x> method accounts for survey
selection as a function of redshift whereas the MLE method assumes
no redshift dependence in the distributions of the intrinsic supernova
parameters. Since the SN Ia surveys are impacted by Malmquist bias,
i.e., they preferentially detect brighter SNe Ia at higher redshifts, the
failure to account for such bias, or doing so in an incorrect manner,
can impact the value of the monopole term g,. Such an impact has
been recently discussed in the literature Colin et al. (2019a), Rubin
& Heitlauf (2020). Our findings agree with both Colin et al. (2019a)
and Rubin & Heitlauf (2020) for the relevant statistical method, and
therefore further investigation into the appropriate way of accounting
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for survey selection as a function of redshift is necessary to clarify
this debate.

4.3 Forecast of constraints on the quadrupole in the Hubble
parameter and dipole in the deceleration parameter

Ongoing and future surveys will discover a large number of SNe Ia.
ZTF and YSE will increase the low-redshift SN Ia sample and
significantly improve systematic errors. For regional anisotropies that
decay towards larger scales, improvements in low-redshift data will
make the most difference to our constraining power. In this section,
we forecast the constraints on both the quadrupole in the Hubble
parameter and the dipole in the deceleration parameter from the
improved low-z samples. We start with a simulated realization with
uncertainties corresponding to the current Pantheon compilation, and
then increase the number of low-z samples to coincide with expected
future data sets. For this mock catalogue, we assume the same redshift
distribution and error covariance matrix as the Pantheon SN Ia
sample. We draw the total number of SNe randomly from the current
Pantheon z-distribution and conservatively keep the systematics error
floor to be the same as the Pantheon sample. The total number of SNe,
i.e. five times the current low-z sample is motivated by the expected
increase of low-z in the near future (e.g. ZTF; Dhawan et al. 2022).

We infer distances to SNe Ia for an input model with a quadrupole
in the Hubble parameter such that 1| x exp(— z/Sy) = A, x exp(—
7/8¢) = 0.029 in (11) at z = 0.035. This induced ~ 7% quadrupole
amplitude is motivated both by the upper limit on the quadrupole we
find here as well as the numerical results obtained by Macpherson
& Heinesen (2021). In the latter, the authors found a quadrupole
in the Hubble parameter of a few percent on ~1004~! Mpc scales
in a set of general-relativistic cosmological simulations. For our
dipole forecast, we consider an induced dipole using the upper 68%
confidence level from our best-fitting value using the CMB frame
redshifts for JLA SNe Ia, i.e. gg = 2 (see the left-hand panel of
Fig. 4).

We take the redshift and distance modulus error distribution of the
mock SNe Ia to be the same as the Pantheon data. We augment the
low-z (z < 0.1) anchor sample to five times its size such that the total
number of low-z SNe Ia is 1055. This sample size is conservatively
well within the limit of data already obtained by current and ongoing
low-z SN Ia surveys. For comparison, we also use simulated distances
for a low-z anchor sample of the same size as the current Pantheon
compilation.

The left-hand panel of Fig. 6 shows our forecast constraints for
the input cosmology with a non-zero quadrupole for a future low-z
survey (solid red contours) and for a sample consistent with current
low-z catalogues (dashed green contours). The blue star represents
the values of the input cosmology. We find that the improved low-
z anchor sample will be able to detect a 7 per cent quadrupole at
100 A~! Mpc scales with 50 significance. The right-hand panel of
Fig. 6 shows our forecast dipole constraints, with contours consistent
with the left-hand panel. We find that the improvement in the low-z
SN Ia sample will refine the error on gq4 by a factor of 2.1.

5 DISCUSSION AND CONCLUSION

The assumption of isotropy is a central feature of the standard
cosmological model and must be empirically tested. Any universe
with structure will necessarily contain anisotropies in the di—z
relation. Therefore — once the data are precise enough to resolve
such anisotropies — anisotropic contributions to low-redshift data
need to be included for a realistic cosmological fit. Such anisotropies
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Figure 6. Posterior distribution of A1 x exp(— z/Sg), A2 X exp(— z/Sq) for the artificial input model with a 2.9 per cent quadrupole at z = 0.035, corresponding
to ~100 A~! Mpc scales. The forecasts for an SN Ta compilation of the same size as the current Pantheon compilation is shown as green contours, and for a
compilation with 5 x larger low-z anchor samples is shown as red contours. Contours show the 1o and 20 regions, respectively. We mark the input quadrupole
value in our forecasts with a blue star. Right-hand panel: the forecast for the dipole in the deceleration parameter, we find that the same improvement in the

low-z anchor will improve constraints on the dipole by more than a factor of 2.

could also impact local distance determinations, for example, those
based on Cepheids (Riess et al. 2021) or TRGB (Freedman 2021),
in the case of an anisotropic distribution of SNe Ia. In this work,
we have presented the first constraints on the theoretically mo-
tivated quadrupole moment of the effective Hubble parameter in
the distance-redshift relation. The quadrupole moment physically
arises from the anisotropic expansion of space around the observer
as incorporated in the shear tensor. Using the SN Ia magnitude—
redshift relation, we find no significant quadrupole in the effective
Hubble parameter, with our best-fitting quadrupole amplitude being
consistent with zero. This constraint holds for both the JLA and
Pantheon compilations, and is robust to the changes in redshift frames
and likelihood methods considered here. Our results are unchanged
when including ACDM modelled corrections for peculiar motions
of the SNe Ia with respect to the CMB frame.

