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Abstract1

First, an analysis is done under the assumption of oblate or prolate spheroidal shape, which are representative2

of droplets shape in a spray. Applying the assumption of random projection, the averaged value of the 2D3

uniformity for a given 3D spheroid is computed. This analysis shows a wide dispersion of the 2D uniformity4

values for the same spheroid. For prolate spheroids, the 2D uniformity systematically underestimates the5

value of its 3D extension. When considering an oblate spheroid, the 3D value can be underestimated or6

overestimated.7

To assess this analytical analysis, two numerical droplets databases are considered: one based in homo-8

geneous isotropic turbulence and one based on airblast atomization. Each database consists of 3D numerical9

droplets with their 3D shape characterization, and, their projections in 2D. The results obtained analytically un-10

der the assumption of spheroidal shape are confirmed on this database. In addition, the airblast database shows11

clearly that the projection direction (i.e. the position of the camera) modifies the statistics on the morphology12

of the drops.13

As a conclusion, the results obtained from analytical and numerical experiments are extended to the exper-14

imental results of atomization process where the 3D shape is unknown.15

Keywords: Shape parameters, Droplets characterization, Atomization16
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1 Introduction17

1.1 Motivations18

Atomization of liquid is used in a variety of applications including combustion chambers, medical sprays, fire19

suppression, and agricultural irrigation. Atomization is usually divided in two fragmentation steps: primary20

atomization of the main liquid flow into detached liquid structures, and secondary atomization of these struc-21

tures into spray droplets. Understanding these fragmentation processes is of tremendous interest and requires22

the analysis and characterization of the different liquid elements encountered during these processes. Impor-23

tant information is obtained by characterizing the shape of the liquid elements, to classify them into ligaments,24

elongated or spherical droplets and then follow the space-time evolution of these characteristics in a given25

atomization process.26

Shadowgraphy or backlight imaging techniques are, among other methods, particularly good candidates27

to carry out shape characterization analysis in spray applications [Bachalo and Houser, 1984, van Beeck and28

Riethmuller, 1996, Schober et al., 2002, Bothell et al., 2020]. A projection on the image plane of the liquid29

phase elements is obtained by these techniques. The liquid-gas interface is then obtained by analyzing the30

contour of the liquid elements in this 2D projection along with different parameters such as the projected area,31

the sphere-equivalent diameter. Several shape parameters are derived from this contour. It should be noted that32

these parameters, while useful to characterize liquid structures in a spray, are obtained from 2D projections33

and the shape of liquid elements is intrinsically three-dimensional. This 2D projection results in a loss of34

information in experimental data.35

It is often assumed that elongated liquid elements have a symmetry axis parallel to the image plane and36

assumed spherical when the apparent shape is circular. However, these assumptions can be misleading, as37

illustrated in the image sequence of a water jet emanating from a triple-disk nozzle in figure 1. This jet, ex-38

tensively analyzed by our research group using different shape parameters [Dumouchel and Blaisot, 2014] and39

multi-scale analysis [Dumouchel and Blaisot, 2013, Dumouchel et al., 2015], is characterized by a plane liquid40

sheet that disintegrates asymmetrically in ligaments and droplets. First, the plane geometry of the liquid core,41

see position I in the figure, is difficult to comprehend only from the image and without additional information.42

Second, the droplet at position II has a near circular projection, suggesting a spherical shape. Nevertheless, the43

sequence shows that the droplet follows oscillations after the break-up of the ancestor ligament and exhibit a44
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somewhat flat pancake-like shape as indicated at position III.45

Figure 1: Shadowgraphy image sequence (25 000 frames/s) of a liquid jet [Dumouchel and Blaisot, 2014].
The field of view is 3.5 mm × 6.4 mm. Refer to text for roman letters.

These examples show the deviation due to the projection of a real 3D shape that can be introduced in the46

analysis of 2D experimental images. To the authors’ knowledge, few experiments have been performed to get47

3D shape characteristics of liquid-gas interface elements in two-phase flows, and most of them are devoted to48

bubble dynamics and breakup [Ravelet et al., 2011, Masuk et al., 2019]. The lack of 3D experimental data49

in sprays is due to the challenging environment of the atomization processes: i.e. high velocity, large number50

of droplets, optical access limitations, etc., along with the absence of diagnostic techniques that is capable of51

capturing reliable 3D information in such conditions. The analysis of 3D shapes is more common in granular52

and porous material communities where each structure can be extracted individually, such as in grain analysis53

[Rorato et al., 2019]. A common way to compute the 3D shape parameters is by analyzing three orthogonal54

projection of the structure [Blott and Pye, 2008].55

The spray community call on CFD to get 3D information on atomizing flows [Dumouchel et al., 2015].56
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This is also what is done here to analyze the systematic error in shape analysis resulting from the 2D projection57

in experiments. The paper combines an analytic study under the spheroid assumption, numerical simulations58

for detailed analysis of realistic droplets, and, an application to experimental data.59

Shape parameters under consideration for 2D and 3D analysis are detailed in §1.2. In §2, the CFD flow60

solver and the detection algorithm are briefly described. At the end of this section, the droplet database ob-61

tained from the CFD solver used is presented. Two test cases are considered for CFD, yielding to two typical62

atomization conditions, i.e. (i) isotropic and (ii) anisotropic deformed droplets. In §3, the shape parameters63

are analytically analyzed under the spheroid assumption and the limits of this assumption is commented using64

the droplet database. In §4, the analysis of shape parameters is done on the droplet database, first for isotropic65

droplets and next for anisotropic deformed droplets. The systematic deviation due to the projection step is66

highlitghted in this section, showing a correlation with the new method introduced in section §3 for analyzing67

2D shape parameters based on the spheroid assumption. In §5, this new procedure is applied to a droplet68

database obtained from an experimental setup. A correlation between the shape parameter probability density69

function of the distriutions and a log-normal distribution is shown, creating a possibility to reproduce a 3D70

shape parameter distribution from 2D information under certain hypotheses.71

1.2 Summary of morphological parameters72

A liquid drop can take on an infinite number of distinct shapes. A significant number of shape parameters73

have been created in the literature to account for this large variety of shapes. As pointed out by [Ghaemi et al.,74

2009], the nomenclature diverges among authors. As a result, the definitions of the morphological or shape75

criteria utilized must be clarified. These definitions are first detailed for 2D analysis, and then for 3D analysis.76

The 2D case refers to the experimental works, mainly using image for shape analysis. In such cases, a kind77

of projection is performed between the real 3D droplet and the 2D image object. The 3D case refers to CFD78

data that can provide such information not reachable from the experiment. Even if the dimension of the shape79

parameter space can be considered as infinite, practical morphology analyzes concentrate on a few parameters.80

The four parameters under consideration in this study are resumed in table 1 with their mathematical definition81

in 2D and 3D, and their ranges of variation. The shape parameter values are illustrated in figure 3 for two82

objects.83
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1.2.1 2D parameters84

Shape parameters are defined from the value of primary parameters measured on the contour of a droplet D85

such as the contour length (perimeter pD), the contour area (AD and maximum and minimum lengths a2D and86

b2D measured on two particular points on the contour (see below). Four shape parameters were selected in this87

study for their relevance to the objectives of this work. The primary parameters used for the 2D definition of88

these parameters are illustrated in figure 2 on an arbitrary shape droplet D. As the final shape of any droplet in89

a spray is a sphere, the 2D projected droplet is compared with a circle C of the same projected surface area AD,90

with its center coinciding with the droplet centroid. This circle is called the equivalent circle within this paper.91

Thus the equivalent radius, REQ,2D, is defined as the radius of the equivalent circle, i.e. REQ,2D =
√

