

Rabies surveillance in Senegal over fourteen years uncovers first infection of a honey-badger

Martin Faye, Oumar Faye, Nicholas Di Paola, Marie Henriette Dior Ndione, Moussa Moise Diagne, Cheikh Tidiane Diagne, Ndeye Sakha Bob, Gamou Fall, Jean-michel Heraud, Amadou Alpha Sall, et al.

▶ To cite this version:

Martin Faye, Oumar Faye, Nicholas Di Paola, Marie Henriette Dior Ndione, Moussa Moise Diagne, et al.. Rabies surveillance in Senegal over fourteen years uncovers first infection of a honey-badger. Transboundary and emerging diseases, inPress, 10.1111/tbed.14465. hal-03691736

HAL Id: hal-03691736 https://hal.science/hal-03691736

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Rabies surveillance in Senegal over fourteen years uncovers first infection of a honey-badger.

Journal:	Transboundary and Emerging Diseases
Manuscript ID	TBED-OA-829-21
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	05-Jul-2021
Complete List of Authors:	Faye, Martin; Institut Pasteur de Dakar Faye, Oumar; Institut Pasteur de Dakar Paola, Nicholas Di; US Army Medical Research Institute of Infectious Diseases Ndione, Marie; Institut Pasteur de Dakar Diagne, Moussa; Institut Pasteur de Dakar Diagne, Cheikh Tidiane; Institut Pasteur de Dakar Bob, Ndeye Sakha; Institut Pasteur de Dakar Fall, Gamou; Institut Pasteur de Dakar Heraud, Jean-Michel; Institut Pasteur de Dakar Sall, Amadou; Institut Pasteur de Dakar Faye, Ousmane; Institut Pasteur de Dakar
Subject Area:	Emerging diseases, Virus, Zoonosis/Zoonotics, Wildlife
Keywords:	host-shift, honey-badger, molecular epidemiology, rabies virus, Senegal

1		
2 3 4	1	Title: Rabies surveillance in Senegal over fourteen years uncovers first infection of a
5 6 7	2	honey-badger.
8 9	3	Authors: Martin Faye ^{1*} , Oumar Faye ¹ , Nicholas Di Paola ² , Marie Henriette Dior NDione ¹ ,
10 11	4	Moussa Moise Diagne ¹ , Cheikh Tidiane Diagne ¹ , Ndeye Sakha Bob ¹ , Gamou Fall ¹ , Jean-Michel
12 13	5	Heraud ¹ , Amadou Alpha Sall ¹ and Ousmane Faye ¹ .
14 15 16	6	Affiliations:
17 18 19	7	¹ Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220 Dakar, Senegal.
20 21	8	² Center for Genome Sciences, United States Army Medical Research Institute of Infectious
22 23 24	9	Diseases, Fort Detrick, Frederick, Maryland 21702, USA.
25	10	*Address for correspondences Dr. Martin FAVE Viralegy department Institut Destaur de
26 27	10	Dakar 36 Avenue Pasteur 220 Dakar Senegal: martin fave@pasteur sp
28 29	11	Dakar, 50 Avenue I asteur, 220 Dakar, Senegar, martin.iaye@pasteur.sn.
30 31 22	12	
32 33 34 35	13	Acknowledgments
36 37	14	This research received no specific grant from any funding agency in the public, commercial, or
38	15	not-for-profit sectors and was only supported by the Institut Pasteur de Dakar. We acknowledge
40	16	colleagues of virology department at Institut Pasteur de Dakar, Senegal for sharing supportive
41 42 43	17	information necessary for establishment and accomplishment of this study.
44 45	18	Ethics Statement
46 47	19	The authors confirm that the ethical policies of the journal, as noted on the journal's author
48 49 50	20	guidelines page, have been adhered to. No ethical approval was required.
50 51 52	21	Conflict of interest statement
53 54	22	The authors declared no competing interest
55 56 57 58	23	
59 60		Transboundary and Emerging Diseases - submitted manuscript

24 Summary

Despite the establishment of Rabies surveillance in animals and humans since 2008, there is a lack of data on its circulation, dynamic of transmission and real burden in Senegal. To better understand the molecular epidemiology of rabies virus in Senegal, we investigated the genetic diversity of eighteen new characterized Senegalese rabies virus sequences collected over fourteen years, including a honey-badger-related isolate. Phylogeographic analyses demonstrated that the Senegalese isolates belong to a monophyletic cluster into the Africa-2 clade and supported two RABV introductions in Senegal from West-African neighbour countries, 36-40 years ago. Our study is noteworthy for reporting on the first characterization of an African honey-badger-related rabies virus which hadn't the Nglycosylation site NKT at position 338-G of the glycoprotein. The identified amino acid polymorphisms found in the Senegalese rabies virus sequences are worthy of further investigations. Although a strong multidisciplinary stepwise cooperation is important for the successful elimination of Rabies in dog populations in Senegal by 2030, the establishment of surveillance in wildlife could be necessary to avoid future re-introductions into domestic hosts. Keywords: host-shift, honey-badger, molecular epidemiology, rabies virus, Senegal.

42 Introduction

Rabies is a neglected, acute as well as progressive neurological disease that is invariantly fatal,
once symptoms onset, without prompt post-exposure prophylaxis (PEP) (1). Rabies is one of the
most important zoonotic diseases and occurs in over 150 countries and territories around the
world, causing between 50,000 and 70,000 human deaths annually (2). Most human rabies
deaths were associated with bites or scratches from an infected dog, mainly in developing
countries in Africa and Asia, where Rabies remains a major public health concern (1, 3).

Rabies is caused by rabies virus (RABV), which is a neurotropic and enveloped virus belonging
to the *Lyssavirus* genus (order *Mononegavirales*, family *Rhabdoviridae*). The RABV's genome

is a negative single-stranded RNA of approximately 12 kilobases (kb) in size, which encodes for five structural proteins (N, P, M, G, and L). The nucleoprotein (N), the phosphoprotein (P) and the RNA-dependent RNA polymerase form the ribonucleoprotein (RNP), which plays a crucial role in RABV transcription and replication (4). The N and L proteins harbor the most conserved regions among the RABV genome (4). Known as the key protein involved in virus assembly, budding and virions release, the matrix protein (M) is also as a regulator of viral transcription and replication (5). The glycoprotein (G) is the only surface protein and plays a major role during the initial steps of the infectious cycle. It is also essential for induction of host's innate and adaptive immunity (6, 7).

RABV can be transmitted by a wide range of animal hosts including many species of wildcarnivora and chiroptera (8).

Substantial advances in understanding RABV biology (8), pre- and post-exposure treatment (6, 1)7), and massive immunization campaigns conducted to the success of eradication and control programs in Europe (9) and the Americas (10). Nevertheless, the objective of no Rabies death by 2030 is difficult to achieve in developing countries despite some RABV-targeted control efforts (1). Although human and dog-mediated Rabies eradication is an achievable objective in developing countries through a strong One health cooperation, the eradication of Rabies in the wild seems more difficult considering that rabies viruses continue to spread establish in geographical areas and, new host species such as various species belonging to the genera Melogale, Meles, and Mellivora in the weasel family Mustelidae (11).

Sequenced RABV genomes demonstrate expansive intra-species genetic diversification with
 seven major phylogenetic groups circulating throughout the world (). Three of these groups are
 circulating in Africa including the Africa-2, Africa-3 and Cosmopolitan clades (12-14). Previous
 phylogenetic studies based on the N gene sequences have shown that Africa-2 clade circulates in
 Central and West African countries including in Senegal (13). Prior to this work, only two
 complete viral genomes from Senegal were available on GenBank (KX148238-39) and were
 generated from strains isolated in 1991 and 1992, respectively (12).

78 Here, we investigated the phylodynamic of the RABV circulating in Senegal and West Africa,

80 better understanding of virus spread patterns and timing.

81 Materials and Methods

82 Sample Collection

All 18 virus isolates analyzed in this study were derived from experimentally infected suckling
mice brain tissues preserved in the collection of the national reference center for RABV at the
Institut Pasteur de Dakar, Senegal (NRC-Rabies IPD) (Table 1). One of these strains was
isolated in 2011 from a honey-badger or ratel (*Mellivora capensis*) at Dahra and this is the first
time in Senegal. Dahra is a city of up to 30,000 people, located in the Linguère department,
Louga region in Senegal (15°21′N; 15°36′W), at approximately 264 km from the capital Dakar.
The main activities in Dahra are agriculture and animal breeding.