We have placed an upper bound of ~ 10% for the quadrupolar
anisotropy within our exponential decay model (using equation 14).
Since the decay scale can be degenerate with the value of the
eigenvectors, we also constrain the parametrizations with a fixed
decay scale, as well as a fixed step value in redshift, and find
results consistent with the fiducial model. We stress again that this
anisotropic contribution to the Hubble parameter is not degenerate
with the SN Ia absolute luminosity, unlike the monopole H,,. It
can therefore be constrained by the magnitude—redshift relation of
SNe Ia without needing external calibrators to first constrain the
SN Ia absolute magnitude prior to the cosmological fit.

Parnovsky & Parnowski (2013) used the RFGC to constrain the
quadrupole (shear) at the 100 2~! Mpc scale, finding eigenvalues
of A\ =7.27% £ 1.54% and A, = —2.43% =+ 1.46%. Since we use
the same eigendirections as the RFGC study, we can compare
our constraints to their results. The RFGC quadrupole was found
to be almost constant over the 80-170 A~' Mpc scales which
they considered, therefore, our quadrupole constraints from the
step function parametrization (with zy, = 0.03) are the closest
in formalism to the RFGC study. We find agreement between our
results and the RFGC measurements at the ~20 level (but not at the

lo level). It is important to constrain this quadrupolar anisotropy
with future larger data sets, as well as with independent probes.

We have also forecasted the precision of quadrupole measurements
from future low-z SN Ia surveys. This forecast is timely, since the
number of SNe la available for cosmological studies will increase
manyfold within this decade. With upcoming samples of SNe Ia in
the nearby Hubble flow, for example, from ZTF or YSE, we can
significantly improve the constraints on the quadrupole moment of
the Hubble parameter. For our input signal, we took a quadrupole
with ~ 7% amplitude to test whether it can feasibly be constrained
with future surveys. Specifically, we forecast that with 1055 SNe Ia,
we will have the potential to detect this quadrupole at So significance.
A sample of this size is also interesting for constraining the kinematic
nature of the CMB dipole (e.g. Horstmann et al. 2021). Hence, the
improved low-z data will be important for tests of the cosmic rest
frame.

We have also presented constraints on the dipole in the deceleration
parameter. We focused on the impact of the statistical method as well
as input data assumptions. We find that for the JLA compilation, the
dipole is consistent with zero at the 1o level when inferred using the
%2 method for all but one case. The only instance of a significant
dipole occurs in the heliocentric frame without applying the PV
covariance matrix. With the same inference method, we find that the
Pantheon compilation indicates marginal significance of a dipole at
the ~20 level when using the CMB frame, however, this dipolar
signature vanishes when applying the PV corrections to the SN Ia
redshifts. We note that for the MLE method, we similarly find that
the CMB frame redshifts with PV corrections are consistent with
isotropy. However, when PV corrections are not applied, we find
a significant dipole in both the CMB and heliocentric frame. In
Fig. 5, we have presented a summary of the dipole amplitude for the
exponentially decaying case, illustrating its dependence on redshift
for both statistical methods and data sets used here, as well as all
redshift frames.

Recent improvements in the treatment of PV corrections have
been shown to have a small impact on parameter constraints in
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isotropic cosmologies (e.g. for Hy in Peterson et al. 2021). In addition,
Rahman et al. (2021) used an improved flow model to correct for
PVs and found no evidence for departures from isotropy once the PV
corrections were applied, consistent with our findings.

The theoretical framework developed by Heinesen (2020), in
principle, allows us to account for anisotropic expansion of space and
to infer PVs around a background model for both the observer and the
sources. This will be a possibility with future low-z SN Ia samples
that have significantly increased statistics. It will be interesting to
further tighten the constraints on anisotropies we find here using
upcoming improved SN Ia magnitude-redshift data (e.g. Brout et al.
2022).
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APPENDIX A: DEPENDENCE ON NUISANCE
PARAMETERS

The JLA supernova compilation provides a catalogue of peak
apparent magnitude, mg, light-curve width, x;, and colour, ¢, values
along with the host galaxy masses. We therefore can marginalize
over the nuisance parameters in the luminosity standardization
relation in (17). For the Pantheon compilation, however, the publicly
available apparent luminosity has already been corrected for the
width—luminosity and colour—luminosity relations. However, this fit
was explicitly based on the FLRW metric. We, therefore, verify
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Figure Al. Posterior distribution of the cosmological and SN Ia nuisance parameters using the Pantheon compilation. We find that cosmological parameters
for the model are not correlated with the nuisance parameters for SN Ia standardization relations. The contours are 1o and 20 respectively.

the impact of these corrections by marginalizing the SN Ia width—
luminosity, colour—luminosity and host galaxy mass distributions
along with the cosmological parameters for our model. For this,
we use the publicly available light-curve fit parameters and host
galaxy masses for the Pantheon SNe Ia.” In Fig. Al, we present
the posterior distribution for the cosmological parameters inferred
from the Pantheon compilation using CMB frame redshifts, i.e. the
monopole, dipole of the deceleration parameter, the decay scale for
the dipole and the cosmological jerk minus curvature, along with the
nuisance parameters, ¢, 8, Ay and Mp. We find that the cosmological
parameters, ¢, qa are uncorrelated with the SN Ia standardization
parameters, using a Pearson r test and finding |r| values <0.1. A
similar correlation between the nuisance parameters and anisotropic
cosmologies for the JLA compilation is presented in Dam et al.
(2017) and Rahman et al. (2021).