AD
π

(see92

the horizontal dashed circle figure 2).93

Aspect ratio α2D = b2D
a2D

94

95

The aspect ratio [Eriksson et al., 1997], also called centricity [Ghaemi et al., 2008], is the ratio between two96

lengths, b2D and a2D, where b2D < a2D, i.e. 0 ≤ α2D ≤ 1. Different computations of these lengths can be97

found in the literature. It is for example expressed as the lengths of the smallest rectangle that contains the98

object [Baert et al., 1992, Malot and Blaisot, 2000]. A similar implementation is the computation of a2D as the99

length of the segment between the two most distant points on the object contour and b2D the maximum distance100

between two points connected by a segment perpendicular to the first segment [Mayor et al., 2005, Kashdan101

et al., 2007]. In these two configurations, a disc or a square have an aspect ratio of 1. Other authors consider102

the extremes distances from the centroid of the object to the contour [Adrian, 1991, Adrian, 2005]. In such103

a case the aspect ratio of a square is
√

2
2

. This later definition is the one used in the present paper. It can be104

noted that for the particular case of an ellipse, these distances are measured on two perpendicular lines and the105

different definitions of a2D and b2D lead to the same value of the aspect ratio, α2D.106

Uniformity η2D = a2D−b2D
REQ,2D

107

108

The uniformity parameter [Blaisot and Yon, 2005] is the difference a2D − b2D normalized by REQ,2D. It is109

a length-based parameter that can be useful to discriminate small surface ripples from elongated droplets. A110

small value indicates small scale ripples compared to the object size whereas a large value is associated to111

ligaments.112
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113

Irregularity ι2D = pC
pD

114

115

This parameter is defined as the ratio between the perimeter pC of the equivalent circle C and the contour116

perimeter pD of the object [Podczeck et al., 1999]. As based on the total length of the object contour, this pa-117

rameter is more likely to capture small shape deformations. Naturally, this parameter is very sensitive to small118

scale deformation of the contour. This can be a drawback for practical application where the interface cannot119

be accurately obtained (e.g. false small-scale wrinkling due to pixelized interface contour) [Mayor et al., 2005].120

121

Symmetric difference shape parameter (SDS) ψ2D = AD∪C−AD∩C
AD

122

123

The SDS parameter introduced by [Malot and Blaisot, 2000] is defined by the symmetric difference between124

D and C (dashed areas on the figure 2), normalized by the object area AD. This parameter is null for a perfect125

disc and is bound by 2, a value reached when the object and the equivalent circle have no common part.126

The definitions and the range of values for all these parameters are given in table 1. An illustration of the127

particular values taken by the parameters for three directions of projections of two typical shapes; a prolate128

spheroid and a tube, are given figure 3. It is recalled to the reader that a meticulous description of 2D shape pa-129

rameters and their application is provided in [Ghaemi et al., 2009]. The influence of the direction of projection130

is commented in the presentation of the 3D morphological parameters.131

1.2.2 3D parameters132

Whereas many definitions can be found in the literature about 2D shape parameters, to the authors knowledge,133

the existing 3D morphological parameters have not been studied in the past in the framework of atomization.134

This is mainly due to the fact that experimental techniques provide only 2D information. In the present study,135

the 2D parameters have been extended to the 3D domain reachable from CFD to obtain the 3D shape param-136

eters. The main quantities used to build 3D parameters are: the minimal and maximal distance from the 3D137

centroid to the 2D interface, b3D and a3D, respectively. The total surface and volume of the droplet, SD and VD138

respectively. These latter quantities are used as equivalence in 3D to the perimeter and projected area in 2D for139

the shape parameter definitions.140
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Figure 2: Definition of distances and shape parameters construction for the projection of a peanut-like droplet,
vertical dash lines, and its equivalent circle, horizontal dash lines. The union of these two shapes, AD∪C

contains these two areas and the intersection of these two shapes, AD∩C , in filled white.

Aspect ratio and uniformity are constructed in their 3D extension with similar lengths (i.e. 1D information).141

The 3D equivalent radius is defined from the equivalent sphere that has the same volume than the volume142

of the droplet VD, i.e. REQ,3D = 3

√
3VD
4π

. The total surface of the equivalent sphere SS = 4πR2
EQ,3D, is143

used to compute the irregularity. Similarly to its 2D version, the accuracy of the irregularity depends on the144

resolution of the interface. Finally, the equivalent symmetric difference shape parameter (SDS parameter)145

[Malot and Blaisot, 2000] is defined from the common volume between the droplet and the equivalent sphere.146

This parameter is very sensitive to numerical accuracy since every cell has to be checked and compared to147

the equivalent sphere. In this paper, an additional step is used for each cell containing the interface of the148

equivalent sphere and the droplet. It consists in a subdiscretization of the Cartesian cell with 15 points per149

direction, improving the accuracy of the computation of the volume of intersection in each cell.150

Parameter 2D Expression 3D Expression Bounds References
Aspect ratio α2D = b2D

a2D
α3D = b3D

a3D
[0, 1] [Eriksson et al., 1997]

Uniformity η2D = a2D−b2D
REQ,2D

η3D = a3D−b3D
REQ,3D

[0,∞[ [Blaisot and Yon, 2005]

Irregularity ι2D = pC
pD

ι3D = SS
SD

[0, 1] [Podczeck et al., 1999]
SDS parameter ψ2D = AD∪C−AD∩C

AD
ψ3D = VD∪S−VD∩S

VD
[0, 2[ [Malot and Blaisot, 2000]

Table 1: 2D and 3D morphological parameters analyzed throughout the present communication.

To illustrate the values that the shape parameter can take, two particular objects are considered, i.e. a151

prolate spheroid representative of a droplet and a tube representative of a ligament. The values taken by the 2D152
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and 3D parameters for these objects are shown in figure 3. It clearly shows the dependence of these parameters153

on the object shape. Indeed, the tube can be seen as an elongation of the prolate spheroid but its 3D parameter154

values are drastically different from those of the prolate spheroid. The figure shows also the sensitivity of the155

2D parameter values on the object orientation relative to the projection plane. It can easily be guessed from156

these examples that a small variation of the main axis orientation can strongly modify the values for all the 2D157

shape parameters, for the 3D tube as well as for the prolate spheroid.158

Figure 3: Projection of two specific 3D shapes: a prolate spheroid and a tube, respectively left and right.
Morphological values for the 3D and each projection are given, respectively the aspect ratio; α, the

uniformity; η, the irregularity; ι, and the SDS parameter; ψ.

2 Numerical procedure159

Direct numerical simulation is an ideal tool to study the shape evolution of droplets. The projection of 3D160

simulated droplets generates experimental shadowgraphy-like images that can be analyzed to understand the161

deviation between 3D and 2D parameters. Two numerical experiments are treated in this paper. The present162

section introduces the CFD solver, the projection approach and the two configurations.163

2.1 Flow solver164

The in-house solver Archer has been used to perform the direct numerical simulations analyzed in the present165

communication. This solver has been developed during the last 15 years and has been successfully applied to166

the study of atomization process [Lebas et al., 2009], two-phase turbulence [Duret et al., 2012] and microfluidic167

[Charpentier et al., 2020].168

This solver uses a projection algorithm to solve Navier-Stokes equations over a staggered Cartesian mesh.169
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The sharp interface is treated using a Coupled level set Volume-of-Fluid approach [Ménard et al., 2007]. Con-170

vective terms are discretized using a fifth order WENO scheme to treat the interface discontinuities. The171

viscous terms are discretized following the method proposed by [Sussman et al., 1998]. The Poisson equation172

is solved using a conjugate gradient solver [Tanguy and Berlemont, 2005], and it includes the pressure drop173

due to surface tension, that is discretized using the ghost fluid method [Fedkiw et al., 1999]. A momentum con-174

servative approach is also implemented to ensure the consistency between the mass and momentum equations175

in Navier-Stokes, [Vaudor et al., 2017].176

The choice of Archer is done since its capabilities to simulate atomization under harsh environment and177

ensuring an accurate description of the liquid-gas interface have been shown.178

2.2 Detection, projection and morphological parameter computation179

In Archer, a detection algorithm based on the developments of [Herrmann, 2010b] is used to extract each180

individual droplet in 3D. This algorithm provides for each cell a tag corresponding to the droplet number. To181

ensure that the shape analysis of the droplet does not consider other structures, each droplet is transported to a182

numerical box, and, the liquid of any cell containing a different tag is removed. If necessary, the reinitialization183

algorithm included in Archer is applied to ensure that the level set is accurately representing the interface. Then,184

the 3D morphological parameters are computed in this domain, following the methodology given by [Chéron185

et al., 2019, Chan et al., 2021].186

Once each droplet is isolated, the projection is done to reproduce experimental results from shadowgraphy187

analysis. The strategy is to consider each cell as a single pixel, and, to use the information from the projection188

of the 3D field. In this case, the level set is used. A 16 bits gray value for each pixel is given, based on the189