RABV infection was confirmed by real-time reverse-transcriptase quantitative polymerase chain
reaction (RT-qPCR) and direct fluorescent antibody test (DFAT) as previously described (3, 15)
Extraction of viral RNA from 140 microliter (µL) of supernatants from suckling mice brain
tissues, was performed with the QIAamp viral RNA mini kit (Qiagen, Heiden, Germany)
according to manufacturer's instructions and eluted in a final volume of 60 µL. Extracted RNA
was stored at -80 °C prior to downstream applications.

96 Complete genome sequencing

Reverse-transcription was performed using the Avian Myeloblastosis Virus (AMV) kit (Promega, Madison, WI, USA) with random primers, following manufacturer's instructions. The complete polyprotein was obtained using overlapping polymerase chain reactions (PCR) with each primer set and the GoTag® DNA polymerase kit (Promega, Madison, WI, USA) in a final volume of 50 µL, according to manufacturer's instructions. Primers details are indicated in **Appendix Table 1**. Briefly, five μ L (around 10 μ g) of cDNA was added to 45 μ L of a RT-PCR mix and PCR was carried out as previously described (16). Subsequently, five μ L of each PCR product was analyzed by gel electrophoresis on 1% agarose gels stained with ethidium bromide using a DNA molecular weight marker (HyperLadder[™] 1 kb, Bioline, Taunton, MA, USA) to

Page 5 of 32

1 2		
3	106	check the size of amplified fragments. The DNA amplicons were purified (QIAquick Gel
4 5	107	Extraction Kit, Qiagen, Heiden, Germany) and sequenced from both ends for each positive
6 7	108	sample using Sanger (Beckmann Coulter, High Wycombe, UK). Sequencing of the 3' leader and
8 9	109	5' trailer of the viral genome was performed using a 5' RACE kit (Invitrogen, Carlsbad, CA,
10 11	110	USA) and a 3' RACE kit (Roche, Basel, Switzerland) following the manufacturer's protocols.
12 13 14	111	Sequence Analysis
15 16	112	Overlapping genomic sequences were assembled using the Unipro UGENE software
17	113	(http://ugene.net/download.html) (17) and obtained full-genomes were aligned using Muscle
18 19	114	algorithm (http://www.drive5.com/muscle/) (18) within Unipro UGENE software. Based on these
20 21	115	alignments, the genetic properties such as pairwise nucleotide and amino acid distances at genes
22	116	level were analyzed among of the new characterized Senegalese sequences and between them
23 24	117	and the previously available complete Africa-2 clade genomes from Nigeria (GenBank
25 26 27	118	accession: KC196743) and Central African Republic (GenBank accession: KF977826).
28	119	In addition, amino acid substitutions were also assessed on the most divergent sequences from
29 30	120	the previously available complete RABV genomes from Senegal (KX148238-39) and compared
31 32	121	to specific mutations previously described for mongoose-related RABV (Africa-3 clade) and
33 34 35	122	ferret-badger-related RABV (SEA5 sub-clade and the SEA2b lineage) (12).
35 36	123	As it represents the major contributor to RABV pathogenicity (19), the glycoprotein (G)
37 38	124	sequences from the new characterized isolates were screened for conservation of amino acid
39 40	125	residues of virulence previously described (20-22). A motive was considered as non-conserved
41	126	when it presents more than two non-conservative mutations in more than two RABV isolates. In
42 43	127	addition, polymorphisms on antigenic sites of 10 vaccine strain G protein sequences were
44 45	128	assessed on the new characterized Senegalese rabies virus sequences.
46 47 48	129	Recombination and positive selection detection
49 50	130	The presence of recombination events was assessed in 37 RABV complete genome sequences
51 52	131	from Western and Central Africa using seven methods (RDP, GENECONV, MaxChi, BootScan,
53	132	Chimaera, SiScan, and 3Seq) implemented in the Recombination Detection Program (RDP4.97)
54 55 56 57 58	133	(http://web.cbio.uct.ac.za/~darren/rdp.html) (23) and the Genetic Algorithms for Recombination

Detection (GARD) method implemented in Datamonkey web server (*http://datamonkey.org*) *(24)*. The settings were kept at their default values. In addition, episodes of positive diversifying
selection were analyzed applying four different methods (SLAC, MEME, FUBAR, aBSREL)
implemented in the HyPhy package from Datamonkey web server *(24)*. An episode of positive
selection was considered if it was detected by at least two different methods.

13 139 Molecular evolution and phylodynamics

Additional RABV sequences were downloaded from GenBank; long stretches of ambiguous bases or sequences derived from experimental infections or constructs were removed. Our initial dataset included 19 sequences from Western and Central Africa (Appendix Table 2). Alignments were done in Generious, version 11.1.4, using MAFFT, version 7.388. For each RABV alignment, maximum-likelihood phylogenies were generated using PhyML version 3.3 with the GTR+ Γ model with 1000 bootstrap replicates. The maximum-likelihood phylogenies were used for estimates of root-to-tip distances, regression slopes, and correlations using TempEst with the best-fitting root option (25). Tip divergence data were exported and mapped with linear regression (95% prediction interval) in Rstudio, version 3.2.3, with the R Stats and ggplot2 packages (26).

Bayesian analysis using BEAST (versions 1.10.0) was used to generate maximum-clade credibility (MCC) trees. Phylogenetic relationships and evolutionary rates were modeled according to the Hasegawa-Kishino-Yano 85 (HKY85) model with gamma-distributed rate variation and invariant rate distribution among sites (HKY85 + Γ_4 + I) (27). Analyses shared a strict molecular clock, a nonparametric coalescent "SkyGrid" model (number of grid points + 1 = 50) as a prior density across trees, and an approximate continuous time Markov chain rate reference prior (28, 29). Tracer v.1.6 was used to ensure run convergence (effective sample size >200) (30). Each chain consisted of up to 1.0×10^8 Markov chain Monte Carlo steps (1.0×10^7 were discarded as burn-in). Parameters and trees were sampled every 100,000 generations. TreeAnnotator1.8.4 was used to calculate a MCC tree using a posterior probability limit of 0.7, which removes summary statistics from nodes with low support (31).

161 To infer the historical movement of RABV across Western Africa, we implemented an
162 asymmetric continuous-time Markov chain (CTMC) approach using country as a discrete trait.

1 2		
3	163	Bayesian stochastic search variable selection (BSSVS) and SpreadD3
4 5	164	(https://regg.kuleupwn.he/cev/ecv/software/SpreaD3_tutorial) were used to identify strongly
6	104	(<i>mips://regu.kuleuvwil.be/cev/cev/sojtware/spreuD5_tutorial</i>) were used to identify strongly
7 0	165	supported migrations (i.e., any with a Bayes factor ≥ 3) (Appendix Table 3).
8 9		
10		
11 12		
13		
14		
15 16		
17		
18		
20		
21		
22 23		
24		
25		
26 27		
28		
29 30		
31		
32		
33 34		
35		
36 37		
38		
39		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 58		
59		
60		Transboundary and Emerging Diseases - submitted manuscript

Results

167 Genomic characterization

From 2001 to 2015, 18 RABV complete genome sequences were generated from four humans,
13 canines, and one honey-badger (*Mellivora capensis*) samples (**Table 1**). As the previously
available complete sequences from Senegal (*12*), the new characterized RABV isolates showed a
genome length of 11,923 nt with similar size at protein and non-coding region levels.

172 Genetic distances

Pairwise nucleotide and amino acid distances of coding sequences were evaluated between isolates characterized in this study and in comparison, with previously available Senegalese RABV sequences and non-Senegalese sequences. Nucleotide percent (%) dissimilarity of RABV sequences from Senegal comparatively ranged from 0.2% to 1.7% while a nucleotide distance of 4% was found between the new characterized sequences from Senegal and previously described isolates from Nigeria (DRV-NG11, GenBank accession: KC196743) and Central African Republic (CAR 11 001h, GenBank accession: KF977826) belonging to the Africa-2 clade (32, 33). However, the assessment of amino acid distances at proteins level between the Senegalese RABV sequences showed a dissimilarity ranging between 0 and 2% for the N, P, M and L proteins while the G protein exhibited more variability with an amino acid distance ranging from 0% to 7%. The highest amino acid distances in the G protein were observed between the isolate SA267115 (Dakar, SN 2014) from dog and the isolates SA212203 (Dahra, SN 2011) from honey-badger (7%) and SA252888 (Dakar, SN 2013) isolated from dog (7%). These 3 isolates presented also the highest pairwise amino-acid distances from the other Senegalese sequences with ranges between 3-4%, 3-6%, and 5-6% for SA267115, SA212203 and SA252888, respectively. The amino-acid distances between the G protein sequences of the other Senegalese RABV isolates analyzed in this study ranged from 1% to 2%.

