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Abstract

We report measurements of the attachment rates of water molecules onto mass-

selected cationic pyrene clusters for size from n=4 to 13 and for different collision

energies. Comparison of the attachment rates with the collision rates measured in

collision induced dissociation experiments provides access to the values of the sticking

coefficient. The strong dependence of the attachment rates on size and collision energy

is rationalized through a model in which we use a Langevin-type collision rate and

adjust on experimental data the statistical dissociation rate of the water molecule

from the cluster after attachment. This allows us to extrapolate our results to the

conditions of isolation and long timescales encountered in astrophysical environments.

We provide here as supporting information expressions for the geometric and Average

Dipole Orientation (ADO) collision rates, the details of the calculation of the average col-
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lision energy for ADO cross sections and the details of the model used to reproduce the

experimental data. We also provide a figure showing the influence of the dissociation energy

value onto the temperature dependence of the attachment rate.

1 Geometric and ADO collision rates

For a purely geometric cross-section, the collision rate is given by:

Kgeo =
∫ ∞

0
σ0vrelf(vrel)dvrel (1)

where the distribution of relative velocities is given by:

f(vrel) =
( 2m
πkBT

)1/2 vrel
vcluster

e− 1
2m(v2

cluster+v2
rel)/kBT sinh

(
mvrelvcluster

kBT

)
(2)

The average relative velocity vrel is:

vrel = vcluster

(
erf(
√
a)(1 + 1

2a) + e−a√
πa

)
(3)

with a = mv2
cluster

2kBT
.

The geometric collision rate is therefore given by:

Kgeo = σ0vrel (4)

The collision rate can also be estimated with the Langevin rate using the Average Dipole

Orientation (ADO) approximation.S1–S4 For an interaction of an ion with a polar molecule,

Su et al showed that the rate can be parametrized as:

KADO =
∫ ∞

0

q

2ε0
√
µ

(
√
α + CµD√

µvrel

)
f(vrel)dvrel = q

2ε0
√
µ

(
√
α + CµD√

µvcluster
erf(a)

)
(5)
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where C is the dipole locking constant.

2 Calculation of the average collision energy for ADO

cross-section

Here we give the expression for the average collision rate and the average collision energy for

an ion passing through a collision cell of length Lcell with velocity vcluster. The temperature

of the cell is Tcell and the density of molecules of mass m in the cell is ρ. The average collision

rate is given by:

Wcol =
∫ +∞

0
f(vrel)dvrelρσADOvrel (6)

= qρ

2ε0

(
ClµD erf(

√
a)

µvcluster
+
√
α

µ

)
(7)

The rate of deposited energy per collision is:

Wimp =
∫ +∞

0
f(vrel)dvrelρσADOvrel ×

1
2µv

2
rel (8)

= qρ

4ε0

(
ClµDvrel + 2

√
α

µ
Erel

)
(9)

with

Erel = m

M +m
Ek + 3

2
M

M +m
kBTcel (10)

And therefore the average collision energy is:

Ecol = Wimp

Wcol

(11)

Similar expressions were recently given by Liang and Kresin for the case of a geometric

cross-section.S5 For a purely polar molecule (µD = 0), the average collision energy deposited

upon attachment is simply the average relative velocity Erel. When the cluster velocity is

S-3



much larger than kBTcell we have a >> 1 which implies:

erf(
√
a) ≈ 1 (12)

vrel ≈ vcluster (13)

Erel ≈
1
2µv

2
cluster (14)

Ecol ≈
1
2µv

2
cluster (15)

In the present study, we have a ranging from 1.3 to about 10. In the worst case, i.e. for

n=13 and a kinetic energy of 5 eV in the laboratory frame, the average collision energy is

84% of Erel.

3 Model

In order to fully account for the present results, the lifetime of the formed water-pyrene

cluster complex must be considered. We must therefore consider the temporal evolution of

the cluster population during the propagation in the collision cell and to the detector.At

the entrance of the collision cell, the parent cluster population is I0. This I0 population is

made of clusters with well defined internal energies Eini. The distribution of these internal

energies is due to the initial thermalization at 25 K and is given by:

P (Eini) = Ω(Eini)
Z(T ) e−Ei/(kBT ) (16)

where Ω(Eini) is the density of states at energy Eini and Z(T ) the canonical partition func-

tion. We will restrict ourselves to the case of independent harmonic oscillators and therefore:

Z(T ) =
∏
i

1
1− e−~ωi/kBT

(17)
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The average internal energy of the pyrene clusters is given by:

(18)

The harmonic frequencies ωi are obtained for any pyrene cluster size by a simple extrapolation

model.S6,S7 We give in Figure S1 the curves E(T )/n as a function of the temperature for

cluster sizes from n=2 to 15.

Figure S1: Average internal energy per molecule as calculated from eq.18 as a function of
the temperature. The different colors correspond to cluster sizes from n=2 to n=15.

After the attachment of a water molecule, the internal energy of the water-pyrene cluster

complex becomes:

Ef = Eini +D + ECOM (19)

whereD is the dissociation energy of the water molecule from the cluster and ECOM the COM

collision energy. In principle, the average of the initial internal energy distribution must be
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taken into account. Similarly, the relative velocity distribution must be taken into account.

In the first case, given the small amount of internal energy at 25 K, we will consider that all

clusters initially have the corresponding average internal energy. For the second, integration

over the relative velocity distribution will be performed.