2562 possible gray values. The pixel identified at the interface has the threshold value of 65536/2. It can190

be identified with the iso-value 0 of the level set field. These experimental-like images are sent to the same191

algorithm used to analyze experimental images [Fdida et al., 2010]. Finally, 2D morphological parameters are192

calculated for each direction of 2D projection (i.e. 3 per droplet).193

2.3 Droplet immersed in a Homogeneous Isotropic Turbulent-like flow194

The first numerical experiment consists in the study of a single droplet immersed in a Homogeneous Isotropic-195

like Turbulence, (HIT-like). Interactions between turbulent flows and droplets are studied using such approach196
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by different authors [Trontin et al., 2010, Perlekar et al., 2012, Duret et al., 2012, Dodd and Ferrante, 2016].197

The methodology is to use a tri-periodic domain to develop a turbulent flow with two immiscible phases. The198

main difference in the present configuration is that only one droplet is considered. Thus, its evolution can be199

studied without dealing with other phenomena such as breakup or coalescence. In addition, the high resolution200

of the droplet can be guaranteed, and, thousands of droplets can be studied with low numerical cost. The main201

drawback of this configuration is that the turbulence is not fully developed. Since the authors are not analyzing202

here the turbulent properties, but only the shape evolution of a droplet interacting with turbulent-like flow, this203

drawback is reasonable.204

The initial turbulent carrier flow is generated through single phase simulation with a linear forcing scheme205

[Rosales and Meneveau, 2005, Duret et al., 2012]. This initial forcing is held during 5 eddy turnover, in order206

to obtain a statistically steady state. Then, a fully-resolved solid particle is added on the domain. This particle207

ensures a no slip/no penetration condition on a spherical region. After 1 eddy turnover time, the solid constraint208

is relaxed and the particle is transformed into a droplet. This initialization process avoids any nonphysical shear209

flow at the interface at start. The droplets are thus initially spherical. The statistics are recorded after an eddy210

turnover time, Te, and snapshots are obtained at every Te/10. In this series of simulation, half of the droplets211

are studied maintaining the turbulence forcing, and, the other half are studied in a decaying turbulence. This212

method has been used in two previous studies [Chéron et al., 2019, Chen et al., 2019]. In this configuration,213

approximately 4000 droplets are studied.214

In order to generate this wide database, the mesh resolution is kept relatively low, 643. To have an accurate215

representation of morphological evolution, the number of cells across a droplet diameter is set to 32, dd =216

32∆x. It gives a cubic box of L = 1.5×10−4 [m] and a droplet diameter of dd = 7.5×10−5 [m]. The physical217

configuration is set to ρl/ρg = 1 and µl/µg = 1, giving a Reynolds number of Re =
√
kL/ν = 15.73, with k,218

the turbulent kinetic energy equal to k̄ = 3.6 [m2.s−2]. The surface tension is the only physical parameter that219

varies in this database. The motivation is to have several Weber numbers generating different droplet shapes.220

The surface tension variation goes from σ = [6.75× 10−5, ..., 6.75× 10−1] [kg.s−2], giving a range of Weber221

number from We = ρkL/σ = [10−2, ..., 102]. The droplet morphological evolution goes from small surface222

variation toward highly elongated droplets. To illustrate the typical situations, the visualization of 4 droplets is223

given in the appendix B.224

As it will be seen later, the droplets in this database are mostly spherical. Thus, these droplets can charac-225

terize the deformation due to turbulence in the secondary atomization area.226
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2.4 Droplets generated from airblast atomization227

In order to obtain droplets close to those observed near the injector, a second numerical experiment is done.228

The experiment chosen is a planar airblast atomizer that produces several droplets shapes through different229

breakup mechanisms. By nature, this atomization process is anisotropic. For this reason, one can expect that,230

statistically, the projection of the droplets in each direction does not provide the same results. Here, three231

directions are considered for projection: the streamwise direction Z, and, the spanwise directions X − Y . The232

influence of the anisotropy on the shape parameters is studied later in §4.2.233

The airblast considered here is based on the already studied numerical configuration [Cordesse et al., 2020].234

The injected liquid has a density of ρl = 12.25 [kg.m−3], and, a dynamic viscosity of µl = 1.11× 10−4 [Pa.s].235

The density ratio and the viscous ratio, with respect to the carrier phase, are ρ∗ = 10 µ∗ = 6.10. The ratio of236

injection height against the surface length is 1.25%, momentum ratio is ρlVinj
2

ρgVcarrier
2 = 6.65 [−], Weber number237

is Weinj =
ρll
∗Vinj

2

σ
= 20904 [−]. The simulation has been performed on 1024 processors. The mesh size is238

set to ∆x = 103, 13 [µm]. The droplet collection is done after 0.2 seconds of atomization once the statistically239

steady state is reached. The simulation covers 0.13 seconds with a snapshot taken every 2.2 × 10−3 seconds.240

The droplets are individually studied using the algorithm presented in §2.2. More details can be found in241

[Belhadef et al., 2012, Cordesse et al., 2020].242

A snapshot of the airblast is given in figure 4 (left). This figure is obtained applying the projection of the243

liquid phase over the X − Z plane, perpendicular to the stream-wise direction. As observed, the atomization244

process generates a wide poly disperse spray. Then, a filter depending on the numerical resolution of the245

droplets is used to avoid analyzing inaccurate droplets since the computation of morphological parameters is246

subject to large errors for underresolved droplets [Chéron et al., 2019]. A droplet with an equivalent radius247

smaller than 2 mesh size, i.e. REQ,3D < 2∆x, is then not included in the database. In addition, a filter based on248

the aspect ratio α3D is applied. Only the droplets with an aspect ratio larger than α3D > 0.2 are studied. That249

allows to remove the large ligaments and also the liquid core. Both filters are illustrated in the morphological-250

size map shown in figure 4 (right). Through these filters, the analysis covers 40% of the total structures (green251

kept, red filtered, figure 4 (right). That corresponds to 1200 droplets. In this figure, different snapshots of the252

liquid core can be observed, they are located at REQ,3D ∼ 45.253

In this database the limit α3D = 1 is not reached, implying that the population of droplets is far from254

spherical droplets. This database is then a perfect complement to isotropic database presented in §2.3.255
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Figure 4: Left: X − Z projection of the liquid volume fraction at a given time step in the airblast atomizer
numerical experiment. Right: droplets database from the airblast atomizer based on their aspect ratio, α3D,

and numerical resolution, REQ,3D

∆x
.