.9 10

190 Amino acid substitutions on proteins of the most divergent Senegalese RABV sequences

191 The most divergent Senegalese RABV sequences from two dog-related RABV isolates

- 192 (SA267115 and SA252888) and the honey-badger isolate (SA212203) were screened for
- 5 193 mutations at genes level in comparison to the other Senegalese RABV sequences. No mutation

was found in sequences of these three RABV isolates for the N, P and M proteins. However, a total of 3 and 9 substitutions were identified for the dog-related isolate SA267115, in the L protein and the G protein, respectively. The second dog-related RABV isolate SA252888 exhibited no mutation in the polymerase L while a total of 8 amino acid substitutions was found in its G protein sequence. The RABV sequence from honey-badger showed 8 and 7 amino acid mutations for the polymerase L and the G protein, respectively. Previously described specific mongoose-related and ferret-badger-related RABV substitutions (12) were assessed among the mutations identified in the Glycoprotein and the polymerase of these three Senegalese isolates. The dog-related RABV isolate SA252888 have showed a mutation (Pro-386G-Leu) quietly similar to the Pro-386G-Ser mutation previously described as specific to mongoose-related RABV (Africa-3 clade) (Table 2).

205 Amino acid polymorphisms in the G protein

The presence of 13 highly conserved amino acid residues of virulence was assessed across the G protein of the new Senegalese RABV sequences using multiple alignments. The identified conservative mutations were highlighted in black while the non-conservative mutations were colored in black and underlined (Table 3). A total of 10 amino acid residues of virulence among 13 was conserved in the G protein of Senegalese RABV isolates with sometimes non-conservatives amino acid changes. However, non-conservative mutations Arg333Ala and Asn194Tyr were identified in all Senegalese RABV sequences. Highly conserved in the Lyssavirus genus, the N-glycosylation site N319 was identified at amino acid position 338 in G protein of the Senegalese RABV isolates and the previously described motif of glycosylation NKT (26) showed polymorphisms in some of the new characterized Senegalese sequences. Indeed, the isolate SA194858 (Dakar, SN 2008) from dog exhibited a mutation Phe340Ala at the glycosylation site (NKA) while the isolate SA252888 from dog presented two non-conservative mutations (Lys339Glu and Phe340Ala) at the same site (NEA). In addition, the isolate SA212203 from honey-badger did not present this N-glycosylation site and exhibited an amino-acid mutation Asn338Asp (DKT) (Table 3). G protein antigenic sites (22) were relatively conserved with a few exceptions. Isolates SA194858, SA212203, and SA252888 presented with multiple changes in antigenic site III

- (residues 330–338). Comparison with 10 vaccine strain G protein sequences also presents with (residues 330–338). Comparison with 10 vaccine strain G protein sequences also presents with

Page 10 of 32

disagreements (Figure 1). G protein percent identity between SA252888 and vaccine strains
ranged from 84.5% to 87.6%. On average, percent identity of Senegalese G proteins was ~91.0%
when compared to the selected vaccine strains.

227 Recombination and episodic selection

There was no evidence for recombination detected in any RABV sequences used in this study. Several sites under strong negative selection were found with the SLAC (P value < 0.1) and FUBAR (posterior probability $[PP] \ge 0.9$) models and most of them were located in major proteins such as the L, N and G protein, respectively. However, significant episodic positive selection was obtained for all the proteins, except for the polymerase L (Table 4). All positively selected sites estimated by the FUBAR model ($PP \ge 0.9$) were also identified by the MEME method (P value < 0.1) and the majority of such sites were located in the G protein. The N, P and M protein of the West African RABV sequences exhibited each, 1 amino acid site (N270, P131 and M60 respectively) under positive selection while the G protein showed a total of 6 amino acid sites (G144, G236, G318, G321, G347, G458) (P value ≤ 0.1 and PP ≥ 0.9). Two among these sites harbored mutations from the honey-badger-related RABV isolate (Ser-321-Asp and His-347-Trp). Branch-site analysis showed also 1 branch evaluating under positive selection (P value < 0.05) in the Glycoprotein and this episodic selection event was identified in the sequence of the honey-badger-related isolate SA212203. The eight sites detected under positive selection in the polymerase protein involved a previously characterized strain from Guinea (18) and were identified only with the MEME method; then considered as non-evident (Table 4).

³⁹ 244 *Phylodynamics of RABV in Senegal and Western Africa*

42 245 A maximum-likelihood phylogenetic tree (**Figure 2**) and Bayesian-inferred MCC tree (**Figure 3**) 43 44 of Senegalese RABV sequences formed a strongly supported monophyletic clade. Additionally, 45 247 Senegalese RABV sequences share a most recent common ancestor with sequences isolated from 47 248 Cote d'Ivoire, Burkina Faso, and Mauritania. Due to the weak temporal signal in only 48 249 Senegalese RABV genomes ($r^2 = 0.20$), phylogeographic predictions included additional African 47 250 RABV isolates. Altogether, related African RABV sequences showed a stronger temporal signal 47 251 ($r^2 = 0.64$, **Figure 2A**).

Time to the most recent common ancestor (tMRCA) for our RABV dataset was estimated to be in the early 19th century (95% HPD: 1803-1848, Figure 3). Based on currently available sequences, the tMRCA for the emergence of RABV in Senegal was in the 1980s (95% HPD: 1981-1986). Patterns of virus evolution were used to infer a molecular epidemiology that supports two RABV introductions in Senegal from West-African neighbour countries. Moderate evidence points to two migration events: one from Cote d'Ivoire (Bayes factor: 4.6, Appendix Table 3) and the other from Burkina Faso (Bayes factor: 3.1, Appendix Table 3). Evolutionary rates of included RABV sequences had mean substitution rate of 2.8 x 10⁻⁴ (95% HPD: 2.5–3.2 x 10-4).

Discussion

The burden of RABV in Africa continues to hold steady around 20,000 deaths a year (3), with limited information on zoonotic circulation in West African countries (34). Despite the establishment of a national surveillance program of Rabies infection in humans and animals since 2008, by the Institut Pasteur de Dakar and the Senegalese Ministry of Health and Social Actions, only few complete genomic data were available from Senegal prior to this study (12). Here, we sequenced 18 RABV complete genome sequences isolated from humans, dogs and a honey-badger over a 14 year-period. Notably, this is the first documented whole genome sequence of honey-badger-related RABV in West Africa, which could have implications for future spillover events in Senegal. We assessed the genetic diversity of RABV from Senegal by evaluating amino-acid distances at protein level and identifying mismatches in motives of virulence and antigenic sites located in the glycoprotein. In addition, we estimated the episodic selection pressures at proteins level and the phylodynamic analysis of RABV circulation in West Africa.

Overall, the new Senegalese RABV sequences are closer to previously available genomes from Senegal (12). The low pairwise nucleotide distances (< 2%) observed between the Senegalese RABV sequences has resulted in a more apparent diversity at amino acid level (< 3%). The low amino acid sequence diversity observed in major proteins of the Senegalese RABV isolates such as the Nucleoprotein and the polymerase L, confirmed the description of these two regions as the most conserved among Lyssaviruses (4). However, three isolates showed the highest amino-acid distances between them and from the other Senegalese sequences of the G protein. The G

