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A B S T R A C T 

The cosmological principle asserts that the Universe looks spatially homogeneous and isotropic on sufficiently large scales. 
Given its fundamental implications, it is important to empirically test its validity. In this paper, we use the Type Ia supernova 
(SN Ia) magnitude–redshift relation, from both the Pantheon and joint light-curve analysis compilations, to constrain theoretically 

moti v ated anisotropies in the Hubble flow. In particular, we constrain the quadrupole in the ef fecti ve Hubble parameter and the 
dipole in the ef fecti ve deceleration parameter. We find no significant quadrupole term regardless of the redshift frame used. Our 
results are consistent with the theoretical expectation of a quadrupole moment of a few percent at scales of ∼100 h 

−1 Mpc. We 
place an upper limit of an ∼ 10% quadrupole amplitude relative to the monopole, H 0 , at these scales. We find that we can detect 
an ∼ 7% quadrupole at the 5 σ level, for a forecast low- z sample of 1055 SNe Ia. We find the signficance of an exponentially 

decaying dipole of the deceleration parameter depends on the redshift frame used. In the heliocentric frame, as expected, it is 
detected at ∼3 σ significance. In the cosmic microwave background (CMB) rest frame, we find a marginal ∼2 σ dipole, ho we ver, 
after applying peculiar velocity (PV) corrections, the dipole is insignificant. Finally, we find the best-fitting frame of rest relative 
to the supernovae to differ from that of the CMB at ∼2 σ for both compilations, which reduces to < 1 σ when including PV 

covariance. 

Key words: cosmological parameters – dark energy – distance scale. 
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 I N T RO D U C T I O N  

he cosmological principle is the backbone of modern cosmology, 
tipulating that the spatial distribution of matter in the Universe is ho-
ogeneous and isotropic on sufficiently large scales. A broad range 

f independent cosmological observations, such as fluctuations in the 
emperature and polarization of the cosmic microwave background 
CMB; Planck Collaboration VI 2020b ) as well as observations 
f large-scale structure and matter fluctuations in the Universe –
ncluding baryon acoustic oscillations (Macaulay et al. 2019 ) –
av e pro vided compelling support for the current standard Lambda 
old dark matter ( � CDM) model. Within the � CDM paradigm,
he interpretation of the cosmological principle is that, on large 
cales, distances and light propagation are asymptotically described 
y the spatially homogeneous and isotropic Friedmann–Lema ̂ ıtre–
obertson–Walker (FLRW) general-relativistic metric solution. This 

s a fundamental assumption of the standard cosmological model, and 
t is therefore crucial to test against our observations. 

The CMB strongly disfa v ours global departures from isotropy 
as quantified within Bianchi models; see Saadeh et al. 2016 ). 
ate Universe probes present complimentary constraints on the 
osmological principle at small and intermediate scales, where some 
 E-mail: sd919@cam.ac.uk (SD); hayleyjmacpherson@gmail.com (HJM); 
sta.heinesen@ens-lyon.fr (AH) 
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tudies have claimed a significant detection of a dipolar anisotropy 
n quasar , galaxy cluster , and supernova data (Colin et al. 2019a ;

igkas et al. 2021 ; Secrest et al. 2021 ). An o v erview of cosmic
ipoles and their possible tensions with the � CDM model is pre-
ented in Perivolaropoulos & Skara ( 2021 ). The transition to � 1%
orrelations at scales ∼100 h −1 Mpc has been found in Luminous
ed Galaxies (Hogg et al. 2005 ), blue galaxies (Scrimgeour et al.
012 ), and quasars (Laurent et al. 2016 ) – consistent with the � CDM
ransition to cosmic homogeneity. Ho we ver, coherent orientations of 
uasar polarization directions on 500 h −1 Mpc scales have been 
etected (Hutsem ́ekers et al. 2005 , 2014 ), which could indicate
he existence of correlation lengths larger than expected within the 
 CDM model. 
Type Ia supernovae (SNe Ia), owing to their standardizable lumi- 

osity, are excellent cosmological probes in the late-time Universe 
see Leibundgut & Sulli v an 2018 , for a re vie w of SN Ia cosmology).
he SN Ia magnitude–redshift relation – or Hubble diagram (HD) 1 –

s an independent probe of isotropy in the late Universe. A number of
nalyses using SN Ia data have found significant dipolar anisotropies 
n the HD that are difficult to reconcile with � CDM (e.g Cai &
uo 2012 ; Bengaly 2016 ; Colin et al. 2019b ), while others found
 In this paper, we focus on the relative distance measurements of SNe Ia and 
o not consider the absolute luminosity calibration. Hence, we use the terms 
agnitude–redshift relation and HD interchangeably. 
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ignals consistent with isotropy (e.g. Kalus et al. 2013 ; Bengaly,
ernui & Alcaniz 2015 ; Andrade et al. 2018b , a ; Rubin & Heitlauf
020 ). In these analyses, the FLRW distance-redshift cosmography
as modified empirically in order to allow for anisotropic signatures.
In this work, we constrain anisotropic signatures in the Pantheon

Scolnic et al. 2018 ) and joint light-curve analysis (JLA; Betoule
t al. 2014 ) SN Ia data using a theoretically moti v ated cosmographic
elation. Specifically, we use the general distance-redshift cosmog-
aphy from Heinesen ( 2020 ), which makes no assumptions on the
orm of the metric tensor or field equations. This allows for analysis
f cosmological data outside of the FLRW models. We simplify this
osmography using the results of a recent study into local anisotropies
n fully general-relativistic cosmological simulations (Macpherson &
einesen 2021 ). A key prediction of this work was that the anisotropy

n the generalized Hubble and deceleration parameters should be
ominated by a quadrupole and a dipole, respectively. Heinesen &
acpherson ( 2022 ) further showed that this dipole is expected to be

ligned with the local gradient in the density field. 
Previous studies have focused on constraining the dipolar signature

n SN Ia data. Constraints of a quadrupole anisotropy have, to the
est of our knowledge, not been done. This quadrupolar anisotropy
s of particular interest in SN Ia studies since it can be constrained
ith relative distance measurements, unlike the monopole, H 0 , which

s degenerate with the absolute calibration of the SN Ia luminosity.
dditionally, this quadrupolar anisotropy is distinct in signature from

hat of a special-relativistic boost due to our motion with respect to
he CMB frame – unlike a dipolar anisotropy which is expected
o be degenerate with such a boost. The potential presence of a
uadrupolar anisotropy is also interesting in light of the discrepancy
n the inferred � CDM Hubble parameter between early- and late-
niverse probes (Planck Collaboration I 2020a ; Riess et al. 2021 ),

ince it could impact local inferences of the Hubble parameter which
ssume isotropy. 

Recently, there have been discrepancies in the literature with
espect to the significance of a dipole anisotropy in the deceleration
arameter of the distance-redshift law (e.g. Colin et al. 2019a ; Rubin
 Heitlauf 2020 ). With an aim to resolve this recent debate, we

lso independently constrain this dipole anisotropy under various
ssumptions. Specifically, we study the impact of distance bias cor-
ections, peculiar velocity (PV) corrections, and the statistical model
sed to define the likelihood for parameter estimation. The paper
s structured as follows: In Section 2 , we describe the generalized
osmographic framework and the simplifications that we make within
t, in Section 3, we describe the statistical methods and data sets used
n our analysis. We present our results in Section 4 and discuss and
onclude in Section 5 . 

 T H E O RY  

n this section, we describe the theoretical basis of our cosmographic
nalysis. In Section 2.1 , we re vie w the cosmographic representation
f luminosity distance in a general space–time, and in Section 2.2,
e introduce some approximations within this formalism, which we
se in our analysis of SN Ia data. We use Greek letters to represent
pace–time indices which take values 0. . . 3, and repeated indices
mply summation. We occasionally use bold-face notation and index
otation interchangeably, i.e. e and e μ. 

.1 The general cosmographic framework 

osmographic expressions for cosmological observables that remain
gnostic about the space–time curvature – and thus can incorporate
NRAS 519, 4841–4855 (2023) 
rbitrary cosmic bulk flows, lensing effects, etc., in the prediction of
bservables – have been examined in various works (e.g. Kristian &
achs (e.g. Kristian & Sachs 1966 ; MacCallum & Ellis 1970 ; Ellis
t al. 1985 ; Bonvin, Durrer & Gasparini 2006 ; Clarkson & Umeh
011 ; Clarkson et al. 2012 ; Umeh 2013 ; Heinesen 2020 , 2021 ), see
lso Capozziello et al. ( 2013 ) for a re vie w. Here, we briefly re vie w
he general cosmographic framework for the luminosity–distance
edshift relation formulated in Heinesen ( 2020 ), which is particularly
onvenient for the analysis of SN Ia data. This framework will form
he basis of our anisotropic constraints. 