3 On the spheroid assumption256

As mentioned, a droplet shape can take different aspect that should need as many shape parameters to be257

thoroughly described. From a practical point of view, a reduced set of shape families are considered. The first258

one, in terms of relevance to spray analysis, is the spheroid shape, also called ellipsoid of revolution. A droplet259

close to the spherical shape can be considered as a spheroid. Spheroids can be classified in two distinct families;260

named prolate (cigar-like) and oblate (pancake-like). Each family represents a specific atomization process,261

i.e. the prolate case is observed when a sphere is flattened under the action of aerodynamic forces whereas262

the oblate case is observed when a droplet undergoes a large drift velocity, relatively to the surrounding gas263

[Green, 1975, Clift et al., 1978]. Spheroid shapes can also be associated to the surrounding gas turbulence264

properties, as mentioned by [Mukherjee et al., 2019] : "Axial strain tends to stretch droplets into prolate265

ellipsoids (cigar-like objects), while bi-axial strain would shape them into oblate ellipsoids (flat pancake-like266

objects).". In the absence of other effects than the surface tension and the kinetic forces, these two shapes are267

observed since following the Lamb’s theory, a spheroidal-like droplet oscillates between oblate and prolate268

shape [Lamb, 1881]. In the latter theory, the shapes are not described in terms of spheroid but in terms of269

spherical harmonics. Based on these observations, the effect of the projection on the shape parameters of the270

droplets under the spheroidal shape assumptions is explored in the present section.271
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3.1 Morphological parameters under spheroid assumption272

To assess the assumption of considering droplets as spheroids, called hereafter the spheroid assumption, re-273

lations between shape parameters are derived for the oblate and prolate spheroids. For 2D parameters, the274

following analytical relations (Eqs 1-3) were derived for an ellipse by [Blaisot and Yon, 2005] for unifor-275

mity, irregularity and SDS parameters as function of the aspect ratio where the approximation of the ellipse276

circumference given by [Peano, 1887] is used for the irregularity parameter:277

ηE2D(α2D) =
1− α2D√
α2D

, (1)

278

ιE2D(α2D) =

(
3(1 + α2D)

4
√
α2D

− 1

2

)−1

, (2)

279

ψE2D(α2D) =
4

π

[
arcsin

(√
1

1 + α2D

)
− arcsin

(√
α2D

1 + α2D

)]
. (3)

A criterion based on these relations, in the form of a given tolerance, defines a domain in the shape parameter280

space that they have called the "elliptic shape family". This is used to estimate the deviation of a droplet shape281

from an ellipse, since a droplet whose shape parameters are outside this domain is regarded as not ellipsoidal.282

Since the projection of a 3D spheroid is a 2D ellipse (see details later in §3.3), the aforementioned relations283

are later extended to a 3D definition. These relations can be used to estimate the deviation of the droplet from284

a spheroid using a combination of 3D shape parameters. In this context, it is necessary to distinguish the285

prolate and the oblate families, since it modifies the analytical relationship between the parameters. Indeed,286

the prolate shape is defined by a3D = λ1 > λ2 = b3D and the oblate shape by a3D = λ2 > λ1 = b3D where287

λ1 is the semi-axis along the symmetry axis and λ2 is the perpendicular semi-axis. Thus, the volume of a288

spheroid, V = 4
3
πλ2

2λ1, or the equivalent radius, REQ,3D = (λ2
2λ1)

1/3, have a different expression in terms of289

a3D and b3D, depending on the spheroid family. With this in consideration, the analytic relation for uniformity,290

irregularity and SDS 3D parameters are derived as functions of the aspect ratio, for prolate and oblate spheroid291

families:292

ηP3D(α3D) =
1− α3D

α
2/3
3D

, (4)

ηO3D(α3D) =
1− α3D

α
1/3
3D

, (5)
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ιP3D(α3D) =
2α
−2/3
3D

1 +
arcsin

(√
1−α2

3D

)
α3D

√
1−α2

3D

, (6)

ιO3D(α3D) =
2α

2/3
3D

1 +
α2
3D√

1−α2
3D

arctanh
(√

1− α2
3D

) , (7)

293

ψ3D(α3D) = 2

√√√√(1− α2/3
3D

)3

1− α2
3D

. (8)

It can be noticed that SDS parameter, based on volume information, does not depend on the spheroid fam-294

ily. Following the work of [Blaisot and Yon, 2005], the relations given by Eqs. 5-8 are used to assess the295

ellipse/spheroid assumption.296

3.2 Analysis of the numerical droplet database297

The 3D shape parameter distribution are compared to the oblate and prolate family curves (Eqs. 5-8) in figure298

5, for the droplets generated from isotropic and anisotropic numerical experiments. It is recalled that only the299

droplets verifying α3D > 0.2 are considered.300

Values for uniformity parameter η3D (figure 5a) mostly belong to the range [ηO3D, η
P
3D] (upper script are301

used to represent the oblate spheroid and prolate spheroid shapes, respectively. In this article, the letter Q is302

used to represent both prolate and oblate spheroids when the distinction is not done). As η3D mainly depends303

on the primary lengths a3D and b3D, i.e. on two particular points in the contour, this shape parameter is not304

strongly related to the true shape of a droplet, i.e. many droplets of different shapes and similar size can share305

the same values of a3D and b3D and the same uniformity parameter value. Thus, one can always find a spheroid306

SP for given a3D and b3D values. Out of range values, i.e η3D < ηO3D or η3D > ηP3D, are due to REQ,3D that can307

be significantly different from the one of the spheroid SP for any droplet. The large range of values spanned by308

uniformity between oblate and prolate families makes it a good candidate for classifying spheroids. However,309

for the reason mentioned just above, the value pair (α3D, η3D) is not sufficient to identify a droplet as a spheroid310

as these two parameters depends manly on the sole primary parameters a3D and b3D.311

Irregularity parameter ι3D depends on area primary parameters, and is thus more strongly related to the312

shape of a droplet than η3D. The values are broadly scattered around the prolate curve ιP3D(α3D) (see figure 5b),313

suggesting that droplets in the numerical database are mainly of the prolate family. Nevertheless, to establish a314
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rigorous shape classification only one shape parameter is not sufficient but a combination of parameters must315

be used in order to define an effective criterion.316

The SDS parameter ψ3D is defined from volume-based primary parameters and as such it is strongly related317

to the true shape of a droplet, as is ι3D. It can be observed on figure 5c that the values covered by ψ3D span318

largely over the spheroid curve, particularly for low aspect ratios, for the anisotropic set. Thus it can be319

guessed that this numerical set is not composed only of spheroid droplets. In contrast, the isotropic set clearly320

shows spheroid-like characteristics for SDS parameter. Moreover, irregularity and uniformity parameter values321

present also spheroid-like characteristics for this set.322

It can be concluded from this first simple analysis of the shape parameter values that the anisotropic323

set presents a wider variation of shapes than the isotropic set. The isotropic set seems mainly composed of324

spheroid-like droplets whereas the anisotropic set includes also non-spheroid droplet. As an example of the325

different cases, the droplets of appendix B are highligted with four different symbols in figure 5. Droplets A326

and B are the less distorted droplets, i.e. for all morphological parameters the values are closed to the analytical327

spheroid relations. Droplets C follows the prolate spheroid relation for the uniformity, η3D, and irregularity328

ι3D. However, this droplet is far from the unic spheroid relation in the case of the SDS parameter ψ3D. The329

most distorted one, droplet D, also follows the prolate spheroid relation for the first two morphological param-330

eters. Also, the analysis of the SDS parameter against the aspect ratio, figure 5c, shows a good agreement with331

the spheroid relation. This is not expected when considering the rendering proposed in appendix B, showing332

the necessity to consider the shape analysis with several morphological parameters.333

The 2D parameters obtained from the projection along the three main axes of the computation domain are334

now considered. These parameters are compared to the analytic relations for the elliptic shape given by Eqs. 1-335

3. The result of these comparisons is given in figure 6 for both isotropic and anisotropic databases. Isotropic336

projections are represented in black and the anisotropic projections are colored with respect to the direction of337

projection, X (red), Y (blue) and Z (green).338

The same conclusion can be drawn from the observation of the three figures, i.e. the droplets of the isotropic339

set remain closer to the spheroid family than those of the anisotropic set. This is verified for projections of340

distorted droplet from the isotropic set, see the projections of droplet D from appendix B on figure 6. It is also341

noticeable the different behavior of the projection along the Z axis compared to the two other direction for the342

anisotropic set.343

From the 3D and 2D analyses, it can be conclude that the population of droplets in the two numeric sets344
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(a) (b) (c)

Figure 5: 3D morphological parameters as a function of the aspect ratio, respectively from left to right: the
uniformity η3D (figure 5a), irregularity ι3D (figure 5b), and SDS parameter ψ3D (figure 5c). Results of the

isotropic and anisotropic flows are represented with black triangles and blue circles, respectively. Analytical
relations are showed in dashed red line for prolate spheroids, and continuous red line for oblate spheroids.