protein-specific diversity exhibited in the Senegalese sequences could have serve as a factor for virus spillover in a new host such as honey-badger (13). In addition, the higher numbers of amino acid mutations from the three most divergent isolates, were found in the Glycoprotein. Interestingly, the identification of a mutation closed to a mongoose-specific RABV's substitution from a dog-related RABV sequence in this study (Pro-386G-Leu), shows that the Pro-386G-Ser could be not only present in mongoose-related Africa-3 RABV (35), but also shared between mongoose and dog-related isolates. Future studies could be conducted to investigate the possibility of RABV circulation in a wide variety of natural and incidental animal host species in Senegal. Additionally, how species or isolate specific changes play a role in PEP efficiency should also be considered. Furthermore, the substitutions observed in the polymerase protein could have participated to the RABV shift to new host species in Senegal such as honey-badger. Despite several isolations of RABV from honey-badger in Southern Africa (36), no associated sequence was available. Our study is then noteworthy not only for generating the first whole genome sequence of a honey-badger-related RABV, but also for identifying the specific amino acid substitutions characterizing RABV isolated from the African honey-badger. The G protein plays a crucial role in the biology and pathogenesis of neurotropic RABV infection (6, 7). The amino acid mutation Arg-333-Ala have been shown to abolish virulence while the substitution Asn-194-Tyr is implicated in the ability of RABV to infect neurons (19, 37). These two substitutions in the Glycoprotein were highly associated to RABV neuropathogenesis in furious and paralytic forms of Rabies (38). Previously described as one of the two most conserved N-glycosylation sites among sequences of the street RABV strains and the most stable site in the expression of the glycoprotein (21), the glycosylation site at position 319 (Asn319) was located at amino acid position 338 in the Senegalese sequences. Although the amino acid substitution at position 338 of the G protein plays no major role in viral pathogenicity, the identification of a glycosylation site at this position could be a new insight in the G-protein specific evolution of RABV in Senegal (39, 40). More noteworthy, our findings highlighted also the absence of this N-glycosylation motive (NKT) in sequence of the RABV isolate from honey-badger. Thus, further studies using the recombinant technology, could be needed to investigate the effect of this motive in the pathogenicity of the Senegalese isolates (42).

Page 13 of 32

Although low levels of recombination have not been reported for RABV (41), natural selection is believed to be one of the drivers of their evolution (12). RABV is subject to strong purifying selection and the lowest nucleotide substitution rates were described in the following order: N, L, G, M and P (12). As expected, our analysis also showed that the L and N proteins often described as more conserved for RABV, exhibited the strongest purifying selection. These two proteins are functionally important in RABV pathogenicity (4). In addition, the absence of positive selection in the polymerase L suggests frequent purging of deleterious polymorphisms in this region during RABV transmission, since neither of the motives identified in the polymerase was found to be subject to positive selection using the methods employed in our study. Beside to the other proteins, there is substantial evidence that episodic selection events in the G protein sequences are a result of the evolution of RABV in West Africa. The amino acid substitution 318G (Phe) has been previously associated to furious and paralytic Rabies and involved in p75 neurotrophin receptor binding, viral maturation and transport into the cell (36). Although the other sites subjected to positive selection in the G protein were not documented in RABV pathogenicity, almost all functional sites directly related to host tropism and infectivity are located from positions 181 to 431 in the of the G protein derived from the carnivore RABV (42). The presence of specific mutations under positive diversifying selection in the sequence from the honey-badger-related RABV exhibited also the nature of selection pressures associated with host switching which could be considered as a pattern driving RABV evolution in West Africa. particularly in Senegal (43).

Phylogenetic analysis shows that the Senegalese RABV sequences are grouped into a monophyletic cluster (Africa-2 clade) and are not region (intra-Senegal) specific. The ML tree topology in this paper is in agreement with previously published data including sequences from Senegal (13). However, the spillover of RABV into a novel ecological niche (host shift to the honey-badger) could lead to the rapid spreading and future diversification of the virus in Senegal. Spillover infections are important public health events that establish new reservoirs for human exposures and can affect conservation of threatened or endangered wildlife species when they occur into those species (44). Although Combinations of positively selected changes have been shown to be associated to genetic polymorphism during each RABV host shift (45). Therefore, it is becoming increasingly clear that the adaptive changes necessary for RABV host shift is determined in part by viral factors that differ between strains, by the interaction between

the viral factors and the identity of the donor and recipient host species involved (46). Data from
the Senegalese RABV have been previously included in genome-wide phylogenetic analyses
(12). Nevertheless, our results represented the most comprehensive molecular analysis of RABV
from Senegal, as it includes more whole genome sequences than previously documented. The
generated complete sequences could be useful not only for large-scale analysis of RABV
dynamics in Africa, but also in update of the existing pan-Lyssavirus or RABV-specific
diagnostics.

Despite the host switching experienced since 2011 by the Africa-2 clade circulating in West Africa through spillover to honey-badger in Senegal, it showed a mean nucleotide substitution rate $(2.8 \times 10^{-4} (95\% \text{ HPD}: 2.5-3.2 \times 10^{-4}))$ which is in agreement with findings reported in previous studies of RABV evolution (12, 47). All the RABV sequences generated in this study formed a homogenous cluster in the MCC tree (nucleotide dissimilarity ranging from 0.2% to 1.7%), suggesting a close-related population of RABV in Senegal as previously described in a detailed analysis of the phylogeographical structure of the Africa-2 clade between Central to Western African regions (13). Our data suggest two recent RABV introductions into Senegal during the 1980s (95% HPD: 1981-1986) from Cote d'Ivoire and Burkina Faso. Instead of a transboundary animal transmission of Rabies from these countries (13, 48), the phylogenetic evidence gathered in this study points more in the direction of long-distance transmission of Rabies facilitated by human-mediated animal movements (48, 49). However, further phylogenetic studies including more complete data sequences from these two latest countries could be necessary to provide more consistency to these results as there is only 3 and 2 complete genome RABV sequences available from Cote d'Ivoire and Burkina Faso, respectively (12).

In conclusion, regarding the key genetic elements from honey-badger-related RABV, the host shift has resulted in a slightly increased genetic diversity and slow evolution of the Africa-2 clade RABV circulating in Senegal. Through selection mechanisms, a dog-related RABV isolate may have acquired the key genetic information to induce host switching, adaptation and viral spillover into honey-badgers as the honey-badger-related RABV clustered with a dog-related isolate collected from the same place during the same year. In addition, through the identification of a quietly similar mongoose-related mutation in a dog-related RABV sequence (Pro-386G-Leu), our data could worth consider that the Pro-386G-Ser mutation previously identified as

1 2		
3	373	specific to mongoose-related RABV (Africa-3 clade) could be also present in dog-related RABV
4 5	374	isolates. Nevertheless, our phylogenetic data has exhibited the impact of purifying selection in
6 7	375	the molecular evolutionary dynamic of the Africa-2 clade RABV circulating in Senegal. As rabid
8	376	dogs constitute the main source of transmission to humans, Rabies control in dog populations
9 10	377	through a strong one health cooperation is essential for successful elimination in Senegal by
11 12	378	2030 However the Rabies spillover in honey-badger exhibits the importance of establishing a
13	379	surveillance program in wildlife to improve control measures and avoid possible future re-
14 15	200	introductions into domestic hosts
16 17	560	introductions into domestic nosts.
17 18 19	381	Acknowledgments
20		
21 22	382	This research received no specific grant from any funding agency in the public, commercial, or
23 24	383	not-for-profit sectors and was only supported by the Institut Pasteur de Dakar. We acknowledge
24	384	colleagues of virology department at Institut Pasteur de Dakar, Senegal for sharing supportive
26 27	385	information necessary for establishment and accomplishment of this study.
28 29 30	386	Conflict of interest statement
31 32	387	The authors declared no competing interest.
33 34	388	References
35 36		
37	389	1. World Health Organization (2013). World Health Organization expert consultation on
38 39	390	rabies. World Health Organization Technical report series, 931, 1–88.
40	391	2. Hampson, K., Coudeville, L., Lembo, T., Sambo, M., Kieffer, A., Attlan, M., Barrat, J.,
41	392	Blanton, J. D., Briggs, D. J., Cleaveland, S., Costa, P., Freuling, C. M., Hiby, E., Knopf,
42 42	393	L., Leanes, F., Meslin, F. X., Metlin, A., Miranda, M. E., Müller, T., Nel, L. H.,
45 44	394	Global Alliance for Rabies Control Partners for Rabies Prevention (2015). Estimating the
45	395	global burden of endemic canine rables. PLos neglected tropical diseases, 9(4), 20002700, https://doi.org/10.1271/journal.pntd.0002700
46	390	2 World Health Organization (2012) Expert Consultation on Pables - Second report
47	200	5. World Health Organization (2015). Expert Consultation on Rables—Second report.
48	200	A Riedel C Hennrich A A & Conzelmann K K (2020) Components and Architecture
49 50	400	of the Rhabdovirus Ribonucleoprotein Complex Viruses 12(9) 959
51	400	https://doi.org/10.3390/y12090959
52	401	5 Luo I Zhang V Zhang O Wu V Zhang B Mo M Tian O Zhao I Mei M &
53	402	Guo X (2010) The Deontimization of Rabies Virus Matrix Protein Impacts Viral
54	403	Transcription and Replication Viruses 12(1) 4 https://doi.org/10.3390/v12010004
55	404	Transcription and Replication. Trases, 12(1), 4. https://doi.org/10.5590/712010004.
57		
58		
59		
60		I ransboundary and Emerging Diseases - submitted manuscript