We consider a general space–time congruence description of
bservers and emitters with four-velocity field u , and consider
bservations made from a space–time event o . The geometric Taylor
eries expansion of the luminosity distance, d L , to an astrophysical
ource at redshift z and in direction e on the observer’s sky is 

 L ( z, e ) = d 
(1) 
L ( e ) z + d 

(2) 
L ( e ) z 2 + d 

(3) 
L ( e ) z 3 + O( z 4 ) , (1) 

here the inhomogeneous and anisotropic coefficients are 

d 
(1) 
L ( e ) = 

1 

H o ( e ) 
, d 

(2) 
L ( e ) = 

1 − Q o ( e ) 
2 H o ( e ) 

, 

d 
(3) 
L ( e ) = 

−1 + 3 Q 

2 
o ( e ) + Q o ( e ) − J o ( e ) + R o ( e ) 

6 H o ( e ) 
, (2) 

nd the generalized cosmological parameters are 

 ( e ) ≡ − 1 
e 2 

d E 
d λ , (3a) 

 ( e ) ≡ −1 − 1 
E 

d H 

d λ
H 

2 , (3b) 

 ( e ) ≡ 1 + Q − 1 
2e 2 

k μk νR μν

H 

2 , (3c) 

 ( e ) ≡ 1 
e 2 

d 2 H 

d λ2 

H 

3 − 4 Q − 3 . (3d) 

ere, E = −u μk μ is the observed photon energy, λ is the affine
arameter of the geodesic, d 

d λ ≡ k μ∇ μ is the directional deri v ati ve
long the incoming null ray, R μν is the Ricci curvature of the space–
ime, and the photon four-momentum can be decomposed as k μ =
 ( u μ − e μ). The inverse energy function, 1/ E , replaces the FLRW
cale factor in the luminosity distance cosmography for a general
pace–time, and can thus be thought of as a natural ‘scale-factor’ on
he observer’s past light cone. The parameters { H , Q , J , R } represent
nhomogeneous, anisotropic generalizations of the FLRW Hubble,
eceleration, jerk, and curvature parameters. We shall therefore refer
o { H , Q , J , R } as the effective observational Hubble, deceleration,
erk, and curvature parameters. These effective cosmological param-
ters include information about regional kinematics and curvature
ffects; for instance, bulk flow motions or the lensing of photons. In
he strictly homogeneous and isotropic limit of (3), we reco v er the
ell-known FLRW cosmographic results of Visser ( 2004 ). 
The anisotropic signatures of the ef fecti ve cosmological param-

ters can be represented by multipole series in the direction vector
e . For instance, the ef fecti ve observ ational Hubble parameter can be
xpanded as follows: 2 

 ( e ) = 

1 

3 
θ − e μa μ + e μe νσμν , (4) 

here θ is the volume expansion rate of the observer congruence,
μν is its volume-preserving deformation (shear), and a μ is its four-
cceleration. We emphasize that the multipole expansion ( 4 ) is exact ,
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nd represents all contributions of anisotropy to the ef fecti ve Hubble
arameter. The ef fecti ve deceleration parameter can be decomposed 
nto multipoles in a similar way, and reads 

 ( e ) = −1 − 1 

H 

2 ( e ) 

(
0 
q + e μ

1 
q μ + e μe ν

2 
q μν

+ e μe νe ρ
3 
q μνρ + e μe νe ρe κ

4 
q μνρκ

)
, (5) 

ith coefficients 

0 
q ≡ 1 

3 

d θ

d τ
+ 

1 

3 
D μa μ − 2 

3 
a μa μ − 2 

5 
σμνσ

μν , 

1 
q μ ≡ −1 

3 
D μθ − 2 

5 
D νσ

ν
μ − d a μ

d τ
+ a νω μν + 

9 

5 
a νσμν , 

2 
q μν ≡ d σμν

d τ
+ D 〉 μa ν〉 + a 〉 μa ν〉 − 2 σα( μω 

α
ν) −

6 

7 
σα〉 μσα

ν〉 , 

3 
q μνρ ≡ −D 〉 μσνρ〉 − 3 a 〉 μσνρ〉 , 
4 
q μνρκ ≡ 2 σ〉 μνσρκ〉 , (6) 

here d 
d τ ≡ u 

μ∇ μ is the directional deri v ati ve along the observer
our-velocity field and ω μν is the vorticity tensor describing the 
otation of the observer congruence. Triangular brackets 〉〉 around 
ndices single out the traceless and symmetric part of the tensor
n those indices. In this work, we focus on the ef fecti ve Hubble
nd deceleration parameters, and we therefore refer the reader to 
einesen ( 2020 ) for the multipole series expressions for J and R . 
This formalism has the advantage of being general, and can, in 

rinciple, be applied for a fully model-independent data analysis of 
tandardizable candles. Ho we ver, as detailed in Heinesen ( 2020 ),
uch an analysis would require the determination of 61 independent 
egrees of freedom. This level of constraining power is not achie v able
ith current SN Ia catalogues, and assumptions are therefore nec- 

ssary to apply the framework to available data. In the next section,
e will make physically moti v ated approximations to simplify the 

bo v e multipole expansions for our analysis. 

.2 Approximations 

e consider geodesic astrophysical sources, such that a = 0 , and 
onsider scales where expansion dominates o v er anisotropic defor- 
ation of space, such that shear and vorticity are subdominant to the

sotropic expansion. More specifically, we assume | e μe νσμν | o � θo , 
 e μe νσαμσα

ν | o � θ2 
o , | e μe νσαμω 

α
ν | o � θ2 

o , and | e μe νd σμν/ d τ | o � θ2 
o 

or all directions on the observer’s sky. Ho we ver, we shall not impose
ny smallness conditions on the spatial gradients of the kinematic 
ariables. In particular, | e μD μθ | o and | e μe νe σ D μσ νσ | o might be of
rder θ2 

o or larger. Indeed, for weak-field expansions in cosmology, 
patial gradients tend to increase the order of magnitude of the metric
erturbation on scales below the Hubble horizon (Buchert, Ellis & 

an Elst 2009 ; Rasanen 2009 , 2010 ). 
Under the abo v e weak-anisotropy approximations, including only 

he leading-order anisotropic terms in ( 4 ) and ( 5 ) leads to 

 ( e ) = 

1 

3 
θ + e μe νσμν, (7) 

nd 

( e ) = −1 −
0 
q + e μ

1 
q μ + e μe νe ρ

3 
q μνρ

1 
9 θ

2 
, (8) 

ith coefficients 

0 
 = 

1 

3 

d θ

d τ
, 

1 
q μ = −1 

3 
D μθ − 2 

5 
D νσ

ν
μ , 

3 
q μνρ = −D 〉 μσνρ〉 , (9) 
here we have defined H ( e ) → H ( e ) and Q ( e ) → q( e ) in this limit
f weak anisotropy. In the following analysis, we shall further assume 

hat the traceless part of e μe νe σ D μσ νσ (incorporated in 
3 
q μνρ) is

ubdominant to its trace (incorporated in 
1 
q μ), and thus set 

3 
q μνρ = 0.

e shall make this assumption from a practical viewpoint because of
he sparsity of the data we use (see Section 3.3 ), making it unrealistic
o resolve an octupole feature on the sky. For the same reason,
e shall also not investigate anisotropic terms in the higher order

f fecti ve observ ational parameters J and R . For future surv e ys with
ore data and impro v ed sk y co v erage, we will be able to include a
ore complete hierarchy of anisotropies. 
We note that D νσ

ν
μ = 

2 
3 D μθ for a general-relativistic irrotational 

ust space–time (Buchert 2000 ), which in this case makes the

nterpretation of the dipole term, 
1 
q μ, in ( 9 ) clearly related to

he spatial gradient of the expansion rate, θ . Furthermore, spatial 
radients of the expansion rate are expected to be proportional to
patial gradients of the density field in large-scale cosmological 
odelling (Heinesen & Macpherson 2022 ), which implies that we 

xpect the dipole in the ef fecti ve deceleration parameter to be aligned
ith the spatial gradient of the local density field. 

.3 Anisotropic cosmography 

he JLA catalogue co v ers a wide range of redshifts 0.01 � z � 1.3.
As discussed in appendix A of Macpherson & Heinesen ( 2021 ),

osmography for anisotropic space–time models is best suited for 
arro w redshift interv als. Thus, in order to apply the abo v e formalism
o a wide redshift range, we shall allow for decaying anisotropic
ignatures with redshift. This results in a cosmography that might be
ighly anisotropic at small scales, but which transitions into the well-
nown isotropic cosmography at the largest scales of observation. 
With the simplifications given in the previous section, the cosmo- 

raphic expansion of d L becomes 

 L ( z, e ) = 

z 

H ( e ) 

{
1 + 

[1 − q( e )] z 
2 

+ 

−[1 − q( e ) − 3 q( e ) 2 + j 0 − K ] 

6 
z 2 
}

, (10) 

here we have applied the notation R ( e ) → k and J ( e ) → j 0 from
LRW cosmography, since we are only considering the monopolar 
ontributions to R ( e ) and J ( e ) in this analysis. Since j 0 and K are
egenerate in the expression ( 10 ), we will constrain the combination
 0 − K . 3 

We now express the anisotropic Hubble parameter by re-writing 
 7 ) as 

 ( e ) = H m 

+ H q · e e F quad ( z, S) (11) 

here H m 

= H 0 and H q are the the monopole and quadrupole compo-
ents, respectively, and F quad ( z, S) describes the scale dependence 
f the quadrupole. We denote the eigenvalues of the normalized 
uadrupole tensor H q / H 0 as λ1 , λ2 , and λ3 = −λ1 − λ2 , and the
igendirections as θ1 , θ2 , and θ3 , such that 