The four droplets extracted from appendix B are represented with square, circle, diamond and down triangle
symbols, from A to D, respectively.

is not composed of spheroid-like droplets only. In the next subsection the effect of the projection on the345

calculation of 2D morphological parameters is explored for spheroids. The uniformity parameter is selected346

since it does not permit to classify the morphological shape of an object alone. This parameter is therefore347

investigated in detail in this study because the conclusions drawn for this parameter are likely to be extrapolated348

to other morphological parameters more representative of the droplet shape, for instance the irregularity or349

the SDS parameters. Then, the extension of the uniformity analysis to other parameters is considered as a350

perspective.351

3.3 Projection of spheroids352

The main goal of this section is to estimate the systematic bias in shape analysis performed on 2D images,353

introduced by the projection effect. This is done considering 3D spheroids of known properties. A spheroid is354

defined by its symmetry axis, ~ez, and two lengths; λ1 the semi-axis length along ~ez and λ2 the semi-axis length355

perpendicular to ~ez. As mentioned in §3.1, λ1 = a3D and λ2 = b3D for a prolate spheroid and λ1 = b3D and356

λ2 = a3D for an oblate spheroid, a3D and b3D being the maximum and minimum distances from the centroid357

to the object surface, respectively. The projection of a spheroid is an ellipse, and, due to the axisymmetry, the358

ellipse properties depend only on the angle θ between ~ez and the projection direction (normal to the projection359

plane) (see figure 7).360

The ellipse is defined by two lengths, λ1,2D and λ2,2D, that corresponds to the two axis. These lengths can
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(a) (b) (c)

Figure 6: 2D morphological parameters as a function of the aspect ratio, respectively from left to right; the
uniformity η2D (figure 6a), irregularity ι2D (figure 6b), and SDS parameter ψ2D (figure 6c). Results for the

anisotropic flow are plotted with color markers based on the direction of projection and black marker are used
for isotropic flow. Analytical relations for the ellipse are shown in solid red line. The X-Y-Z directions of

projection of droplet D from appendix B are represented with square, circle and diamond symbols,
respectively.

Figure 7: Prolate and oblate spheroids (left and right). θ is the polar or projection angle and ϕ the azimuthal
angle. The lengths λ1 and λ2 are the length along the axisymmetry axis and its perpendicular.

be computed from the projection of the ellipse:

λ1,2D =
λ1λ2√

λ2
2 sin2(θ) + λ2

1 cos2(θ)
, (9)

λ2,2D = λ2. (10)

These two lengths provide the maximum and minimum distances from the centroid to the contour of the 2D

projected ellipse,

a2D = λ1,2D, (11)

b2D = λ2,2D = λ2 = b3D, (12)
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for the prolate spheroids, and

a2D = λ2,2D = λ2 = a3D, (13)

b2D = λ1,2D, (14)

for the oblate spheroids.361

Expressions for a2D(θ) and b2D(θ) depends on the spheroid family (prolate or oblate). These equations362

obviously shows that a2D 6= a3D and b2D 6= b3D for any projection angle but θ = π/2. For θ = 0, corresponding363

to a projection axis parallel to ~ez, the projection is a disk leading to a2D = b2D = λ2.364

The variation of a2D(θ) and b2D(θ) is illustrated in figure 8 for two spheroids, one prolate and one oblate,365

of same major semi-axis a3D = 1 and of same uniformity η3D = 0.25. The 2D equivalent radius REQ,2D =366

√
a2Db2D is also plotted and compared to REQ,3D = (λ2

2λ1)
1/3 (see §3.1) in this figure. It is recalled that the367

projection area of a spheroid is an ellipse. Two additional equivalent radii are proposed here: REQ,2D,O =368

(b2Da
2
2D)1/3 for a presumed oblate droplet and REQ,2D,P = (a2Db

2
2D)1/3 for a presumed prolate droplet. What-369

ever the spheroid family, a2D and b2D vary between a3D and b3D. One can also remark that for all angles:370

b2D = λ2 = b3D for prolate spheroids and a2D = λ2 = a3D for oblate spheroids. It can be observed in figure 8371

a bell curve for the 2D equivalent radii for a prolate, and, the inverse bell curve for an oblate object. For both372

spheroid cases, the equivalent radius REQ,2D, evolves below and above REQ,3D. For the prolate spheroid, the373

additional radius for a presumed prolate droplet RP
EQ,2D,P ≤ REQ,3D, the equality being reached for θ = π/2.374

For the oblate spheroid the radius for a presumed oblate droplet RO
EQ,2D,O ≥ REQ,3D and here again equality375

is reached for θ = π/2. For the prolate spheroid RO
EQ,2D,O is always greater than REQ,2D. It can be noticed376

that whatever the spheroid family RP
EQ,2D,P ≤ REQ,2D ≤ RO

EQ,2D,O. This property is used below.377

The error on the estimation of the primary lengths, a2D, b2D and REQ,2D with respect to the 3D values,378

described in this section, has an influence on the shape parameters obtained from the projection step (2D from379

3D).380
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Figure 8: Evolution of a2D, b2D,REQ,2D and RP
EQ,2D or RO

EQ,2D against π for a spheroid with an initial
uniformity parameter of η3D = 0.25, left: prolate spheroid, right: oblate spheroid. Limits of the 3D spheroid

are given: a3D, b3D, and REQ,3D.

3.4 Deviation on uniformity computation due to projection under the spheroid as-381

sumption382

In this section, the potential deviation of 2D uniformity parameter η2D from the real 3D value η3D is evaluated.383

It is recalled that uniformity is defined by λ1, λ2 and the equivalent radius. Oblate and prolate spheroid families384

are considered separately and the evolution of η2D is analyzed as a function of the direction of projection, θ.385

To illustrate the main trends, the curves for η2D(θ) is shown in figure 9 for the two spheroids considered in386

§3.3. Two extra uniformity parameters are also introduced: ηQ2D,P is the value obtained for a presumed prolate387

droplet and ηQ2D,O is the one for a presumed oblate droplet for a prolate, or oblate spheroid, respectively O and388

P upper script (it is recalled that to simplify the notation, the upper script letter Q represents both oblate and389

prolate families). In the definition of these extra uniformity,REQ,2D is replaced by the correspondingRQ
EQ,2D,Q.390

The main points to retain are: (i) ηQ2D and ηQ2D,Q curves have a bell shape whatever the spheroid family; (ii)391

minimum value for η2D equal zero whatever η3D for both spheroid families (corresponding to θ = 0 and θ = π,392

i.e. projection equal to a disk); (iii) maximum value for ηQ2D,Q equal η3D (for θ = π/2) when the right spheroid393

family is presumed (in this case, 2D and 3D values for a, b and RQ
EQ,2D,Q are equal, see figure 8).394

From the previous remarks it can be concluded that the most probable situation is that the 2D uniformity395

obtained from a projection underestimates the 3D uniformity. To analyze this deviation from a statistical point396

of view, the 2D uniformity is averaged over all observation orientations, i.e. over solid angle 4π sr. Each397
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Figure 9: Evolution of the 2D uniformity, ηP2D or ηO2D, and the corrected 2D uniformity, ηQ2D,P and ηQ2D,O with
Q depending on the initial family, for a range of direction of projection θ = [0, π]. The 3D uniformity value is

fixed, η3D = 0.25, left: prolate spheroid, right: oblate spheroid.

observation direction is assigned a probability sin θ
4π
dθdϕ where ϕ is the azimuthal angle. Averaged expression398

are thus given by:399

η̄2D =

π∫
0

a2D(θ)− b2D(θ)

REQ,2D(θ)

sin(θ)

2
dθ, (15)

and400

η̄2D,Q =

π∫
0

a2D(θ)− b2D(θ)

REQ,2D,Q(θ)

sin(θ)

2
dθ. (16)

The analytical derivation of these integrals are developed in Appendix A. To illustrate the relation between 2D401

and 3D values of the uniformity parameter, a plot of η3D vs η2D is shown in figure 10 for a random set of oblate402

spheroids and a random set of prolate spheroids (each set consists of 4000 elements). For each set, the points403