1			
2			
3	405	6.	Zhang, G., Wang, H., Mahmood, F., & Fu, Z. F. (2013). Rabies virus glycoprotein is an
4	406		important determinant for the induction of innate immune responses and the pathogenic
5	407		mechanisms. Veterinary microbiology, 162(2-4), 601–613.
7	408		https://doi.org/10.1016/j.vetmic.2012.11.031.
, 8	409	7.	Li, J., Ertel, A., Portocarrero, C., Barkhouse, D. A., Dietzschold, B., Hooper, D. C., &
9	410		Faber M (2012) Postexposure treatment with the live-attenuated rabies virus (RV)
10	411		vaccine TriGAS triggers the clearance of wild-type RV from the Central Nervous System
11	412		(CNS) through the rapid induction of genes relevant to adaptive immunity in CNS
12	412 //13		tissues Journal of virology 86(6) 3200–3210 https://doi.org/10.1128/IVI.06699-11
13	415	8	Runnrecht C E Hanlon C A & Hemachudha T (2002) Rahies re-examined The
14	414	0.	Langet Infogrious diseases 2(6) 227-242 https://doi.org/10.1016/s1472
15	415		2000(02)00287.6
10 17	410	0	Durmerscht C. E. Derrett I. Drigge D. Cliquet E. Easter A. D. Lumlertdache D.
18	417	9.	Kupprecht, C. E., Barrett, J., Briggs, D., Cliquet, F., Fooks, A. K., Lumiertdacha, B.,
19	418		Meslin, F. A., Muler, T., Nei, L. H., Schneider, C., Tordo, N., & Wandeler, A. I. (2008).
20	419	10	Can rabies be eradicated? Developments in biologicals, 131, 95–121.
21	420	10.	Freire de Carvalho, M., Vigilato, M., Pompei, J. A., Rocha, F., Vokaty, A., Molina-
22	421		Flores, B., Cosivi, O., & Del Rio Vilas, V. J. (2018). Rabies in the Americas: 1998-2014.
23	422		PLoS neglected tropical diseases, 12(3), e0006271.
24	423		https://doi.org/10.1371/journal.pntd.0006271.
25	424	11.	Barnard B. J. (1979). The role played by wildlife in the epizootiology of rabies in South
20 27	425		Africa and South-West Africa. The Onderstepoort journal of veterinary research, 46(3),
27	426		155–163.
29	427	12.	Troupin, C., Dacheux, L., Tanguy, M., Sabeta, C., Blanc, H., Bouchier, C., Vignuzzi, M.,
30	428		Duchene, S., Holmes, E. C., & Bourhy, H. (2016). Large-Scale Phylogenomic Analysis
31	429		Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.
32	430		PLoS pathogens, 12(12), e1006041. https://doi.org/10.1371/journal.ppat.1006041.
33	431	13.	Talbi, C., Holmes, E. C., de Benedictis, P., Faye, O., Nakouné, E., Gamatié, D., Diarra,
34	432		A., Elmamy, B. O., Sow, A., Adjogoua, E. V., Sangare, O., Dundon, W. G., Capua, I.,
35	433		Sall, A. A., & Bourhy, H. (2009). Evolutionary history and dynamics of dog rabies virus
30 37	434		in western and central Africa. The Journal of general virology, 90(Pt 4), 783–791.
38	435		https://doi.org/10.1099/vir.0.007765-0.
39	436	14.	Davis, P. L., Rambaut, A., Bourhy, H., & Holmes, E. C. (2007). The evolutionary
40	437		dynamics of canid and mongoose rabies virus in Southern Africa. Archives of virology.
41	438		152(7) 1251–1258 https://doi.org/10.1007/s00705-007-0962-9
42	439	15	OIE Rabies 2013 In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals
43	440		2016 Paris: World Organisation for Animal Health Available from:
44	441		http://www.oie.int/en/international-standardsetting/terrestrial-manual/access-online/
45 46	ΔΔ 2	16	Fave M Fave O Diagne M M Fall G Weidmann M Sembene M Sall A A &
40 47	112	10.	Fave Ω (2018) Full-Genome Characterization and Genetic Evolution of West African
48	445		Isolates of Bagaza Virus Viruses $10(4)$ 103 https://doi.org/10.3300/y10040103
49	444 115	17	Okonochnikov K. Golosova O. Eursov M. & UGENE toom (2012) Unipro UGENE:
50	445	1/.	oxonechnikov, K., Oolosova, O., Fulsov, M., & OOENE team (2012). Ompto OOENE.
51	440		a unified diomionitatics toolkit. Diomionitatics (Oxford, Eligiand), 20(0), 1100–1107.
52	447	10	$\frac{1}{1} \frac{1}{1} \frac{1}$
53	448	18.	Edgar R. C. (2004). MUSCLE: multiple sequence angiment with high accuracy and high
54 57	449		infougnput. Nucleic actos research, $52(5)$, $1/92-1/9/$.
22 56	450		nups://doi.org/10.1093/nar/gkn340
57			
58			
59			
60			Transboundary and Emerging Diseases - submitted manuscript

1		
2		
5 4	451	19. Faber, M., Faber, M. L., Papaneri, A., Bette, M., Weihe, E., Dietzschold, B., & Schnell,
5	452	M. J. (2005). A single amino acid change in rabies virus glycoprotein increases virus
6	453	spread and enhances virus pathogenicity. Journal of virology, 79(22), 14141–14148.
7	454	https://doi.org/10.1128/JVI.79.22.14141-14148.2005.
8	455	20. Dietzschold, B., Wunner, W. H., Wiktor, T. J., Lopes, A. D., Lafon, M., Smith, C. L., &
9	456	Koprowski, H. (1983). Characterization of an antigenic determinant of the glycoprotein
10	457	that correlates with pathogenicity of rabies virus. Proceedings of the National Academy
11	458	of Sciences of the United States of America, 80(1), 70–74.
12	459	https://doi.org/10.1073/pnas.80.1.70.
14	460	21. Marston, D. A., McElhinney, L. M., Johnson, N., Müller, T., Conzelmann, K. K., Tordo,
15	461	N., & Fooks, A. R. (2007). Comparative analysis of the full genome sequence of
16	462	European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a
17	463	conserved transcription termination and polyadenylation motif in the G-L 3' non-
18	464	translated region. The Journal of general virology, 88(Pt 4), 1302–1314.
19	465	https://doi.org/10.1099/vir.0.82692-0.
20 21	466	22. Tomar N.R., Kumar R., & Kumar A. (2017). Glycoprotein Based Phylogenetic Analysis
22	467	of Rabies Virus Isolates. International Journal of Current Microbiology and Applied
23	468	Sciences, 6(7), 1727-1734. doi: https://doi.org/10.20546/ijcmas.2017.607.208.
24	469	23. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4:
25	470	Detection and analysis of recombination patterns in virus genomes. Virus evolution, 1(1),
26	471	vev003. https://doi.org/10.1093/ve/vev003.
27	472	24. Pond, S. L., Frost, S. D., & Muse, S. V. (2005). HyPhy: hypothesis testing using
28 20	473	phylogenies. Bioinformatics (Oxford, England), 21(5), 676–679.
30	474	https://doi.org/10.1093/bioinformatics/bti079.
31	475	25. Rambaut, A., Lam, T. T., Max Carvalho, L., & Pybus, O. G. (2016). Exploring the
32	476	temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen).
33	477	Virus evolution, 2(1), vew007. https://doi.org/10.1093/ve/vew007.
34	478	26. Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.
35	479	27. Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a
30 37	480	molecular clock of mitochondrial DNA. Journal of molecular evolution, 22(2), 160–174.
38	481	https://doi.org/10.1007/BF02101694.
39	482	28. Gill, M. S., Lemey, P., Faria, N. R., Rambaut, A., Shapiro, B., & Suchard, M. A. (2013).
40	483	Improving Bayesian population dynamics inference: a coalescent-based model for
41	484	multiple loci. Molecular biology and evolution, 30(3), 713–724.
42	485	https://doi.org/10.1093/molbev/mss265.
43	486	29. Ferreira, M. A. R., Suchard, M. A (2008). Bayesian analysis of elapsed times in
44 45	487	continuous-time Markov chains. The Canadian Journal of Statistics, 36, 355-368.
46	488	https://doi.org/10.1002/cjs.5550360302.
47	489	30. Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior
48	490	Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic biology, 67(5),
49	491	901–904. https://doi.org/10.1093/svsbio/svv032.
50	492	31. Rambaut A, Drummond AJ. 2010. TreeAnnotator version 1.6.1 [computer program]
51	493	Retrieved from: <i>http://beast.bio.ed.ac.uk.</i>
52 53	494	32. Zhou, M., Zhou, Z., Kia, G. S., Gnanadurai, C. W., Levson, C. M., Umoh, J. U., Kwaga,
54	495	J. P., Kazeem, H. M., & Fu, Z. F. (2013). Complete genome sequence of a street rabies
55		, , , , ,
56		
57		
58		
59 60		Transboundary and Emerging Diseases - submitted manuscript
00		