 ( e ) = H m 

{
1 + 

[
λ1 · cos 2 θ1 + λ2 · cos 2 θ2 

−( λ1 + λ2 ) · cos 2 θ3 

]
F quad ( z, S) 

}
, (12) 
MNRAS 519, 4841–4855 (2023) 



4844 S. Dhawan et al. 

M

w  

t  

w  

(  

b

A

f  

p

q

w  

t  

T  

C
 

v  

i  

s  

s  

s  

a  

H  

t  

i  

t  

S  

i  

q  

t  

w  

fi  

F

3

T  

t  

m  

i  

i

μ

O  

e  

c  

d  

e

μ

w  

b  

�  

a  

4

t
c

t  

l
a  

i  

a  

t  

d  

o  

i
 

a  

n  

m

3

W  

p  

s

χ

w  

d  

s  

W  

e  

t  

(  

w  

t  

c  

e  

i  

d  

o  

t

3

W  

(  

i  

i  

c  

d  

t  

n  

s  

m  

e  

d  

p  

p  

t  

t  

w

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/4841/6965836 by guest on 24 M
ay 2024
here θ i are the angular separations between the coordinates of
he supernova and the eigendirections θ i . In the following analysis,
e will quote the total amplitude of the quadrupole component of H

relative to the monopole H m 

) as the norm of the tensor H q multiplied
y the decay function F , namely 

 q = || H q || F quad ( z, S) (13) 

= 

√ 

λ2 
1 + λ2 

2 + ( λ1 + λ2 ) 
2 F quad ( z, S) , (14) 

or some redshift scale z. We also express the anisotropic deceleration
arameter by re-writing ( 8 ) as 

( e ) = q m 

+ q d · e F dip ( z, S) , (15) 

here q m 

and q d are the monopole and dipole components, respec-
ively, and F dip ( z, S) describes the scale dependence of the dipole.
he ansatz ( 15 ) for the deceleration parameter coincides with that of
olin et al. ( 2019b ). 
Previous anisotropy searches in the literature have employed

arious forms of F , including constant, linear, and exponential laws
n redshift (Colin et al. 2019b ). Recent Bayesian model comparison
tudies strongly disfa v our a constant-in-redshift dipole in data o v er
cales of ∼1Gpc (Rahman et al. 2021 ). The redshift range of the
urv e y is important for the interpretation of the (amplitude of)
nisotropic coefficients in the cosmographic fit (Macpherson &
einesen 2021 ). The data sets that we investigate span redshifts up

o z ∼ 1, and we thus expect a transition towards an approximately
sotropic cosmography for the most distant SNe Ia in the sample. We
herefore assume the exponential form F ( z, S) = exp ( −z 

S 
), where

 is the decay scale, for both the dipole in q and the quadrupole
n H . For our fiducial case, we fit the scales for the dipole and
uadrupole as distinct parameters S d and S q , respectively. We also fit
wo other parametrizations of F in the quadrupole: a step function
ith a fixed width in redshift and the exponential model with a
xed decay scale S q . The former is expressed as F ( z, z step ), where
( z ≤ z step , z step ) = 1 and F ( z > z step , z step ) = 0. 

 M E T H O D O L O G Y  A N D  DATA  

he distance modulus of an astrophysical object is defined in terms of
he absolute magnitude, M , of the object and the apparent magnitude,
 , as measured by the observer. SNe Ia corrected magnitudes are

nferred in the B band and are related to the luminosity distance, d L ,
n the following way 

≡ m 

∗
B − M B = 5 log 10 

(
d L 

10 Mpc 

)
+ 25 . (16) 

bservationally, the standardized SNe Ia peak magnitude m 

∗
B is

stimated from correcting the peak apparent magnitude, m B , for
orrelations with the light-curve width, x 1 , and colour, c , to infer the
istance modulus using the following relation (Tripp 1998 ; Betoule
t al. 2014 ) 

obs = m B − ( M B − αx 1 + βc) , (17) 

here M B is the mean absolute magnitude of the SNe Ia in the B
and. 4 Following Betoule et al. ( 2014 ), we apply a step correction,
 M 

, depending on the host galaxy stellar mass. This step correction
ccounts for the observation that after stretch and colour correction,
NRAS 519, 4841–4855 (2023) 

 These corrections are already applied to the Pantheon data set, ho we ver, we 
est their impact on the cosmological parameters in Appendix A and find no 
orrelation. 

5

d

he SNe Ia in high-mass hosts are on average brighter than those in
ow-mass hosts (e.g. see, Betoule et al. 2014 ). We note that α, β, M B 

nd � M 

are nuisance parameters in the fit for the cosmology. 5 We
nsert the geometrical prediction for d L given in ( 10 ) into ( 16 ) for our
nisotropic analysis. We emphasize that the parameters describing
he anisotropies that we constrain, for example H q and q d , are not
egenerate with the SN Ia absolute B -band magnitude. The monopole
f the Hubble parameter, H m 

, is, ho we v er, de generate with M B and
s thus not constrained by our analysis. 

In order to ensure that our results are robust, we constrain the
nisotropic parameters using two independent statistical methods,
amely a constrained χ2 method (detailed in Section 3.1 ) and a
aximum-likelihood estimation method (detailed in Section 3.2 ). 

.1 Constrained χ2 method 

e use the observed distance modulus ( 17 ) to constrain a
arametrized geometric prediction of the distance modulus by con-
tructing the test statistic with an assumed χ2 distribution, namely 

2 
SN = � 

T C 

−1 
SN � , (18) 

here � = μth − μobs is the residual vector of the theoretical
istance moduli μth and observed distance moduli μobs of the
ample, and C SN is the covariance matrix of the observations.
e use ( 10 ) and ( 16 ), in place of the FLRW relation usually

mployed in isotropic analyses, to compute μth . The estimate of
he complete covariance matrix, C SN , is described in Betoule et al.
 2014 ). We use PyMultiNest (Buchner et al. 2014 ), a python
rapper to MultiNest (Feroz, Hobson & Bridges 2009 ), to derive

he posterior distribution of the anisotropic parameters. We also
ompute the Bayesian evidence for the third-order cosmographic
xpansion in ( 1 ) as compared to the fourth-order expansion that
ncludes information about the cosmological ‘snap” s 0 , the fourth
eri v ati ve of the scale factor (see Visser 2004 ). We find a �log Z

f 2.8 in fa v our of the model in ( 1 ), suggesting that the third-order
runcation of d L in redshift is sufficient. 

.2 Maximum likelihood estimation 

e use the likelihood construction of Nielsen, Guffanti & Sarkar
 2016 ) (see also section 3.1 of Dam, Heinesen & Wiltshire 2017 ),
n which the SNe Ia are assumed to be standardizable such that the
ntrinsic magnitude, colour, and shape parameters describing the light
urve of the individual SNe Ia may be drawn from identical Gaussian
istributions. In the final likelihood, it is thus the expectation value of
he intrinsic Gaussian distributions that enter in the relation ( 17 ), and
ot the measured SN Ia parameters themselves, which are subject to
catter. As in Section 3.1 , the geometric prediction of the distance
odulus μ is given by the cosmography in Section 2 , and the
 xperimental co variance matrix of the likelihood function is that
escribed in Betoule et al. ( 2014 ). In addition to the cosmographic
arameters of interest, the analysis contains a number of nuisance
arameters. Namely, the coefficients α and β of the relation ( 17 ), and
he parameters describing the hypothesized Gaussian distributions of
he true SN Ia light-curve parameters. In the likelihood optimization,
e will marginalize o v er these nuisance parameters. 
 We note that the � M 

parameter is only implemented in the χ2 method 
iscussed below. 
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Figure 1. Sk y co v erage of the superno va samples used in this work. Crosses 
show the sky location of Pantheon supernovae and circles show the JLA 

supernovae in galactic coordinates ( l , b ). Each point is coloured according to 
the redshift of that supernova in the CMB frame, z CMB . 
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Table 1. Parameter priors used in the inference for each of the models tested 
in this work in both the JLA and Pantheon analyses. 

Parameter Prior 
Multipole model 
implemented in 

q m 

U[–4, 4] Quadrupole and dipole 
j 0 − k U[–10, 10] Quadrupole and dipole 
q d U[–10, 10] Dipole 
S d U[0.0, 0.1] Dipole 
λ1 U[–2, 2] Quadrupole 
λ2 U[–2, 2] Quadrupole 
S q U[0.01, 4] Quadrupole 
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.3 Data sets 

e use the most recent SN Ia light-curve parameters and redshift data
rom the JLA (Betoule et al. 2014 ) and Pantheon (Scolnic et al. 2018 )
ompilations. Fig. 1 shows the sky coverage of the two samples, with
rosses showing Pantheon supernovae directions and circles showing 
LA supernovae directions. All points are coloured according to the 
edshift of the supernova in the CMB frame, z CMB (as defined below).