(ηP2D,O, η
O
2D,O, η3D) and (ηP2D,O, η

P
2D,P , η3D) are also drawn. The curves for the mean values η̄P2D and η̄O2D are404

also plotted in figure 10 for both prolate and oblate spheroids as function of η3D. The following information405

can be deduced:406

• averaged 2D uniformity values (η̄Q2D) generally underestimates the 3D value, except for η̄O2D > η3D with407

η3D > 1.2 for the oblate family. That is even the case when considering the alternative equivalent radius408

ηO2D,O and ηP2D,P .409

• The minimum value for ηQ2D is always 0 (a circular shape can be observed even for very deformed410

spheroids, as in the case of the projection of deformed prolates, see figure 3). Neverheless, for larger411
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values of η3D the probability to observe a circle decreases.412

• The maximum value of the shape-assumed 2D uniformity ηQ2D,max,Q is equal to η3D for the well presumed413

shape.414

• The maximum 2D uniformity ηQ2D,max underestimates (overestimates) η3D for the prolate (oblate) spheroids.415

The estimation of the 2D uniformity parameter with the assumption of the wrong family is also added416

to figure 10. These values are obtained applying the oblate assumption (i.e. using RP
EQ,O in the definition417

of ηP2D) for the prolate spheroids, and vice versa. The miss-assumption of the spheroid family drastically418

modifies the deviation between 2D and 3D uniformity parameters, compared to the right assumption. For the419

prolate spheroids, ηP2D,O is shifted toward lower values of 2D uniformity, which increases the deviation with 3D420

values. For the oblate case, the results are also worsened since the population is shifted toward higher values of421

uniformity, resulting in a stronger overestimation of the 3D value. This figure also shows that regardless of the422

initial spheroid family, the oblate assumption never overestimates the 3D value for the uniformity parameter.423

This will be helpful for the analysis of the isotropic and anisotropic databases (see §4.1 and 4.2 respectively)424

where the representation of η3D vs η2D is also used to analyze both droplet databases.425

Figure 10: Plots of η3D vs η2D. Lines: 2D averaged uniformity for each kind of spheroid family (prolate: η̄P2D,
oblate η̄O2D), and maximum values (lower script max). Markers: random spheroids sets without (grey circles
ηP2D or ηO2D) and with spheroid family correction (blue cross for prolate ηP2D,P and ηP2D,O, and orange star for

oblate ηO2D,P and ηO2D,O). Left figure: prolate spheroid set. Right: oblate spheroid set.
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4 Shape parameter deviation analysis for numerical databases426

The deviation in shape parameter estimation induced by 2D projection is analyzed here for two numerical427

databases, i.e. the isotropic database presented in §4.1 and the anisotropic one presented in §4.2. It is re-428

minded that the isotropic database corresponds to droplets deformed by isotropic turbulence (e.g. secondary429

atomization area), and the anisotropic database to droplets with a large drift velocity (e.g. primary atomization430

area). For each database, the length-type primary parameters are first considered before the uniformity shape431

parameter.432

4.1 Isotropic database433

The isotropic database has been introduced in §2.3. It results from a simulation of an isolated droplet of434

constant size, i.e. monodisperse droplet population, in a developed Homogenenous Isotropic Turbulence-like435

flow. For this reason, the projections are independent of the direction of projection.436

4.1.1 Length-type primary parameters437

The uniformity shape parameter is based on three length-type primary parameters: the equivalent radius REQ438

and the maximal and minimal distances to the droplet centroid (a and b). The deviation resulting from the439

projection on a 2D plane of the 3D droplet contour is first estimated for these three quantities.440

First, 2D and 3D equivalent radii are compared. In the isotropic database, all the droplets have the same ini-

tial volume (and thus, the same REQ,3D). Equivalent radius without assumption REQ,2D, with prolate spheroid

assumption REQ,2D,P , and with oblate spheroid assumption REQ,2D,O are considered. These 2D equivalent

radii are scaled by REQ,3D for simplification purpose. The probability distribution functions (PDFs) for the

three normalized 2D equivalent radius are plotted in figure 11. The radii obtained from the projection in the

three orthogonal directions of the Cartesian mesh of the numerical domain are considered for each droplet. The

distribution is constructed with 35 bins. The distributions are Gaussian-like with the following average values:

[
REQ,2D

REQ,3D

]
= 1.011,

[
REQ,2D,P

REQ,3D

]
= 0.953,

[
REQ,2D,O

REQ,3D

]
= 1.043,
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and standard deviations:

σ

(
REQ,2D

REQ,3D

)
= 0.066, σ

(
REQ,2D,P

REQ,3D

)
= 0.071, σ

(
REQ,2D,O

REQ,3D

)
= 0.080.

showing that the best estimate of REQ,3D, that would give a distribution centered on REQ,2D/REQ,3D = 1 with441

low dispersion, is given by REQ,2D on average. The prolate assumption underestimates the radius while the442

oblate assumption overestimates it.443

Figure 11: Probality density functions for REQ,2D in black, REQ,2D,P in red (prolate spheroid assumption)
and REQ,2D,O in green (oblate spheroid assumption).

It can be noticed that as the three directions of projection are considered. For a given droplet, any under-444

estimation or overestimation of REQ,3D in one direction is offset by the projection in the other two directions.445

This basic observation has an important impact on the calculation of the maximal and minimal distances that446

is now analyzed.447

The comparison between 2D and 3D values for a and b, is presented in figure 12. These length-type448

parameters are also scaled by REQ,3D to simplify the presentation in a way to obtain normalized values lower449

than 1, i.e. b/REQ,3D and REQ,3D/a. A colormap is used to classify the points according to the value of450

REQ,2D/REQ,3D. As explained before, for droplets with REQ,2D/REQ,3D ' 1, an accurate estimation of a and451

b lengths is expected.452

The lengths a2D and b2D should be in the range [b3D, a3D], implying points below the first bisector line in453

figure 12. This is almost verified, the points above the first bisector are due to computational inaccuracies.454

The points near to the first bisector mainly correspond to REQ,2D/REQ,3D ' 1. That concerns spherical455
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droplets (e.g. droplet (A) in appendix B), or elongated droplets projected in a direction that minimizes the456

error.457

A correlation between the overestimation of REQ,3D and the overestimation of b3D is clearly seen from458

the colored points in figure 12 left. In other words, if the minimal distance is not correctly captured by the459

projection, the equivalent radius is overestimated. This situation can be illustrated by droplet C) of appendix460

B. A correlation between the underestimation of REQ,3D and the underestimation of a3D is also seen from the461

colored points in figure 12 right, i.e. if a3D is underestimated, then, the equivalent radius is also underestimated462

(dark blue markers in the figure).463

Figure 12: Distribution of b3D against b2D scaled by the equivalent 3D radius REQ,3D (left). Distribution of
a3D against a2D scaled by the equivalent 3D radius REQ,3D (right). The color map is associated to

REQ,2D/REQ,3D values, see figure 11.

4.1.2 Uniformity shape parameter projection analysis464

The plot of η3D vs η2D for the isotropic set is shown in figure 13. The analytic maximum and averaged465

curves for η2D with and without spheroid family assumption, are included for the oblate and prolate families,466

respectively in green and red, and the markers are colord by REQ,2D/REQ,3D values but no spheroid shape467

assumption is made to estimate η2D. It is recalled that a 3D droplet creates three 2D information, based on the468

three Cartesian direction of projection.469

This figure is to compare to the figure 10 (in particular black circles that corresponds to projection without470

assumption) keeping in mind that the range of values for η is reduced here. As markers only fill the space over471

the first bisector, it is guessed that the spray is mainly populated by prolate-like spheroids. Also, this does not472
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Figure 13: Distribution of the 3D uniformity, η3D, against η2D. The color map is associated to
REQ,2D/REQ,3D values, see figure 11. Lines: 2D averaged uniformity for each kind of spheroid family, η̄Q2D,

maximum values, η̄Q2D,max, and family correction, η̄Q2D,Q and η̄Q2D,max,Q.