1		
2		
5 ⊿	496	virus isolated from a dog in Nigeria. Genome announcements, $1(1)$, e00214-12.
5	497	https://doi.org/10.1128/genomeA.00214-12.
6	498	33. Tricou, V., Berthet, N., Nakouné, E., & Kazanji, M. (2014). Complete genome sequence
7	499	of a rabies virus isolated from a human in central african republic. Genome
8	500	announcements, 2(3), e00598-14. https://doi.org/10.1128/genomeA.00598-14.
9	501	34. Mauti S, Léchenne M, Mbilo C, Nel L, Zinsstag J. Rabies. In: Kardjadj M., Diallo A.,
10	502	Lancelot R. (eds) (2019). Transboundary Animal Diseases in Sahelian Africa and
11	503	Connected Regions. Springer, Cham. 107-119. https://doi.org/10.1007/978-3-030-25385-
12	504	1.
13	505	35. Bingham, J., Hill, F. W., & Matema, R. (1994). Rabies incubation in an African civet
14	506	(Civettictis civetta) The Veterinary record 134(20) 528
16	507	https://doi.org/10.1136/vr.134.20.528
17	508	36 Ringham I Javangwe S Sabeta C T Wandeler A I & Nel I H (2001) Report of
18	500	isolations of unusual lyssaviruses (rabies and Mokola virus) identified retrospectively
19	505	from Zimbabwa, Journal of the South A frigan Vatorinary Association, 72(2), 92, 94
20	510	https://doi.org/10.4102/ioova.v72i2.624
21	511	1000000000000000000000000000000000000
22	512	37. Schneil, M. J., McGettigan, J. P., Wirblich, C., & Papaneri, A. (2010). The cell biology
23	513	of rables virus: using stealth to reach the brain. Nature reviews. Microbiology, $\delta(1)$, $51-$
24	514	61. https://doi.org/10.1038/nrmicro2260.
25 26	515	38. Hemachudha, T., Ugolini, G., Wacharapluesadee, S., Sungkarat, W., Shuangshoti, S., &
20 27	516	Laothamatas, J. (2013). Human rabies: neuropathogenesis, diagnosis, and management.
28	517	The Lancet. Neurology, 12(5), 498–513. https://doi.org/10.1016/S1474-4422(13)70038-
29	518	3.
30	519	39. Seif, I., Coulon, P., Rollin, P. E., & Flamand, A. (1985). Rabies virulence: effect on
31	520	pathogenicity and sequence characterization of rabies virus mutations affecting antigenic
32	521	site III of the glycoprotein. Journal of virology, 53(3), 926–934.
33	522	https://doi.org/10.1128/JVI.53.3.926-934.1985.
34	523	40. Yamada, K., Noguchi, K., Nonaka, D., Morita, M., Yasuda, A., Kawazato, H., &
35	524	Nishizono, A. (2013). Addition of a single N-glycan to street rabies virus glycoprotein
36	525	enhances virus production. The Journal of general virology 94(Pt 2) 270–275
3/ 20	526	https://doi.org/10.1099/vir.0.047852-0
20 20	520	A1 Deviation A A B Lukashev A N (2018) Recombination in the rabies virus and other
40	527	41. Deviation, A. A., & Eukasiev, A. N. (2018). Recombination in the fables virus and other lyssavirus as Infaction, genetics and evolution; journal of malagular anidomiology and
41	520	avalutionary genetics in infactious discasses 60,07,102
42	529	Evolutionary genetics in infectious diseases, $00, 97-102$.
43	530	1000000000000000000000000000000000000
44	531	42. Ding, N. Z., Xu, D. S., Sun, Y. Y., He, H. B., & He, C. Q. (2017). A permanent nost snift
45	532	of rabies virus from Chiroptera to Carnivora associated with recombination. Scientific
46	533	reports, 7(1), 289. https://doi.org/10.1038/s41598-017-00395-2.
47	534	43. Mollentze, N., Biek, R., & Streicker, D. G. (2014). The role of viral evolution in rabies
48	535	host shifts and emergence. Current opinion in virology, 8, 68–72.
49 50	536	https://doi.org/10.1016/j.coviro.2014.07.004.
50 51	537	44. Randall, D. A., Williams, S. D., Kuzmin, I. V., Rupprecht, C. E., Tallents, L. A., Tefera,
52	538	Z., Argaw, K., Shiferaw, F., Knobel, D. L., Sillero-Zubiri, C., & Laurenson, M. K.
53	539	(2004). Rabies in endangered Ethiopian wolves. Emerging infectious diseases, 10(12),
54	540	2214–2217. https://doi.org/10.3201/eid1012.040080.
55		
56		
57		
58		
59		

2								
3	541	45. Streicker, D. G., A	Altizer, S. M., Ve	lasco-Villa, A., & Rupp	recht, C. E. (2012). Variable			
4	542	evolutionary route	s to host establis	hment across repeated r	abies virus host shifts among			
5	543	bats. Proceedings	of the National A	cademy of Sciences of	the United States of America,			
7	544	109(48), 19715–1	109(48) 19715–19720 https://doi.org/10.1073/pnas.1203456109					
, 8	545	46. Katz. I. S., Fuoco.	N. L., Chaves, L	. B., Rodrigues, A. C., I	Ribeiro, O. G., Scheffer, K. C.,			
9	546	& Asano K M (2	2016) Delayed \mathbf{p}	rogression of rabies trar	smitted by a vampire bat			
10	547	Archives of virolo	161(9) 2561	-2566 https://doi.org/1	0 1007/s00705-016-2927-3			
11	548	47 Chiou H Y Hsie	h C H Jeng C	' R Chan F T Wang	H Y & Pang V F (2014)			
12	5/19	Molecular charact	erization of crypt	tically circulating rabies	virus from ferret hadgers			
13	550	Taiwan Emerging	infectious disea	ses $20(5)$ 790–798	virus nom terret budgets,			
14	550	https://doi.org/10	3201/eid2005 13	1380				
15	551	18 Pourby H. Pour	5201/Clu2005.15	n E I Dochoux I I c	rrous E Huong V Vu G			
10	552	40. Dourity, 11., Reynd	M & Holmos E	(1, L, J, Daulieux, L, L)	and phylogoography of dog			
18	555	rabias virus. The I	$M_{.}, \alpha$ nonnes, E	1 viral_{2006} (2006). The origin $\frac{1}{2}$				
19	554	latter ex // dei e e e /10	1000/sin 0 2008/	1 VII 010gy, 89(Pt 11), 20	0/3-2081.			
20	555	1000000000000000000000000000000000000	1099/Vir.0.2008/0	003913-0.				
21	556	49. Fevre, E. M., Kab	oyo, R. W., Perss	son, V., Edelsten, M., C	oleman, P. G., & Cleaveland,			
22	557	S. (2005). The epi	demiology of ani	imal bite injuries in Uga	inda and projections of the			
23	558	burden of rabies.	l'ropical medicine	e & international health	: TM & IH, 10(8), 790–798.			
24	559	https://doi.org/10.	1111/j.1365-3150	6.2005.01447.x.				
25	560							
20 27	561							
28	562	Table 1. List of rabies vir	na full conomo a	aquanaas from Sanagal	asa's isolatos from 2001 to			
29	502	Table I. List of fables vir	us full genome s	equences from Senegar	ese s isolates nom 2001 to			
30	563	2015.						
31								
32 33		Isolate ID Collection y	ear Origin	Host	GenBank Accession Number			
34								
35		SH155966 2001	Dakar	Homo sapiens	MH514968			
36		SH177846 2005	Dakar	Homo sapiens	MH514969			
37 38		SA217604 2011	Linguàra	Canis lunus familiaris	MH514070			
39		SA21/094 2011	Linguere	Canis iupus jumiliaris	MI1314370			
40		SA206776 2010	Dakar	Canis lupus familiaris	MH514971			
41 42		SA194858 2008	Dakar	Canis lupus familiaris	MH514972			
43			5.1					
44		SA212203 2011	Dahra	Mellivora capensis	MH514973			
45		SA217750 2011	Dahra	Canis lupus familiaris	MH514974			
46								
47		SA252913 2013	Diamniadio	Canis lupus familiaris	MH514975			
48 49		SA204014 2010	Dakar	Canis lupus familiaris	MH514976			
50			DI					
51		SA262037 2013	Dakar	Canis lupus familiaris	MH5149//			
52		SA262503 2014	Dakar	Canis lupus familiaris	MH514978			
55 54		SAD67510 2014	Dalrar	Cania la	MU514070			
55		SA202318 2014	Dakar	Canis iupus jamiliaris	WIПЭ14У/У			