The attachment of a water molecule may only last a short time compared to the ex-

perimental timescale if the internal energy after attachment is too high. To quantify this

phenomenon, we will use a simple statistical dissociation model. In this model, we consider

that the unimolecular dissociation rate kdiss of the attached water molecule is given by:

kdiss(Tf ) = Ae−D/kBTf (20)

where the prefactor A is adjusted to reproduce the experimental results. The temperature

Tf is obtained from the E(T ) curve by setting E(Tf ) = Ef . In doing so, we do not take into

account the additional degrees of freedom introduced by the attachment of the water molecule

onto the cluster. We can assume that these additional vibrational degrees of freedom will

be very similar for all sizes. Furthermore, the internal degrees of freedom of the water

molecule can be considered frozen given the small amount of collision energies considered.

Therefore, neglecting them in the determination of the temperature Tf may lead to a slight

underestimation, which can anyway be compensated by adjusting the prefactor A. Again,

given the rudimentary nature of the model, such subtleties should not play a major role.

In order to reproduce the experimental results, we have to consider three different pop-

ulations of clusters:

1. Clusters that do not undergo attachment In

2. Clusters that undergo attachment In,a

3. Clusters resulting from the statistical dissociation of a water molecule after attachment

In,a,e
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The above partition of the cluster population amounts to neglecting events such as attachment-

statistical dissociation-attachment. In other words, we consider that we are in the single

collision regime. The population of clusters In at the exit of the collision cell, after the

propagation time t required for the cluster to cross the collision cell, is given by:

In(t) = In0e−ρ〈K〉t (21)

where ρ is the density in the collision cell and 〈K〉 is the averaged attachment rate over the

relative velocity distribution:

〈K〉 =
∫ +∞

0
dvrelf(vrel)K(vrel) (22)

The evolution of the cluster population having one water molecule attached leading to an

internal energy Ef is:

dIn,a(Ef )
dt

= ρK(vrel)In − kdiss(Tf )In,a(Ef ) (23)

The solution of this differential equation is:

In,a(t) = In0ρK(vrel)
e−kdiss(Tf )t − e−ρ〈K〉t
ρ〈K〉 − kdiss(Tf )

(24)

Finally the evolution of the population of clusters that have undergone attachment followed

by statistical dissociation is given by:

dIn,a,e(Ef )
dt

= kdiss(Tf )In,a(Ef ) (25)

and we have:

In,a,e(t) = In0
K(vrel)
〈K〉

kdiss(Tf )(e−ρ〈K〉t − 1)− ρ〈K〉(e−kdiss(Tf )t − 1)
ρ〈K〉 − kdiss(Tf )

(26)
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After the collision cell, the clusters must fly to the second acceleration stage, which takes a

t′ time. During this time, statistical dissociation can still occur and the populations are:

In(t+ t′) = In0e−ρ〈K〉t (27)

In,a(t+ t′) = In,a(t)e−kdiss(Tf )t′ (28)

In,a,e(t+ t′) = In,a,e(t) + In,a(t)(1− e−kdiss(Tf )t′) (29)

After acceleration by the second Wiley-McLaren, if the statistical dissociation occurs before

the reflectron entrance, the clusters are lost: their time of flight no longer belongs to the

fitted regular peaks. Therefore, the populations are:

In(t+ t′ + t′′) = In0e−ρ〈K〉t (30)

In,a(t+ t′ + t′′) = In,a(t)e−kdiss(Tf )(t′+t′′) (31)

In,a,e(t+ t′ + t′′) = In,a,e(t) + In,a(t)(1− e−kdiss(Tf )t′) (32)

where t′′ is the time required to reach the reflectron entrance. The above expressions are

then averaged over the distribution of relative velocities:

〈In〉 =
∫ +∞

0
dvvrelf(vrel)In(t+ t′ + t′′) (33)

〈In,a〉 =
∫ +∞

0
dvvrelf(vrel)In,a(t+ t′ + t′′) (34)

〈In,a,e〉 =
∫ +∞

0
dvvrelf(vrel)In,a,e(t+ t′ + t′′) (35)

and finally, we calculate the theoretical rate similarly to the experimental one:

ktheo = −vcluster
ρLcell

ln
(

〈In〉+ 〈In,a,e〉
〈In〉+ 〈In,a,e〉+ 〈In,a〉

)
(36)

so that they can be directly compared.

The modeling is done with K = KADO using the values of C given in Table S1.
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Table S1: Dipole locking constant values that allows to best reproduce the experimental
results.

Ek (eV) 5 10 15 20
C 0.35 0.30 0.25 0.17

The dissociation energy D is taken equal to 0.3 eV and the prefactor A has been taken

equal to 1017 s−1. This simple model allows to reproduce the experimental results in a

satisfactory way.

4 Attachment rate temperature dependence

We have plotted in Figure S2 the attachment rate as a function of the temperature after

collision. The temperature after collision is obtained as:

Eth(T ) = Eth(25K) +D + ECOM (37)

where ECOM is the center of mass collision energy, Eth is the thermal internal energy of

the cluster and D the water-pyrene cluster dissociation energy. As the dissociation energy

increases, we observe that the threshold for observing attachment shifts to higher tempera-

tures. We also note that the points are less scattered around the threshold for dissociation

energies of 0.2-0.3 eV.
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Figure S2: Water attachment rates onto mass-selected pyrene clusters as a function of clus-
ter temperature after collision. The different colors correspond to different values of the
dissociation energies.
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