consider the entire distribution since few points are observed on the right of ηP2D,max curve, which can only473

be crossed by oblate-like droplets. Generally, the points are centered on the prolate spheroid analytical mean474

value; η̄P2D, and, limited by the first bisector. One can assimilate the majority of these droplets to prolate-like475

spheroids. Finally, in contrast to the theoretical framework, here no perfect circular projections are observed476

for large deformed 3D shapes. For instance, the most circular projection for large deformed droplets is droplet477

D in appendix 10 that is strongly deformed (η3D = 0.9) and have a projection in Y direction close to a circle478

η2D,Y = 0.13.479

The systematic underestimation of the uniformity due to projection can also be understood in terms of pri-480

mary lengths projections. A correlation was shown in figure 12 between an overestimation of the minor axis481

b and an overestimation of the equivalent radius REQ. The combination of these two overestimations leads to482

underestimate η as can be observed for the orange colored markers in figure 13. A correlation between an un-483

derestimation of the major axis a and an underestimation of REQ was also found. These two underestimations484

are likely to be compensated (see the definition of η parameter in table 1). The dark blue colored markers in485

figure 13 are indeed a little closer to the first bisector than orange ones.486

The results presented here show the interest of the analogy with the random projection of spheroids. How-487

ever, only isotropic droplets with a low deformation have been treated here. The next section deals with a more488

realistic case with anisotropic droplet deformation.489
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4.2 Anisotropic database490

The anisotropic database has been introduced in §2.4 and is constituted of polydisperse droplets. As an indica-491

tor, the relative span factor is; RSF = D0,9−D0,1

D0,5
= 0.690. It results from a simulation of airblast atomization492

with the stream-wise direction along Z axis. For this reason, the projections for each direction are examined493

individually.494

4.2.1 Length-type primary parameters495

The PDF for the three 2D equivalent radii (i.e. REQ,2D, REQ,2D,P and REQ,2D,O) normalized by REQ,3D are496

plotted in figure14, for X , Y and Z directions, from left to right, respectively. In contrast to the isotropic497

database, the volume of the droplets varies.498

Here also Gaussian-like distributions are observed. The average and standard deviation of these distribu-499

tions are given in table 2. As observed for the isotropic case, the best estimate of REQ,3D is given by REQ,2D;500

the prolate assumption globally underestimates the equivalent radius whereas the oblate estimate globally over-501

estimates it.502

It can be clearly seen that theX and Y projections produce similar statistics, meanwhile a different behavior503

appears on the projection along the streamwise Z direction. Moreover, results for X and Y directions are504

similar to the ones for the isotropic case. For the Z direction, mean values are ordered the same way than for505

the other two directions but the best estimate is given here by the oblate assumption but with the wider standard506

deviation.507

To explain this, let’s consider that the droplets are spheroids. Now, in opposition to the theoretical de-508

velopments on §3.3-3.4, these spheroids have a preferential alignment, the Z direction. Thus, the REQ,2D509

underestimates or overestimates the REQ,3D (depending on the prolate or oblate spheroid probability due to510

the oscillatory regime of these droplets), while the X and Y direction produces more accurate estimation since511

they capture the lengths along the axisymmetry axis. This ideal case explains the larger dispersion of REQ,2D

REQ,3D
512

on Z projection. To go further on this assumption based on an ideal droplet shape, since the main value of513

REQ,2D

REQ,3D
= 0.938 < 1, more prolate spheroids than oblates are present in this database. Indeed, a value higher514

than one would have yield to a majority of oblate spheroids in the population, as detailed in figure 8. This515

idealized instance may appear to be a long way from the complexity of the physics behind an airblast atomizer.516

However, since the droplets are the result of ligament breaking, and the ligaments in this type of atomizer517
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are aligned along the Z axis, this interpretation sounds appropriate. The initial droplets are thus prolate-like518

spheroids aligned with the Z axis, which follows the classical oblate/prolate oscillations predicted by linear519

theory and observed in the literature [González and García, 2009, Moallemi et al., 2016].

[−] X Y Z
REQ,2D

REQ,3D
1.021 1.010 0.938

REQ,2D,P

REQ,3D
0.898 0.892 0.889

REQ,2D,O

REQ,3D
1.142 1.128 1.025

σ (−) X Y Z
REQ,2D

REQ,3D
0.071 0.0756 0.1244

REQ,2D,P

REQ,3D
0.0847 0.0811 0.1105

REQ,2D,O

REQ,3D
0.1166 0.122 0.1566

Table 2: Mean values and standard deviation of REQ,2D

REQ,3D
for different computations of REQ,2D, left and right,

respectively.

520

(a) (b) (c)

Figure 14: From left to right: histogram of the deviation of the projected equivalent radius: REQ,2D in black,
and their correction based on the prolate spheroid assumption: REQ,2D,P , in red, and for the oblate spheroid
assumption: REQ,2D,O, in green, for direction of projections; X (figure 14a), Y (figure 14b), and Z (figure

14c).

The minimal and maximal lengths, i.e. a and b, are now considered. The deviation of the 2D to the 3D521

versions of these primary parameters, scaled by REQ,3D, is shown in figure 15 for X , Y and Z projection522

directions, respectively from left to right, with a parameter in bottom row and b parameter in top row. A color523

map based on REQ,2D/REQ,3D values is used to color the marker points, as in the isotropic section and the first524

bisector is also drawn to clearly identify a ' b cases.525

A correlation between the overestimation of REQ,3D and the overestimation of b3D as well as between the526

underestimation of REQ,3D and the underestimation of a3D is observed, as for the isotropic case (see the color527

distribution in figure 15 which is particularly clear for Z direction (right column)). It is recalled that the PDF528

for REQ,2D/REQ,3D along Z direction shows a larger dispersion (see figure 14 and table 2). Also, the results529

observed for the X and Y directions are in the range of the isotropic set.530
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Figure 15: Distribution of b3D against b2D scaled by the equivalent 3D radius REQ,3D (top). Distribution of
a3D against a2D scaled by the equivalent 3D radius REQ,3D (bottom). The color map is based on the scaling of

the equivalent 2D and 3D radius, see figure 14. An individual scattering of each direction of projection is
given for both quantities; from left to right: X-Y-Z.

Few points recover a2D = a3D, and are located on the first bisector. The length b2D retrieves the 3D531

value for several points in the set but the probability that the projection allows to recover the 3D value is not532

correlated to the ratioREQ,2D/REQ,3D, in opposition to the isotropic set. Another divergence with this database533

is the observation of minimal lengths overcoming the 3D value; b2D > b3D. These droplets are consistent since534

b2D < REQ,2D < a2D. Also, they are far from a spheroidal shape, and the centroid of their projection is shifted535

which explains this overestimation of the minimal length with respect to the 3D droplet.536

4.2.2 Uniformity shape parameter projection analysis537

The deviation analysis of the uniformity parameter, η3D vs η2D, is shown in figure 16 with X , Y and Z projec-538

tion directions from left to right, respectively. The same colormap as the one in figure 15 is used to classify the539

points according to the value of REQ,2D/REQ,3D. The range of values for η is almost the double than for the540

isotropic database. For projections along X and Y the points are mainly located in the ’prolate’ assumption541
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zone, i.e. η2D is evenly distributed in the range [η̄P2D/2, η
P
2D,max]. This shows a systematic underestimation of542

the uniformity value, increasing for higher η3D. For Z direction, the points are shifted towards lower values543

of η2D with values approaching the limit η2D = 0. From the observations of section §4.2.1 and the uniformity544

analysis, it is confirmed that the majority of droplets are prolate-like aligned along the Z direction. In other545

words, an observer looking at the spray in the streamwise direction will see many circular shapes. As discussed546

before, for these very cases the equivalent radius (here dark blue markers) is underestimated.547

It can be shown that the analytic average value η̄P2D for a random set of prolate spheroids (see §3.3) is548

overestimated for X and Y directions and underestimated for Z directions. This confirms that the orientation549

of observation has a great influence on shape parameter estimation from 2D projection, which is almost always550

the case in experiments.551

Figure 16: Distribution of the 3D uniformity, η3D, against η2D, for the three direction of projections, left to
right: X − Y − Z. Lines: 2D averaged uniformity for each kind of spheroid family, η̄A2D, maximum values,
η̄Q2D,max, and family correction, η̄Q2D,Q and η̄Q2D,max,Q (it is recalled that Q represents both prolate and oblate

spheroid shapes). The color map scales equivalent 2D and 3D radius, see figure 14.