SA252888	2013	Dakar	Canis lupus familiaris	MH514980
SA267115	2014	Dakar	Canis lupus familiaris	MH514981
SH189343	2007	Dakar	Homo sapiens	MH514982
SA217695	2011	Dahra	Canis lupus familiaris	MH514983
SH218152	2011	Dakar	Homo sapiens	MH514984
SA272282	2015	Dakar	Canis lupus familiaris	MH514985

 Table 2: Amino acid substitutions in genome of the three most divergent Senegalese rabies

virus sequences.

Protein and	Honey-bagder-	Dog-related RABV	Dog-related RABV
codon position	related RABV	SA252888_Dakar_SN	SA267115_Dakar_S
position	SA212203_Dahra_SN	_2013	2014
	_2011		
Glycoprotein			
25			Thr => Lys
118			Asn => Asp
146			Thr => Ile
150		Ser => Cys	
197			Thr => Cys
233			Gly => Ser
248		Gly => Ala	
317			Phe => Ser
321	Ser => Asp		

2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 7 18 19 20 1 22 3 22 5 26 7 28 9 30 1 32 33 4 5 6 7 8 9 10 1 12 13 14 15 16 7 18 19 20 1 22 3 24 5 26 7 28 9 30 1 32 33 4 35 36 7 38 9 40 1 42 3 44 5 46 7 48 9 50 1 52 53 54 55 56 7 56 7 56 7 56 7 56 7 56 7 56	567 568 569 570
56 57 58 59	

1

1380	Gly => Trp				
1391	Leu => Ser				
1423	Arg => Pro				
1427	Ser => Leu				
1444	Asp => His				
1600		Ser => Arg			
1633	Ser => Leu				
Mutations were assessed with reference to the previously available complete genome sequences from Senegal (KX148238-39). [¶] Substitution of the amino acid mutation Pro-386G-Ser previously identified as specific to mongoose-related RABV (Africa-3 clade) by Troupin C, et al. 2016 (12)					

Table 3: Conservation of amino acid residues of virulence across the glycoprotein of Senegalese
rabies virus isolates.

Amino acid residues	Position	Motif's conservation	Replaced by this consensus sequence on these RABV isolates
Arginine (R)	333	NO	Alanine ($\underline{\mathbf{A}}$) on all the Senegalese isolates
Asparagine (N)	194	NO	Tyrosine (Y) on all the Senegalese isolates
			located at position 338 NK <u>A</u> on the isolate SA194858_Dakar_SN_2008;
Glycosylation site NKF	319	ΝΟ	N <u>EA</u> on the isolate SA252888_Dakar_SN_2013; <u>D</u> KT on the isolate
EMQSSLLQQH	394-403	YES	E <u>T</u> QSSLLQQ <u>L</u> on the isolate SA267115_Dakar_SN_2014;

			EMQSSLLQQ L on the isol SA252888_Dakar_SN_201
NHDYTIWMPE	191-200	YES	NHDYTI <u>C</u> MPE on the isol SA267115SEN_Dakar_SN_ 14
HNPYPDYHWL	132-141	YES	HN <u>S</u> YPDYHWL on the iso SA252913_Diamniadio_SN 13
AETYTNFVGY	87-96	YES	Similar on all the Senegales isolates
TTFKRKHFRP	99-108	YES	TTF R RKHFRP on all the Senegalese isolates
DIHHLSCPNN	37-46	YES	Similar on all the Senegales isolates
KWCSPDQLVN	269-278	YES	RWC <u>P</u> PDQLVN on the isolates SH155996_Dakar_SN_200 and SH177846_Dakar_SN_200 RWC <u>P</u> PDQLVN on the iso SA252888_Dakar_SN_201
			KWC <u>PS</u> DQLVN on all the other Senegalese isolates WKMAG <u>G</u> PRYE on the
WKMAGDPRYE	119-128	YES	isolate SA212203_Dahra_SN_201
CGFVDERGLY	226-235	YES	CGFVDER <u>S</u> LY on the isol SA267115 Dakar SN 201
TLMEADAHYK	341-350	YES	<u>ALMEAHAHYK</u> on the isolates SA252888_Dakar_SN_2013 and SA194858_Dakar_SN_200 TLMEADA <u>W</u> YK on the isolate

The residues **Arg333** and **Asn194** were previously described by **Dietzschold B et al**, **1983** (20). The N-glycosylation motif NKT was previously described by Marston DA et al, **2007** (21). The ten remaining RABV amino acid motifs were analyzed as described by and **Tomar NR et al**, **2017** (22).

Positions with amino acid different on the glycoprotein of Senegalese RABV are highlighted in bold and black for conservative mutations and in bold and red for non-conservative mutations.

A motif was considered as non-conserved when it presents more than three non-conservative mutations in more than three RABV isolates.

572 Table 4: Episodes of positive diversifying selection among the proteins of Senegalese rabies573 virus isolates.

Protein	Number of sites detected by method					
	SLAC	FUBAR	MEME	aBSREL		
	(P value ≤ 0.1)	$(PP \ge 0.9)$	(P value ≤ 0.1)	(P value < 0.05)		
	58/540	269/540	0/540	0/102	YES	
Ν	0/540	1/540	1/540	0/102	_ 125	
	23/297	43/297	0/297	0/55	YES	
Р	0/297	1/297	1/297	0/55	_	
	12/202	39/202	0/202	0/55	YES	
Μ	0/202	1/202	1/202	0/55		
	55/524	269/524	0/524	0/75	YES	
G	0/524	0 /524	6/524	1/75	_ 120	
	110/2127	813/2127	0/2127	0/67	NO	
L	0/2127	0/2127	8/2127	0/67	_ 110	

For each protein, the top row represents sites under negative selection (dN/dS < 1), and the bottom row represents site that are under positive selection (dN/dS > 1). Pervasive diversifying selection at posterior probability (PP) ≥ 0.9 with FUBAR model

Episodic diversifying selection at 0.1 significance level with SLAC and MEME models (P value $p \le 0.1$)

Episodic diversifying selection at P value $p \le 0.05$ with aBSREL model.

Figure legends

Figure 1: Multiple sequence alignment of Senegalese RABV G protein sequences at antigenic sites I (residue 231), II (residues 34–42, 198–200), III (residues 330–338) and IV (residue 342). 10 vaccine strain G protein sequences were also included for medical countermeasure comparisons.

Figure 2: (A) A root-to-tip regression analysis (top-left) using a maximum-likelihood estimated tree (right) with 37 RABV complete genome sequences. Red circles denote non-Senegalese isolates while yellow triangles represent Senegalese isolates. (B) A maximum-likelihood tree estimating phylogenetic relations in West African sequences. Tree branches are scaled by substitutions per site. Tree nodes show bootstrap support values when > 700. Yellow triangles denote Senegalese isolates. Tree tip labels include isolate/strain, country and/or city of isolation, and collection year. Hosts where RABV was isolated from are also shown for Senegalese sequences.