APPENDIX B: TESTING THE DIRECTION OF
THE DIPOLE AND OBSERVER BOOST

Our analysis presented in the main text is based on fixing the direction
of the dipole in the deceleration parameter to that of the CMB dipole

"https://github.com/dscolnic/Pantheon. git

measured by Planck Collaboration I (2020a). Further, in our search
for the best-fitting rest frame for us as observers — i.e. not a priori
assuming this to be that of the CMB — we also fix the direction of
our velocity to coincide with that inferred from the CMB dipole. In
this appendix, we present a search for the optimal directions of these
quantities across the sky. For both tests, we vary the direction of the
dipole (associated with either the effective deceleration parameter or
the observer boost velocity) to coincide with indices of a HEALPix
map with Ngge = 2, 1.e. 12 x Nfide = 48 directions in total.

Fig. B1 shows the result of our test of the best-fitting direction
of the dipole in the deceleration parameter, namely, the direction
vector associated with qq = g,n in (15). The left-hand panel shows
a Mollweide projection of the best-fitting amplitude, ¢4, for each
corresponding dipole direction, n. The right-hand panel of Fig. Bl
shows the corresponding profile log-likelihood function, —2log(L),
for the direction. The white star on both panels corresponds to the
direction of the CMB dipole from Planck Collaboration I (2020a),
and the white cross is the best-fitting direction of our analysis,
corresponding to the minimum value of —2log(L).

Fig. B2 shows the result of our test of the best-fitting direction
of the observer boost. Specifically, we perform an isotropic cosmo-
logical fit with the velocity of the observer, v = vn, left as a free
variable. When redshifts are transformed to the CMB frame, v is

MNRAS 519, 4841-4855 (2023)
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Figure B1. Left-hand panel: norm of the deceleration dipole vector g4 as we vary the direction of the dipole to coincide with each HEALPix index shown
here. Right-hand panel: the likelihood of each fit performed here. We show —2log(L£) for each instance of dipole direction vector. The white star in each panel
represents the direction of the CMB dipole, and the white cross is the best-fitting direction resulting from this test.
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Figure B2. Left-hand panel: norm of the velocity vector v as we vary the direction of the observer boost to coincide with each HEALPix index shown here.
Right-hand panel: the likelihood of each fit performed here. We show —2log(L) for each instance of velocity direction. The white star in each panel represents
the direction of the CMB dipole, and the white cross is the best-fitting direction resulting from this test.

chosen such that the dipole in the CMB temperature field vanishes,
while here we leave the best-fitting rest frame to be determined from
the SN Ia catalogue itself. The left-hand panel shows a Mollweide
projection of the best-fitting amplitude of the velocity, v, for each
corresponding direction n. The right-hand panel of Fig. B2 shows
the corresponding profile log-likelihood function for the direction.
The white star on both panels again corresponds to the direction of
the CMB dipole from Planck Collaboration I (2020a), and the white
cross is the best-fitting direction of our analysis.

The best-fitting direction agrees well between the fits for g4 and
v, with any difference within the angular resolution of our analysis.
This shared best-fitting direction (white cross on all panels) closely
coincides with the direction of the CMB dipole (white star on all
panels). Colin et al. (2019a) performed this same test for their fits for
the dipole in the deceleration parameter, and found their best-fitting
direction to be 23° away from the CMB dipole. We find our results
to be consistent with that of Colin et al. (2019a) given our resolution.

MNRAS 519, 4841-4855 (2023)

APPENDIX C: COMPARISON OF JLA AND
PANTHEON CONSTRAINTS

In this section, we present the individual comparisons between the
constraints on ¢, and g4 when using the CMB, HD and heliocentric
redshift frames for the Pantheon and JLA compilations. For this
analysis, we only use the SNe Ia in common between the two
compilations. The comparison for each redshift frame is shown in
Fig. C1. We find that the dipole, gq, is consistent in the CMB and
HD frames at the ~1o level, however, it is only consistent at the
~20 level for the heliocentric frame. While an investigation of this

difference is beyond the scope of this work, future analyses using
updated compilations (e.g. Brout et al. 2022) can help explain this

difference between the two data sets.
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Figure C1. Constraints on the dipole and monopole of the deceleration parameters for the JLA (black) and Pantheon (red) compilations in the CMB (left-hand
panel), HD (middle panel), and heliocentric (right-hand panel) frames using only the SNe Ia in common between the two data.
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