The cosmographic representation of the luminosity distance ( 1 ) 
s generically expected to be divergent for z > 1 (Cattoen & Visser
007 ; Macpherson & Heinesen 2021 ). Ho we ver, the approximation
f the Taylor series to the exact distance formula in isotropic
osmology is expected to be reasonable for redshifts close to 1 (e.g.
ee Arendse et al. 2020 ), at least for testing cosmologies close to
he � CDM model (Aviles et al. 2014 ). Most Over 97 per cent of
Ne Ia in the JLA and Pantheon data sets have z < 1, with the
N Ia with the largest redshift has highest redshift SN Ia being z 
 1.3 and 2.3, respectively. Hence, for the majority of SNe Ia, the
aylor series should provide a valid description of the distances. We 

herefore adopt the cosmographic representation for all SNe Ia in 
oth samples. The anisotropic features that we are constraining are 
xponentially decaying with redshift and thus the main results of our 
nalysis are predominantly determined by the lowest redshift SNe Ia 
n the sample. 

PV corrections based on estimates within the � CDM model are 
sually applied to the measured redshifts of nearby SNe Ia in order
o alleviate the motions of these SNe Ia with respect to the CMB
rame. There has been a recent debate in the literature about the
onsistency of these corrections and their impact on the evidence 
or cosmic acceleration (Colin et al. 2019a ; Rubin & Heitlauf 
020 ). Therefore, we e v aluate the impact of PV corrections on our
onstraints by presenting results inferred from three different redshift 
rames. We consider: (1) Heliocentric (Hel) redshifts: the measured 
edshifts of each SN Ia in the heliocentric frame; (2) CMB-frame
edshifts: the heliocentric redshifts corrected via a boost of the Earth
o the CMB frame (using the CMB dipole as inferred by Planck
ollaboration I 2020a ); and (3) HD redshifts: CMB-frame redshifts 
ith PV corrections applied to individual SNe Ia. We will adopt the
MB-frame redshifts in our fiducial analysis. While redshifts in the 
eliocentric frame are not usually used for parametrizing distances 
t cosmological scales, they are useful as a reference in model- 
ndependent analysis, for example, in cases where we might not wish
o assume that the dipole in the CMB is a purely observer-kinematic
ffect. As part of our analysis, we will also fit for the best-fitting rest
rame – i.e. not a priori constraining this to be the CMB frame – for
oth samples of SNe Ia. 
Previous studies using various SN Ia compilations and data- 
eduction methods have reached differing conclusions about the 
ignificance of a dipole in the deceleration parameter. Some works 
ave found no significant dipole and report consistency with the 
 CDM model (Soltis et al. 2019 ; Zhao, Zhou & Chang 2019 ; Rubin
 Heitlauf 2020 ), while others claim a deviation from isotropy at a

evel that challenges the use of the FLRW geometry at low redshift
Cai & Tuo 2012 ; Bengaly 2016 ; Colin et al. 2019b ). Moti v ated
y this discrepancy, we study the impact of different analysis 
ssumptions on the constraints of the dipole in the deceleration 
arameter. In particular, we test the impact of the PV corrections
through the use of the three different redshift frames outlined abo v e)
n both data sets.For the JLA data set, we also analyse the role of
he PV covariance matrix and distance bias corrections. The latter 
re applied to m B after the corrections to light-curve width, colour,
nd host galaxy mass, in order to account for systematics arising
rom surv e y selection criteria (see Betoule et al. 2014 ; Scolnic et al.
018 , for more details on these corrections). For the Pantheon data
et, corrections for the width- and colour–luminosity relation and 
istance biases to the SN Ia distances have been applied before the
ata was made public. Therefore, we only test the impact of PV
orrections on results using the JLA sample. In Appendix A , we
t the nuisance parameters simultaneously with the cosmology and 
how that we obtain similar constraints as in our main analysis of the
antheon sample. 

 RESULTS  

e present our inferred constraints on the quadrupole of the Hubble
arameter in Section 4.1 , and on the dipole of the deceleration
arameter in Section 4.2 . We constrain these independently, i.e. when
onstraining the quadrupole, we set the dipole term to zero, and
ice versa. We perform Bayesian analysis based on the constrained 
2 method for both the JLA and the Pantheon sample of SNe Ia,
nd consider an independent frequentist MLE analysis for the JLA 

ample. The priors that we use for each model parameter in the
ayesian analyses are summarized in Table 1 . 

.1 Constraints on the quadrupole 

or the constraints on the quadrupole, we use the exponential decay
odel for F ( z, S q ) as the fiducial case with the scale as a free

arameter. We also e v aluate the constraints with the scale parameter
xed as well as a step function in redshift, as described in Section 2.3 .
P arno vsk y & P arnowski ( 2013 ) constrained the dipole,

uadrupole, and octupole moments of the bulk motion of a set
f nearby galaxies, using the Revised Flat Galaxy Catalogue 
RFGC; Karachentsev et al. 1999 ). We fix the eigendirections of
MNRAS 519, 4841–4855 (2023) 
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he quadrupole in the Hubble parameter to coincide with their best-
tting results of θ1 = (118, 85) ◦, θ2 = (341, 4) ◦, and θ3 = (71, –4) ◦ in
alactic angular coordinates ( l , b ). With these eigendirections, we
hen constrain the eigenvalues of the quadrupole, λ1 and λ2 , and
ts decay scale S q , along with the monpolar parameters q m 

and j 0 
K of the analysis. We have repeated the analysis allowing the

igendirections θ1 , θ2 , and θ3 to vary, and have found no significant
mpro v ements in the profile likelihood for any alternative eigenbasis.

Fig. 2 shows our constraints on the quadrupole in the Hubble
arameter as obtained from the JLA and the Pantheon data sets
sing the χ2 method. We show the amplitude of the quadrupole
ontribution at redshift z = 0.035 (or on scales of ∼100 h −1 Mpc),
amely λ1 exp ( −0 . 035 /S q ) and λ2 exp ( −0 . 035 /S q ). Dashed black
ontours show constraints using the heliocentric redshifts, solid red
ontours show those using CMB-frame redshifts, and dotted green
ontours show those using HD redshifts. Our results are consistent
ith zero in all cases and show no significant change between redshift

rames. 
In Table 2, we summarize our constraints on all parameters for both

he JLA and Pantheon data sets obtained with the χ2 method. We
how constraints using heliocentric, CMB-frame, and HD redshifts
or both data sets. For all cases, we find results consistent with λ1 =
2 = 0 at the ∼1 σ level. From the 95% confidence level in Fig. 2
nd using ( 14 ), we place an upper limit on the total quadrupole
mplitude of ∼ 10% at scales of ∼ 100 h 

−1 Mpc (or z = 0.035).
herefore, the few-percent quadrupole predicted in (Macpherson &
einesen 2021 ) is consistent with current data. In Section 4.3 , we

orecast impro v ements on our constraint for upcoming low-redshift
urv e ys such as the Zwicky Transient Facility (ZTF; Dhawan et al.
022 ) or the Young Supernova Experiment (YSE; Jones et al. 2021 ).
The cosmographic expansion using the redshift z as a parameter

as a radius of convergence of z < 1, ho we ver, we have included
Ne Ia with redshifts z > 1 in our analysis. While we have justified

he validity of the third-order truncation of the cosmography of ( 1 ) in
ection 3.3 , we also test the impact of excluding SNe Ia with z ≥ 0.5
n the inferred quadrupole feature. We find no significant shift in the
est-fitting values and only a 10 per cent increase in the 1 σ and 2 σ
onfidence regions. We conclude that there is no significant impact
f using the highest- z SNe Ia on our conclusions for the quadrupole.
Further, we also test an additional parametrization of the cos-
ographic expansion which allows for higher redshift constraints.
amely, we use the expression for d L expanded in the transformed

edshift variable y = z/(1 + z) as introduced in Cattoen & Visser
 2007 ). We find our constraints using y as a parameter in the
xpansion to be consistent with those using z as a parameter at
he ∼0.6 σ level. Since we consider here an exponential decay of
nisotropic features, the lower redshift SNe Ia have the strongest
onstraining power for the anisotropies. Thus, we expect these tests
n the higher redshift SNe Ia to have little effect on the anisotropic
onstraints. 

Table 3 shows our constraints on the quadrupole parameters using
he MLE method for all three redshift frames. For all cases, our
esults are consistent with isotropy (zero quadrupole) at the ∼1 σ
evel, which can be seen from the p -value for the isotropic null
ypothesis as quoted in the right-most column of the table. 

We also test two different parametrizations of the quadrupole that
etermine the redshift region where the quadrupole dominates. First,
e fix the exponential decay scale to S q = 0.03/ln(2), 0.06/ln(2), and
.1/ln(2). These choices imply exp( − z/ S q ) = 1/2 for redshifts z =
.03, 0.06, and 0.1, respectively. Second, we treat the quadrupole
s a step function in redshift, i.e. we set F ( z ≤ z step , z step ) = 0 and
( z > z step , z step ) = 1 for z step = 0.03, 0.06, and 0.1. These redshift
NRAS 519, 4841–4855 (2023) 
alues all lie in the low- z (i.e. z ≤ 0.1) regime – where we expect
he anisotropy to be strongest – while still being sufficiently abo v e
he minimum redshift in the SN Ia compilations. The left-hand panel
f Fig. 3 shows the posterior distribution for the eigenvalues of the
uadrupole, using the χ2 method, for the three exponential decay
rofiles for the Pantheon sample. The right-hand panel of Fig. 3
hows the same constraints for the three cases of the step function.
e find similar constraints for the both the fixed redshift step and

he exponential decay model with the fixed decay scale. For all
ases shown here, we use the CMB frame redshifts, ho we ver, we
nd similar results for the Helicentric and HD frame redshifts, all

ndicating a quadrupole feature consistent with zero at the ∼1 σ level.
n all of these cases, we thus find no significant deviation from the
sotropic null hypothesis. We also find that performing the same fits
ith the JLA sample gives consistent results. 