Figure 3: A Bayesian-inferred maximum-clade credibility tree estimated using complete RABV genomes, date of isolation, and geographical location. Phylogeographic estimation of migration events into Senegal are shown in the top-left corner. Estimated time to the most recent common ancestor (tMRCA) and the 95% highest posterior densities (HPD) are shown at key tree nodes. Posterior probabilities > 0.7 are shown. Tree branches are colored by country and scaled by substitutions per site per year. Tree tips labels include the strain/isolate, country and year of isolation. Tree tip nodes with Senegalese taxon are colored in light purple.

Appendix Figure 1: The Senegalese map showing the localities of Dahra and Linguère. The red stars in the map indicate the geopgraphical position of the localities of Dahra and Lingère in the Louga region, Senegal.

1	
ו כ	
2	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
22	
23	
24	
25	
26	
27	
28 20	
30	
31	
32	
33	
34	
35	
30	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51	
52 52	
55 54	
55	
56	
57	

60

Isolate		Antig	enic	Sites	5	
	34-42	198-200	231	264	330-338	342
SH155996 Dakar SN 2001	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SH177846 Dakar SN 2005	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SA217694 Dakar SN 2011	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	M
SA206776 Linguere SN 2010	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SA194858 Dakar SN 2008	SPIDIHHLS	MPE	E	Т	FGKAY <mark>I</mark> I <mark>S</mark> N	Μ
SA212203 Dahra SN 2011	SPIDIHHLS	MPE	E	Т	F <mark>R</mark> KAYT <mark>M</mark> F D	Μ
SA217750 Dahra SN 2011	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SH218152 Dakar_SN_2011	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SA252913 Diamniadio SN 2013	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	M
SA204014 Dakar SN 2010	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SA217695 Dahra_SN_2011	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	M
SA262037_Dakar_SN_2013	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SA262518_Dakar_SN_2014	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SA252888_Dakar_SN_2013	SPIDIHHLS	MPE	E	Т	IRR AYTI S N	Μ
SA267115_Dakar_SN_2014	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	M
SA262503_Dakar_SN_2014	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SH189343_Dakar_SN_2007	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	M
SA272282 Dakar_SN_2015	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
93005_Dakar_SN_1992	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
93003_Dakar_SN_1991	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	M
Pasteur	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
Nishigahara	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
RC-HL	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
NI-CE	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SRV9 Vaccine strains	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
Flury-LEP Vaccine strains	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
ERA	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
SAG2	SPIDIHHLS	MPE	E	Т	FGKAYTIFN	Μ
RV-97	SPIDIHHLS	MPE	E	Т	FGKAYTI <mark>I</mark> N	Μ
CTN181	SPIDIH <mark>N</mark> LS	MPE	E	Т	FGKAYTIFN	Μ

154x131mm (96 x 96 DPI)

202x156mm (96 x 96 DPI)

154x138mm (96 x 96 DPI)

Primer name	3'-5' Sequence	Direction	Location in viral genome	Melting temperature (°C)
SN3race243R	AGCTTGGCAGCATTCATGCCTG	Reverse	Nucleoprotein	53
SN3race298R	TGCTGCTGCCAAGTAGGAACAT	Reverse	Nucleoprotein	53
N127	ATGTAACACCTCTACAATGG	Foward	Nucleoprotein	56
N8m	CAGTCTCYTCNGCCATCTC	Reverse	Nucleoprotein	56
SNRV1342F	TATGTKTCAGTCAGTTCC	Foward	Nucleoprotein	55
SNRV2939R	TCRTCCCAAGTGATCTCY	Reverse	Matrix	55
SNRV2745F	ATATTCYGGAAAYCACAGRAT	Foward	Matrix	53
SNRV4280R	TGAGACGTCTRAAACTCACTG	Reverse	Glycoprotein	53
M220	TGGTGTATCAACATGRAYTC	Foward	Matrix	53
SNG5444R	GGTCATCATAGACCTCYC	Reverse	Glycoprotein	53
G4836-S3	GGRARRGTYATATCTTCNTGGGA	Foward	Glycoprotein	54
PV08	GGTCTGATCTRTCWGARYAATA	Reverse	polymerase L	54
L7386-AS3	CTRTCBGARTARTADAYCCANGACT T	Reverse	polymerase L	54
SNRV5318F	GGGCTGGATCATCTATGCTT	Foward	Glycoprotein	53
SNRV6304R	TTGATGACCTCGTAGCCTGA	Reverse	polymerase L	53
SNRV6281F	TGYGGAAAYTCCGGCTAT	Foward	polymerase L	54
SNRV8504R	GCTCRCTGAGAAATCGRG	Reverse	polymerase L	54
Taq3long	ATGAGAAGTGGAAYAAYCATCA	Foward	polymerase L	54
L9633-AS3	TTGCYRTATATGTTGACAGG	Reverse	polymerase L	54
SNRV8401F	TTCAGAGTTYAGAGAGGCRAT	Foward	polymerase L	53
SNRV9648R	ATGTTAACAGGGAAGATTGTT	Reverse	polymerase L	53
SNRV9263F	ATGTTYCAGCCATTGATGCTT	Foward	polymerase L	54
SNRV10590R	TGAAYACAAGCTTRGCATCYG	Reverse	polymerase L	54
SNRV10331F	TGCTCTGCTCAACAGGTT	Foward	polymerase L	53
SNRV11932R	ACGCTTAACAAATAAACAACA	Reverse	5' trailer	53
SN5race11566F	GGTCTGGTGACACCCCGGTCTTCA	Foward	polymerase L	55
SN5race11615F	GAGTCTGTCATCTCACTGGATCA	Foward	polymerase L	55

Appendix Table 1: Description of primer sets used for viral sequencing of rabies virus isolates.

Appendix Table 2: List of Rabies viruses full genomes from West and Central African countries and available in GenBank.

Icolata	Collection	Isolation	Host	ConDon's Accordion
Isolate	year	place	nost	Gendank Accession
93005	1992	SN	Canis lupus familiaris	KX148239
93003	1991	SN	Canis lupus familiaris	KX148238
92037CI	1992	CI	Canis lupus familiaris	KX148232
92038CI	1992	CI	Canis lupus familiaris	KX148233
01007CI	2001	CI	Canis lupus familiaris	KX148235
86036HAV	1986	BF	Canis lupus familiaris	KX148234
95047HAV	1995	BF	Canis lupus familiaris	KX148230
93011MAU	1993	MAU	Canis lupus familiaris	KX148236
93012MAU	1993	MAU	Canis lupus familiaris	KX148237
90010NIG	1990	NE	Canis lupus familiaris	KX148231
90012NIG	1990	NE	Canis lupus familiaris	KX148229
DRV_NG11	2011	NG	Canis lupus familiaris	KC196743
86097BEN	1986	BJ	Felis catus	KX148107
90021TCH	1990	TD	Canis lupus familiaris	KX148240
96009TCH	1996	TD	Canis lupus familiaris	KX148241
CAR_11_00	2011	CE	Homo saniens	K F 977826
1	2011	CI	110mo suprens	KI <i>J I I</i> 020
88003CAM	1987	СМ	Canis lupus familiaris	KX148243
95002CAM	1994	СМ	Canis lupus familiaris	KX148242
90024GUI	1990	GN	Canis lupus familiaris	KX148244

Abbreviations: SN, Senegal. CI, Côte d'Ivoire. BF, Burkina Faso. MAU, Mauritania. NE, Niger.

NG, Nigeria. BJ, Benin. TD, Chad. CF, Central African Republic. CM, Cameroon. GN, Guinea

1	Appendix	Table 3: Bayes	factors >3 and	posterior j	probabilities	generated	from Spread3.
-	rependent	Table 5. Dayes	iuctors - 5 unu	posterior j	5100uomuos	Senerated	nom opreudo

FROM	то	BAYES_FACTOR	POSTERIOR PROBABILITY
TD	CF	158.0	0.94
СМ	NG	123.5	0.93
СМ	TD	26.9	0.74
NE	BF	22.1	0.70
CI	MR	11.3	0.55
CI	BF	10.3	0.53
BF	NE	4.7	0.34
CI	SN	4.6	0.33
BF	CI	4.5	0.33
BF	MR	4.4	0.32
BN	СМ	3.9	0.29
MR	CI	3.6	0.28
BN	NE	3.5	0.27
BF	SN	3.1	0.25

Abbreviations: SN, Senegal. CI, Côte d'Ivoire. BF, Burkina Faso. MAU, Mauritania. NE, Niger.

NG, Nigeria. BJ, Benin. TD, Chad. CF, Central African Republic. CM, Cameroon. GN, Guinea