.2 Dipole of the deceleration parameter 

n our main analysis, we set the direction of the dipole in the ef fecti ve
eceleration parameter to coincide with the CMB dipole as found by
lanck Collaboration ( 2020a ), namely ( l , b ) = (264.021, 48.523) ◦.
n order to ensure that the CMB dipole direction is indeed an optimal
irection for the dipolar signature, we test for the best-fitting direction
y varying the dipole direction and comparing the likelihood of the fit
or different directions on the sky (see Appendix B ). Using the MLE
ethod, we find the direction that optimizes the profile Likelihood

unction to closely coincide with the direction of the CMB dipole, as
as also found in Colin et al. ( 2019b ). 
The left-hand panel of Fig. 4 shows our constraint contours

n the q d –q m 

plane for the JLA data set using the χ2 method,
ncluding the PV covariance matrix. The right panel shows the
ame constraints for the Pantheon data set. In both panels, solid
ed contours show the results from CMB-frame redshifts, dotted
reen contours show HD redshifts, and thick dashed black contours
how heliocentric redshifts. All constraints include the distance bias
orrections, with the exception of the thin dashed red contours in
he left-hand panel, which show the CMB-frame constraints for JLA
ith these corrections remo v ed. Remo ving these corrections does
ot significantly impact our constraints, and so we retain them for
he rest of our analysis. 

We summarize our constraints on the deceleration parameter using
he χ2 method in both the JLA and Pantheon data in Table 4 . We
how constraints on the monopole q m 

, the dipole amplitude q d , the
ecay scale S d , and the (isotropic) jerk minus curvature parameter j 0 
K . We show all three redshift cases with PV covariance included

n the estimated errors, as well as the CMB and heliocentric redshifts
ithout PV covariance contributions (see Betoule et al. 2014 , for
etails on the components of the covariance matrix). For the JLA
ata set, we find q d = 2 . 18 + 3 . 353 

−2 . 724 for the CMB frame redshifts, and
hen adding the PV corrections we find q d = −0 . 004 + 1 . 08 

−0 . 785 . In all
ut one case, the JLA data set yields a dipole consistent with zero.
n the case of JLA heliocentric redshifts without the PV covariance
atrix, we find a significant dipole at the 3.3 σ lev el. F or the rest of

his work, we compute the significance of our results as 
√ 

2 times in
he inverse error function of the n th percentile that is consistent with
sotropy, i.e. q d = 0. F or P antheon, both heliocentric and CMB-
rame redshifts yield a dipole at 3.43 σ and 2.17 σ significance,
espectively (including the PV covariance matrix). After applying
he PV corrections (i.e. using HD redshifts), the dipole is consistent
ith zero within 1 σ for both samples. 
Comparing the constraints from the JLA and Pantheon compi-

ations in the left- and right-hand panels of Fig. 4 , respectively,
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Figure 2. Constraints on the eigenvalues of the quadrupole of the Hubble parameter using the JLA (left-hand panel) and Pantheon (right-hand panel) data sets. 
The contours are obtained with the χ2 method with redshifts in the CMB frame (solid red), heliocentric frame (dashed black), and HD redshifts (dotted green). 
The contours show the 1 σ and 2 σ limits. We find no significant evidence for deviation from isotropy (marked with the blue star) in any of the cases studied here. 

Table 2. Summary of constraints on the isotropic deceleration and curvature minus jerk parameters q m 

and j 0 − k , the 
eigenvalues of the quadrupole in the Hubble parameter λ1 and λ2 , and the exponential decay scale of the quadrupole, S q . All 
results shown here are found using the χ2 method. 

Data set Redshift q m 

j 0 – K λ1 λ2 S q 

JLA CMB –0.316 + 0 . 115 
−0 . 117 –0.373 + 0 . 403 

−0 . 49 0.005 + 0 . 017 
−0 . 023 0.002 + 0 . 022 

−0 . 017 0.974 + 0 . 98 
−0 . 974 

JLA HD –0.392 + 0 . 122 
−0 . 11 –0.109 + 0 . 521 

−0 . 494 0.003 + 0 . 012 
−0 . 015 0.005 + 0 . 015 

−0 . 012 1.258 + 0 . 901 
−1 . 258 

JLA Hel -0.404 + 0 . 116 
−0 . 113 –0.115 + 0 . 47 

−0 . 562 0.006 + 0 . 013 
−0 . 016 0.001 + 0 . 013 

−0 . 014 1.253 + 0 . 962 
−1 . 252 

Pantheon CMB –0.448 + 0 . 076 
−0 . 081 0.264 + 0 . 289 

−0 . 374 0.011 + 0 . 008 
−0 . 01 –0.003 + 0 . 01 

−0 . 009 1.564 + 0 . 853 
−1 . 554 

Pantheon HD –0.481 + 0 . 078 
−0 . 067 0.38 + 0 . 331 

−0 . 335 0.072 + 1 . 552 
−0 . 907 –0.136 + 0 . 663 

−1 . 816 0.002 + 0 . 001 
−0 . 002 

Pantheon Hel –0.49 + 0 . 078 
−0 . 073 0.408 + 0 . 283 

−0 . 399 –0.007 + 0 . 022 
−0 . 019 0.003 + 0 . 015 

−0 . 017 0.275 + 1 . 096 
−0 . 265 

Table 3. Constraints on the isotropic deceleration and curvature minus jerk 
parameters q m 

and j 0 − k , the eigenvalues and exponential decay of the 
quadrupole in the ef fecti ve Hubble parameter, λ1 , λ2 , and S q . Results here 
are found using the MLE method and the JLA SN Ia data set. The m B bias 
corrections are remo v ed and σz is set to zero. The p -value in the right-most 
column is the probability of the null hypothesis (isotropic universe model) 
relative to the model with a non-zero quadrupole. 

Redshift q m 

j 0 − K λ1 λ2 S q p -value 

CMB −0.160 −0.455 0.109 −0.0396 0.0110 0.67 
HD −0.260 −0.159 4.78 −4.27 0.0028 0.67 
Hel −0.151 −0.496 −0.00713 0.0095 24.8 0.81 
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e find that the posterior distributions are similar for the CMB
nd HD redshifts, with the 1 σ contours of the two samples (close
o) o v erlapping. F or redshifts in the heliocentric frame, we find an
 v erlap of the 2 σ contours (but not the 1 σ contours), which indicates
 moderate inconsistency between the two samples. We note that 
here have been several updates between the two compilations, e.g. 
he redshift measurements for a subsample, additional objects at 
igh- z photometric calibration, retraining of the light-curve fitting 
ethod. We remade the constraints in Fig. 4 using only the SNe Ia

n common between the two compilations as well as using the same
edshift measurement reported for z hel – i.e. by using z hel reported in
ne sample for all objects with the respective magnitudes from each
ample, and vice versa. Ho we ver, in both of these tests, we still find an
nconsistency between the samples at the � 2 σ level (see Appendix C
or details). We therefore cannot attribute this inconsistency to the 
ifference in objects between the samples or in any difference in
eported redshifts. The source of the systematic differences pointed 
ut here is important to clarify and should be further investigated
ith larger, impro v ed samples such as the Pantheon + compilation

Brout et al. 2022 ). 
For the Pantheon data set, the reported magnitudes have already 

een calibrated for stretch, colour, and host galaxy properties of the
MNRAS 519, 4841–4855 (2023) 
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M

Figure 3. Constraints on the eigenvalues of the quadrupole λ1 , λ2 for the parametrizations with a fixed scale (left-hand panel) and fixed redshift step value 
(right-hand panel). The scale values are varied between 0 . 03 

ln (2) , 
0 . 06 
ln (2) , and 0 . 1 

ln (2) and the redshift steps at 0.03, 0.06, and 0.1. As expected, the constraints are 
worsened for small step values since there are fewer SNe Ia in the redshift range. All cases are consistent with isotropy. 

Figure 4. Left-hand panel: constraints on the monopole and dipole terms of the deceleration parameter using the JLA compilation. The constraints are shown 
for the heliocentric (thick dashed black), CMB frame redshift (solid red), and the HD redshifts (dotted green). All contours contain the PV covariance matrix. 
Thin dashed red contours in the left-hand panel show the CMB frame constraints without the distance bias corrections. Right-hand panel: The same constraints 
for the Pantheon compilation. All contours represent the 1 σ and 2 σ constraints. 
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6 We note that the constrained χ2 results in Table 4 contain the distance 
bias corrections, whereas the MLE results in Table 5 do not contain them. 
Ho we ver, the addition of bias corrections makes little difference on our results 
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Ne Ia, within a cosmological model. We can therefore only use the
onstrained χ2 model for the Pantheon data set. In Appendix A , we
est the impact of these magnitude calibrations on the cosmological
onstraints, by repeating the analysis using the light-curve parameters
rovided with the Pantheon compilation. We find no correlation
etween the SN Ia standardization and the cosmological parameters
f our analysis. Our results with the corrected m B Pantheon data in the
ain analysis are thus reco v ered within the more model-independent

pproach examined in Appendix A . 
Table 5 shows our constraints on the deceleration parameter for

he JLA data set using the MLE method. Again, we consider all three
NRAS 519, 4841–4855 (2023) 
edshift cases. For the HD redshifts, the dipole signal is consistent
ith zero. For the heliocentric redshifts, we find a significant dipole
ith best-fitting values q d = −8.13 and S d = 0.0261 and p -value
 7.9 × 10 −5 . This result is consistent with the equi v alent case in
able 4 (heliocentric redshifts without PV cov) using the χ2 method. 6 

n the CMB frame, we find a preferred dipole with opposite sign of
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Table 4. The median and 68% C.L. constraints on the monopole and dipole moments of the deceleration parameter for both JLA and 
Pantheon compilations. Here, we compute the parameters for the CMB frame, HD (see the text for details), and heliocentric frame 
redshifts. We also e v aluate the parameters with and without the covariance matrix for the PV corrections (for the CMB and heliocentric 
frames) for the JLA compilation. 

Data set Covariance Redshift q m 

j 0 – K q d S d 

JLA With PV cov CMB –0.348 + 0 . 128 
−0 . 107 –0.28 + 0 . 404 

−0 . 558 1.016 + 3 . 262 
−1 . 561 0.143 + 0 . 006 

−0 . 006 

JLA With PV cov HD –0.413 + 0 . 124 
−0 . 119 –0.048 + 0 . 446 

−0 . 623 0.034 + 0 . 737 
−0 . 322 0.141 + 0 . 007 

−0 . 006 

JLA With PV cov Hel –0.399 + 0 . 115 
−0 . 113 –0.129 + 0 . 511 

−0 . 501 –0.066 + 0 . 167 
−0 . 447 0.142 + 0 . 006 

−0 . 006 

JLA Without PV cov CMB –0.343 + 0 . 103 
−0 . 122 –0.296 + 0 . 405 

−0 . 553 2.379 + 2 . 868 
−2 . 609 0.026 + 0 . 035 

−0 . 026 

JLA Without PV cov Hel –0.315 + 0 . 121 
−0 . 104 –0.380 + 0 . 449 

−0 . 465 –6.806 + 1 . 087 
−3 . 189 0.028 + 0 . 008 

−0 . 009 

Pantheon With PV cov CMB –0.439 + 0 . 076 
−0 . 073 0.240 + 0 . 325 

−0 . 323 5.414 + 4 . 486 
−1 . 705 0.020 + 0 . 007 

−0 . 009 

Pantheon With PV cov HD –0.481 + 0 . 073 
−0 . 071 0.373 + 0 . 295 

−0 . 374 0.696 + 4 . 002 
−1 . 19 0.021 + 0 . 034 

−0 . 021 

Pantheon With PV cov Hel –0.445 + 0 . 076 
−0 . 078 0.252 + 0 . 303 

−0 . 365 -6.001 + 2 . 037 
−3 . 111 0.027 + 0 . 007 

−0 . 01 

Table 5. Constraints on the isotropic deceleration and curvature minus jerk 
parameters q m 

and j 0 − k , and the magnitude and exponential decay scale 
of the dipole in the ef fecti ve deceleration parameter, q d and S d . Results here 
are obtained with the MLE method and the JLA SN Ia data set. The m B bias 
corrections are remo v ed and σz is set to zero. The p -value in the right-most 
column is the probability of the null hypothesis (isotropic universe model) 
relative to the model with a non-zero dipole. 

Redshift q m 

j 0 – K q d S d p -value 

CMB −0.174 −0.416 14.1 0.0122 0.024 
HD −0.256 −0.174 10.4 0.00084 0.67 
Hel −0.158 −0.488 −8.13 0.0261 7.9 × 10 −5 
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hat in the heliocentric frame, albeit the significance of the signature is 
owered. The change of sign of the preferred dipole in the deceleration 
arameter is due to the partial de generac y between this dipole and the
pecial-relativistic boost of the observer (see section 5 of Heinesen 
020 ). This result differs from that of the analogous analysis 
sing the χ2 method, for which we found no significant dipole 
ignature. 

So far in our analysis, we have maintained the velocity of the
bserver to coincide with the best-fitting velocity as inferred from 

he dipole in the CMB. If the dipole anisotropy in SN Ia data is
urely due to our kinematic motion and the CMB dipole is of purely
inematic origin as well, we should infer a similar observer velocity 
o that obtained from the CMB. We now leave the amplitude of
he observ er v elocity as a free parameter in an isotropic analysis,
hile maintaining its to coincide with the boost direction of the 
MB dipole. We have repeated the analysis, allowing the direction to 
ary, and find the maximum likelihood direction to closely coincide 
ith that of the CMB dipole (see Appendix B ). For this test, we
eglect the PV covariance contributions to the total error covariance 
atrix. Inclusion of PV covariance increases the error bars by ∼

0%, but gives overall similar results to those quoted below. For
he JLA SNe Ia, we find a v elocity v = 258 . 15 + 57 . 9 

−61 . 2 km s –1 relativ e
o the heliocentric frame using the constrained χ2 method and v = 

52 km s –1 using the MLE method (with a p -value of 0.018). Both of
hese velocities are consistent with the recent result in Horstmann, 
ietschk e & Schw arz ( 2021 ), ho we ver, both are discrepant from

hat inferred from the CMB dipole (369.82 ± 0.11 km s –1 ; Planck
or both statistical methods, and we therefore may still safely compare results 
etween statistical methods. 

r  

h  

w
(

ollaboration I 2020a ). Using the χ2 method for the Pantheon SNe Ia,
e find a expectation value of the velocity of 240 + 57 . 0 

−36 . 2 km s –1 , which
s in agreement with our other results. This suggests an additional
ontribution to the dipole in SNe Ia data beyond that of a special-
elativistic boost of the observer to the rest frame of the CMB. 

As shown in Table 5 , we found a significant dipole in the
eceleration parameter using the MLE method for the case of JLA
Ne Ia in the heliocentric frame and in the CMB frame, respectively,
lbeit the the significance drops to ∼2 σ in the later case. Introducing
he amplitude of the observer velocity as a free parameter, while
eeping its direction fixed to the CMB dipole direction as in the abo v e
nalysis, remo v es the significance of the dipole in the deceleration
arameter. We find that the allowance of a non-zero dipole in this
ase increases the logarithm of the likelihood by ∼1.6 in the best
t and is thus not enough to justify the introduction of the two
ree parameters associated with the dipole. Thus, in this analysis, 
e find that the dipole in the deceleration parameter is consistent
ith zero. This comes at the price of a best-fitting magnitude of

he velocity of 252 km s–1 , which differs from the CMB with a 
ignificance of ∼2 σ . 

The HD frame results in Table 5 also show an insignificant dipole
n the deceleration parameter. Thus, we conclude that the SN Ia PV
orrections in standard analyses can account for the dipole in the
eceleration parameter that we find here. Peculiar flows are indeed 
 xpected to giv e rise to anisotropies in the Hubble law of the type
nvestigated in this paper, as we comment on in the discussion 
ection. 

In Fig. 5 , we show the exponentially decaying dipole amplitude
s a function of redshift for the different statistical methods and data
ets used here. Different colours represent the three redshift frames 
e use, as indicated in the legend. Solid lines show best-fitting values
btained using the χ2 method with JLA SNe Ia, dotted lines show χ2 

est-fitting values for Pantheon SNe Ia, and dot–dashed lines show 

esults using the MLE method with JLA SNe Ia. Shaded regions
how the 2 σ bounds for the χ2 constraints. The horizontal magenta 
ine shows the magnitude of the monopole, for comparison, and 
he vertical blue line marks the scale z = 0.035 corresponding to a
istance scale of ∼100 h −1 Mpc. The Pantheon data using the CMB
rame redshifts marginally suggests a non-zero dipole at the ∼2 σ
evel, whereas we find no suggestion of a dipole when using the HD
edshifts. We find a significant dipole in both data sets when using the
eliocentric redshifts. This figure is a summary of our main results,
hile illustrating the redshift ranges for which a non-zero dipole 

with this parametrization) might be important. 
MNRAS 519, 4841–4855 (2023) 
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M

Figure 5. The evolution of the deceleration parameter dipole with redshift. 
We show the dipole amplitude as a function of redshift in the CMB (red), HD 

(green), and heliocentric (black) frames. The solid lines are the inferred values 
from the χ2 method applied to the JLA data (without PV covariance matrix 
for a direct comparison with the MLE method), whereas the dotted lines are 
for the χ2 method applied to the Pantheon data. The dash–dotted lines are the 
result from the MLE method applied to the JLA data. Shaded regions show 

the 2 σ bounds for the χ2 constraints. The magenta line shows the magnitude 
of the monopole in the standard cosmological model, for comparison with 
the dipole amplitude. 

 

t  

c  

o  

s  

T  

P  

t
u  

&  

w  

O  

t  

H  

f  

f  

s  

o  

t  

(  

s  

n  

p  

i  

f  

c  

b  

&  

a  

t  

f  

t

4
p

O  

Z  

s  

d  

m  

w  

p  

i  

u  

t  

f  

d  

s  

P  

fl  

i  

i
 

i
z  

a  

fi  

&  

i  

i  

d  

c  

r  

F
 

m  

l  

n  

w  

l  

f  

c
 

t  

s  

l  

t  

z  

1  

F  

w  

S

5

T  

c  

w  

r  

s  

n  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/4841/6965836 by guest on 24 M
ay 2024
Crucially, we find that in both left- and right-hand panels of Fig. 4 ,
he posterior distribution of the monopole q m is not significantly
orrelated with the value of the dipole q d . Hence, the assumption
n the value of q d = 0 in the isotropic cosmography does not
ignificantly impact the inferred q m 

. Further, from both Fig. 4 and
able 4 , we can see that the boost to the CMB frame, and the
V corrections, do not significantly impact the inferred value of

he monopole, q m 

, when using the χ2 method. Inferences of q 0 
sing isotropic cosmography in the literature (e.g. Bernal, Verde
 Riess 2016 ; Feeney et al. 2019 ; Lemos et al. 2019 ) are consistent
ith the q m 

value we find with the χ2 method at the 1–2 σ level.
ur results using the MLE method also show minimal change in

he value of the monopole q m 

with redshift frame (see Table 5 ).
o we ver, the v alues of the monopole in the heliocentric and CMB

rames are q m 

= −0.158 and −0.174, respecti vely, which de viate
rom the value within � CDM of q 0 ≈ −0.55 with a statistical
ignificance of ∼2 σ ; see also Colin et al. ( 2019a ). The likely cause
f this difference between the two methods is the assumption of
he redshift evolution of the population of SNe Ia light-curve width
 x 1 ) and colour ( c ) parameters. The χ2 method accounts for surv e y
election as a function of redshift whereas the MLE method assumes
o redshift dependence in the distributions of the intrinsic supernova
arameters. Since the SN Ia surv e ys are impacted by Malmquist bias,
.e., they preferentially detect brighter SNe Ia at higher redshifts, the
ailure to account for such bias, or doing so in an incorrect manner,
an impact the value of the monopole term q m 

. Such an impact has
een recently discussed in the literature Colin et al. ( 2019a ), Rubin
 Heitlauf ( 2020 ). Our findings agree with both Colin et al. ( 2019a )

nd Rubin & Heitlauf ( 2020 ) for the rele v ant statistical method, and
herefore further investigation into the appropriate way of accounting
NRAS 519, 4841–4855 (2023) 
or surv e y selection as a function of redshift is necessary to clarify
his debate. 

.3 Forecast of constraints on the quadrupole in the Hubble 
arameter and dipole in the deceleration parameter 

ngoing and future surv e ys will disco v er a large number of SNe Ia.
TF and YSE will increase the low-redshift SN Ia sample and
ignificantly impro v e systematic errors. F or re gional anisotropies that
ecay towards larger scales, impro v ements in low-redshift data will
ake the most difference to our constraining power. In this section,
e forecast the constraints on both the quadrupole in the Hubble
arameter and the dipole in the deceleration parameter from the
mpro v ed low- z samples. We start with a simulated realization with
ncertainties corresponding to the current Pantheon compilation, and
hen increase the number of low- z samples to coincide with expected
uture data sets. For this mock catalogue, we assume the same redshift
istribution and error covariance matrix as the Pantheon SN Ia
ample. We draw the total number of SNe randomly from the current
antheon z-distribution and conserv ati vely keep the systematics error
oor to be the same as the Pantheon sample. The total number of SNe,

.e. five times the current low- z sample is motivated by the expected
ncrease of low- z in the near future (e.g. ZTF; Dhawan et al. 2022 ). 

We infer distances to SNe Ia for an input model with a quadrupole
n the Hubble parameter such that λ1 × exp( − z/ S q ) = λ2 × exp( −
/ S q ) = 0.029 in ( 11 ) at z = 0.035. This induced ∼ 7% quadrupole
mplitude is moti v ated both by the upper limit on the quadrupole we
nd here as well as the numerical results obtained by Macpherson
 Heinesen ( 2021 ). In the latter, the authors found a quadrupole

n the Hubble parameter of a few percent on ∼100 h −1 Mpc scales
n a set of general-relativistic cosmological simulations. For our
ipole forecast, we consider an induced dipole using the upper 68%
onfidence level from our best-fitting value using the CMB frame
edshifts for JLA SNe Ia, i.e. q d = 2 (see the left-hand panel of
ig. 4 ). 
We take the redshift and distance modulus error distribution of the
ock SNe Ia to be the same as the Pantheon data. We augment the

ow- z ( z ≤ 0.1) anchor sample to five times its size such that the total
umber of low- z SNe Ia is 1055. This sample size is conserv ati vely
ell within the limit of data already obtained by current and ongoing

ow- z SN Ia surv e ys. F or comparison, we also use simulated distances
or a low- z anchor sample of the same size as the current Pantheon
ompilation. 

The left-hand panel of Fig. 6 shows our forecast constraints for
he input cosmology with a non-zero quadrupole for a future low- z
urv e y (solid red contours) and for a sample consistent with current
ow- z catalogues (dashed green contours). The blue star represents
he values of the input cosmology. We find that the impro v ed low-
 anchor sample will be able to detect a 7 per cent quadrupole at
00 h −1 Mpc scales with 5 σ significance. The right-hand panel of
ig. 6 shows our forecast dipole constraints, with contours consistent
ith the left-hand panel. We find that the impro v ement in the low- z
N Ia sample will refine the error on q d by a factor of 2.1. 

 DI SCUSSI ON  A N D  C O N C L U S I O N  

he assumption of isotropy is a central feature of the standard
osmological model and must be empirically tested. Any universe
ith structure will necessarily contain anisotropies in the d L –z

elation. Therefore – once the data are precise enough to resolve
uch anisotropies – anisotropic contributions to low-redshift data
eed to be included for a realistic cosmological fit. Such anisotropies

art/stac3812_f5.eps
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Figure 6. Posterior distribution of λ1 × exp( − z/ S q ), λ2 × exp( − z/ S q ) for the artificial input model with a 2.9 per cent quadrupole at z = 0.035, corresponding 
to ∼100 h −1 Mpc scales. The forecasts for an SN Ia compilation of the same size as the current Pantheon compilation is shown as green contours, and for a 
compilation with 5 × larger low- z anchor samples is shown as red contours. Contours show the 1 σ and 2 σ re gions, respectiv ely. We mark the input quadrupole 
value in our forecasts with a blue star. Right-hand panel: the forecast for the dipole in the deceleration parameter, we find that the same impro v ement in the 
low- z anchor will impro v e constraints on the dipole by more than a factor of 2. 
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ould also impact local distance determinations, for example, those 
ased on Cepheids (Riess et al. 2021 ) or TRGB (Freedman 2021 ),
n the case of an anisotropic distribution of SNe Ia. In this work,
e have presented the first constraints on the theoretically mo- 

i v ated quadrupole moment of the ef fecti ve Hubble parameter in
he distance–redshift relation. The quadrupole moment physically 
rises from the anisotropic expansion of space around the observer 
s incorporated in the shear tensor. Using the SN Ia magnitude–
edshift relation, we find no significant quadrupole in the ef fecti ve
ubble parameter, with our best-fitting quadrupole amplitude being 

onsistent with zero. This constraint holds for both the JLA and 
antheon compilations, and is robust to the changes in redshift frames 
nd likelihood methods considered here. Our results are unchanged 
hen including � CDM modelled corrections for peculiar motions 
f the SNe Ia with respect to the CMB frame. 
We have placed an upper bound of ∼ 10% for the quadrupolar 

nisotropy within our exponential decay model (using equation 14 ). 
ince the decay scale can be degenerate with the value of the
igenvectors, we also constrain the parametrizations with a fixed 
ecay scale, as well as a fixed step value in redshift, and find
esults consistent with the fiducial model. We stress again that this
nisotropic contribution to the Hubble parameter is not degenerate 
ith the SN Ia absolute luminosity, unlike the monopole H m 

. It
an therefore be constrained by the magnitude–redshift relation of 
Ne Ia without needing external calibrators to first constrain the 
N Ia absolute magnitude prior to the cosmological fit. 
P arno vsk y & Parnowski ( 2013 ) used the RFGC to constrain the

uadrupole (shear) at the 100 h −1 Mpc scale, finding eigenvalues 
f λ1 = 7 . 27% ± 1 . 54% and λ2 = −2 . 43% ± 1 . 46%. Since we use
he same eigendirections as the RFGC study, we can compare 
ur constraints to their results. The RFGC quadrupole was found 
o be almost constant o v er the 80–170 h −1 Mpc scales which
hey considered, therefore, our quadrupole constraints from the 
tep function parametrization (with z step = 0.03) are the closest 
n formalism to the RFGC study. We find agreement between our 
esults and the RFGC measurements at the ∼2 σ level (but not at the
 σ level). It is important to constrain this quadrupolar anisotropy 
ith future larger data sets, as well as with independent probes. 
We have also forecasted the precision of quadrupole measurements 

rom future low- z SN Ia surv e ys. This forecast is timely, since the
umber of SNe Ia available for cosmological studies will increase 
anyfold within this decade. With upcoming samples of SNe Ia in

he nearby Hubble flow, for example, from ZTF or YSE, we can
ignificantly impro v e the constraints on the quadrupole moment of
he Hubble parameter. For our input signal, we took a quadrupole
ith ∼ 7% amplitude to test whether it can feasibly be constrained
ith future surv e ys. Specifically, we forecast that with 1055 SNe Ia,
e will have the potential to detect this quadrupole at 5 σ significance.
 sample of this size is also interesting for constraining the kinematic
ature of the CMB dipole (e.g. Horstmann et al. 2021 ). Hence, the
mpro v ed low- z data will be important for tests of the cosmic rest
rame. 

We have also presented constraints on the dipole in the deceleration 
arameter. We focused on the impact of the statistical method as well
s input data assumptions. We find that for the JLA compilation, the
ipole is consistent with zero at the 1 σ level when inferred using the
2 method for all but one case. The only instance of a significant
ipole occurs in the heliocentric frame without applying the PV 

ovariance matrix. With the same inference method, we find that the
antheon compilation indicates marginal significance of a dipole at 

he ∼2 σ level when using the CMB frame, ho we ver, this dipolar
ignature vanishes when applying the PV corrections to the SN Ia
edshifts. We note that for the MLE method, we similarly find that
he CMB frame redshifts with PV corrections are consistent with 
sotropy. Ho we ver, when PV corrections are not applied, we find
 significant dipole in both the CMB and heliocentric frame. In
ig. 5 , we have presented a summary of the dipole amplitude for the
xponentially decaying case, illustrating its dependence on redshift 
or both statistical methods and data sets used here, as well as all
edshift frames. 

Recent impro v ements in the treatment of PV corrections have
een shown to have a small impact on parameter constraints in
MNRAS 519, 4841–4855 (2023) 
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sotropic cosmologies (e.g. for H 0 in Peterson et al. 2021 ). In addition,
ahman et al. ( 2021 ) used an impro v ed flow model to correct for
Vs and found no evidence for departures from isotropy once the PV
orrections were applied, consistent with our findings. 

The theoretical framework developed by Heinesen ( 2020 ), in
rinciple, allows us to account for anisotropic expansion of space and
o infer PVs around a background model for both the observer and the
ources. This will be a possibility with future low- z SN Ia samples
hat have significantly increased statistics. It will be interesting to
urther tighten the constraints on anisotropies we find here using
pcoming impro v ed SN Ia magnitude-redshift data (e.g. Brout et al.
022 ). 
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pparent magnitude, m B , light-curve width, x 1 , and colour, c , values
long with the host galaxy masses. We therefore can marginalize
 v er the nuisance parameters in the luminosity standardization
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vailable apparent luminosity has already been corrected for the
idth–luminosity and colour–luminosity relations. Ho we ver, this fit
as explicitly based on the FLRW metric. We, therefore, verify
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Figure A1. Posterior distribution of the cosmological and SN Ia nuisance parameters using the Pantheon compilation. We find that cosmological parameters 
for the model are not correlated with the nuisance parameters for SN Ia standardization relations. The contours are 1 σ and 2 σ respectively. 
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he impact of these corrections by marginalizing the SN Ia width–
uminosity, colour–luminosity and host galaxy mass distributions 
long with the cosmological parameters for our model. For this, 
e use the publicly available light-curve fit parameters and host 
alaxy masses for the Pantheon SNe Ia. 7 In Fig. A1 , we present
he posterior distribution for the cosmological parameters inferred 
rom the Pantheon compilation using CMB frame redshifts, i.e. the 
onopole, dipole of the deceleration parameter, the decay scale for 

he dipole and the cosmological jerk minus curvature, along with the 
uisance parameters, α, β, � M 

and M B . We find that the cosmological
arameters, q m 

, q d are uncorrelated with the SN Ia standardization 
arameters, using a Pearson r test and finding | r | values <0.1. A
imilar correlation between the nuisance parameters and anisotropic 
osmologies for the JLA compilation is presented in Dam et al. 
 2017 ) and Rahman et al. ( 2021 ). 

PPENDIX  B:  TESTING  T H E  D I R E C T I O N  O F  

H E  DIPOLE  A N D  OBSERV ER  B O O S T  

ur analysis presented in the main text is based on fixing the direction
f the dipole in the deceleration parameter to that of the CMB dipole
 https:// github.com/dscolnic/ Pantheon.git

l  

v  
easured by Planck Collaboration I ( 2020a ). Further, in our search
or the best-fitting rest frame for us as observers – i.e. not a priori
ssuming this to be that of the CMB – we also fix the direction of
ur velocity to coincide with that inferred from the CMB dipole. In
his appendix, we present a search for the optimal directions of these
uantities across the sk y. F or both tests, we vary the direction of the
ipole (associated with either the ef fecti ve deceleration parameter or
he observer boost velocity) to coincide with indices of a HEALPix
ap with N side = 2, i.e. 12 × N 

2 
side = 48 directions in total. 

Fig. B1 shows the result of our test of the best-fitting direction
f the dipole in the deceleration parameter, namely, the direction 
ector associated with q d ≡ q d n in ( 15 ). The left-hand panel shows
 Mollweide projection of the best-fitting amplitude, q d , for each
orresponding dipole direction, n . The right-hand panel of Fig. B1
hows the corresponding profile log-likelihood function, −2 log ( L ), 
or the direction. The white star on both panels corresponds to the
irection of the CMB dipole from Planck Collaboration I ( 2020a ),
nd the white cross is the best-fitting direction of our analysis,
orresponding to the minimum value of −2 log ( L ). 

Fig. B2 shows the result of our test of the best-fitting direction
f the observer boost. Specifically, we perform an isotropic cosmo- 
ogical fit with the velocity of the observer, v = vn , left as a free
ariable. When redshifts are transformed to the CMB frame, v is
MNRAS 519, 4841–4855 (2023) 

art/stac3812_fA1.eps
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Figure B1. Left-hand panel: norm of the deceleration dipole vector q d as we vary the direction of the dipole to coincide with each HEALPix index shown 
here. Right-hand panel: the likelihood of each fit performed here. We show −2 log ( L ) for each instance of dipole direction vector. The white star in each panel 
represents the direction of the CMB dipole, and the white cross is the best-fitting direction resulting from this test. 

Figure B2. Left-hand panel: norm of the velocity vector v as we vary the direction of the observer boost to coincide with each HEALPix index shown here. 
Right-hand panel: the likelihood of each fit performed here. We show −2 log ( L ) for each instance of velocity direction. The white star in each panel represents 
the direction of the CMB dipole, and the white cross is the best-fitting direction resulting from this test. 

chosen such that the dipole in the CMB temperature field vanishes, 
while here we leave the best-fitting rest frame to be determined from 

the SN Ia catalogue itself. The left-hand panel shows a Mollweide 
projection of the best-fitting amplitude of the velocity, v, for each 
corresponding direction n . The right-hand panel of Fig. B2 shows 
the corresponding profile log-likelihood function for the direction. 
The white star on both panels again corresponds to the direction of 
the CMB dipole from Planck Collaboration I ( 2020a ), and the white 
cross is the best-fitting direction of our analysis. 

The best-fitting direction agrees well between the fits for q d and 
v , with any difference within the angular resolution of our analysis. 
This shared best-fitting direction (white cross on all panels) closely 
coincides with the direction of the CMB dipole (white star on all 
panels). Colin et al. ( 2019a ) performed this same test for their fits for 
the dipole in the deceleration parameter, and found their best-fitting 
direction to be 23 ◦ away from the CMB dipole. We find our results 
to be consistent with that of Colin et al. ( 2019a ) given our resolution. 

APPENDI X  C :  C O M PA R I S O N  O F  J L A  A N D  

PA N T H E O N  CONSTRAI NTS  

In this section, we present the individual comparisons between the 
constraints on q m 

and q d when using the CMB, HD and heliocentric 
redshift frames for the Pantheon and JLA compilations. For this 
analysis, we only use the SNe Ia in common between the two 
compilations. The comparison for each redshift frame is shown in 
Fig. C1 . We find that the dipole, q d , is consistent in the CMB and 
HD frames at the ∼1 σ le vel, ho we ver, it is only consistent at the 
∼2 σ level for the heliocentric frame. While an investigation of this 
difference is beyond the scope of this work, future analyses using 
u  

d
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Figure C1. Constraints on the dipole and monopole of the deceleration parameters for the JLA (black) and Pantheon (red) compilations in the CMB (left-hand 
panel), HD (middle panel), and heliocentric (right-hand panel) frames using only the SNe Ia in common between the two data. 
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