5 Application of the correction on 2D droplets from experimental database552

5.1 Experimental setup553

The experimental database is obtained from a set of more than one hundred images recorded on a water/air554

spray produced by a shear-coaxial injector [Ficuciello et al., 2017]. The injection condition is characterized by555

Weg =
ρgU2

gDl

σ
= 400, and Rel = ρlUlDl

µl
= 6600, where ρg and Ug are the density and the bulk velocity of the556

gas, ρl, Ul, and µl are the density, the bulk velocity and the viscosity of the liquid, and σ the surface tension557

between liquid and gas.558
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An example of image of the experiment is shown in figure 17 where a large view of the flow is also559

displayed. Objects not totally included in the image (i.e. touching an image side) are rejected as well as very560

big objects (with a projected area greater than the one of a circle of about 2 mm in diameter). A filter based561

on the contrast of the image is applied (C > 0.1), removing objects with a low SNR (signal-to-noise ratio).562

Another filter based on the estimation of the point spread function is also applied to select droplets in a given563

range of out-of-focus, whatever their size (see [Blaisot and Yon, 2005] or [Fdida et al., 2010]). The database564

contain around 30000 droplets corresponding to about 300 droplets per image. In figure 18 the size probability565

density functions based on the 2D equivalent radius are plotted for the raw data and after filter application.566

Undoubtedly, this filter concerns mainly the small droplets. Filtering these droplets modifies the relative span567

factor from 3.755 to 2.458.568

Figure 17: Images of the spray: Air-assist jet on the left and an image of the experimental database on the
right. The red rectangle shows the region covered by images of the database.

5.2 Elliptic assumption569

Two-dimensional uniformity (η2D), irregularity(ι2D), SDS (ψ2D) and aspect ratio (α2D) parameters are ex-570

tracted from the experimental database. The distribution of the three first parameters (η2D, ι2D, ψ2D) as func-571

tions of the aspect ratio (α2D) are compared to the elliptic shape relations (Eqs. 1-3) in figure 19. Markers are572

colored using a three classes color map based on the equivalent radius REQ,2D.573

The smallest droplets (blue markers) are almost close to the elliptic shape curves (red lines). This is not574
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Figure 18: Droplet size distribution of the experimental database. Data removed by applying the out-of-focus
filters/morphological filter correspond to the hashed zone.

surprising since these droplets are the most likely to keep a near spherical shape. It can be observed that a large575

number of big droplets (orange and red markers) are far under the elliptic curve for ι parameter (see figure 19b).576

Indeed, due to their size, these droplets are prone to large deformation. Only a few big droplets are away from577

the elliptic curve for uniformity parameter (see the region near (α2D, η2D) = (0.2, 1.3) in figure 19a). Thus,578

this parameter is neither able to identify spheroid-like droplet in its 2D version nor in its 3D one. Also, a certain579

amount of large droplets are away from the elliptic curve for ψ parameter (figure19c) but a more restraining580

filter that combines these three morphological parameters must be considered to recover object with elliptic-581

like projections only [Blaisot and Yon, 2005, Fdida and Blaisot, 2008]. These distributions are quite similar582

to the ones shown in figure 6 for the numerical databases. In particular, the X and Y projections for the583

anisotropic numerical database (Airblast simulation) seems close to the experiment database distributions.584

The main differences come from the larger deformation observed in the experiment. This is because the585

experiment indicates a larger range of droplet sizes. Also, the smallest structures are not recovered in the586

numerical simulations due to low resolution imposed by the numerical restriction (see [Herrmann, 2010a] for587

a discussion of this point).588

5.3 Analysis of the uniformity deviation589

In the experiments, the 3D parameters are not available. It was shown in §3 that the range and the mean values590

for η2D can be estimated for a population of spheroids randomly oriented with a given value for η3D. The591

relation between η3D and η̄2D given in Eq. 20 (developed in appendix A and showed as a red solid line in figure592

10) can be used to recover 3D parameter values from 2D measurements. Applying this specific equation for593

31



(a) (b) (c)

Figure 19: Morphological parameters as a function of the 2D aspect ratio, respectively from left to right the
uniformity η2D (figure 19a), irregularity ι2D (figure 19b), and SDS parameter ψ2D (figure 19c). Analytical

relations are showed in solid red line. The color map is based on the equivalent 2D radius expressed in
logarithmic scale

the reconstruction implies three assumptions: (i) the droplets are prolate spheroids; (ii) the main axis of the594

spheroids is randomly oriented; (iii) the distribution of η3D is a Dirac function. The two first assumptions have595

been discussed extensively in §3 and §4. The last one is treated here. For a given distribution of η3D and under596

assumptions (i) and (ii), there is only one distribution of η2D but the inverse is not true. From the numerical597

database, η3D was estimated from the value of η2D and the relation given by Eq. 20. This provides a mean598

value of 2.13 for the estimated η3D whereas the real 3D mean value is given by η̄3D = 1.15. Furthermore, the599

estimation of η3D from η2D parameter values of the experimental database leads to outlier about 190. To assess600

more realistic values for η3D from η2D measurements, an alternative approach is proposed, based on equivalent601

radii and the probability density function for uniformity parameter.602

The uniformity parameter is determined from the primary parameters a2D, b2D and REQ,2D (see §1.2). For603

each droplet, the prolate and oblate assumptions are made to determine the corresponding values for ηQ2D (see604

§3.3). A plot of ηQ2D vs η2D is shown in figure 20a for the experimental and numerical databases (isotropic and605

anisotropic). For the three databases, the sets of points are evenly distributed around the mean η̄Q2D, obtained606

from a set of randomly oriented spheroids (see §4). As expected, ηQ2D,O ≤ η2D ≤ ηQ2D,P , since the prolate607

assumption gives a lower value of the equivalent radius whereas the oblate assumption gives a bigger one. The608

probability density function of η2D and ηQ2D (for prolate and oblate assumptions) are given in figure 20b. The609

PDFs follow a log-normal distribution. As expected, the oblate and prolate assumptions shift the distribution to610

larger or smaller values of the uniformity, respectively. The PDF of η3D for the anisotropic numerical database611

is also represented in figure 20b.612
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(a) (b)

Figure 20: a) ηQ2D vs η2D for prolate (circles) and oblate (crosses) assumptions in the case of isotropic (green),
anisotropic (blue) and experimental (red) databases. Solid lines are for η̄Q2D determined on a set of randomly

oriented spheroids. b) Probability density function of uniformity (direct and with prolate or oblate
assumptions) for each database.

The ultimate interrogation of this work is to determine the possibility to estimate a 3D parameter from its613

2D measurements. The comparison of distributions of η2D and η3D for the anisotropic database clearly shows614

an underestimation of the 3D parameter by the 2D parameter, described beforehand. The present approach615

consists in analyzing the statistical properties of the parameter distributions. As commented for the considered616

databases, the uniformity PDF follows a log-normal distribution: P (η, σ, χ) = χ

ση
√

2π
exp

(
− log2(x/χ)

2σ2

)
. For617

instance, the best fit obtained for the numerical anisotropic 3D database, η3D, gives the values of σ = 0.31 and618

χ = 1.42, and, is represented in figure 21. This shows an excellent agreement with the pdf of 3D anisotropic619

uniformity. Under the assumption of a family of spheroid (prolate or oblate), the distribution of the 2D uni-620

formity can be estimated from the distribution of 3D uniformity and the distribution of angles θ. As seen in621

§4, the prolate assumption is more appropriate to account for atomizing droplets. From the log-normal fit of622

η3D distribution and the assumption of prolate droplets, several distributions for η2D were guessed, one for a623

random distribution of orientation angles θ (corresponding to the distribution sin θ
2
dθ), and for a fixed angle set624

to θ = [π/6, π/3, 4π/10, π/2] (corresponding to a Dirac function distribution).625

As seen in figure 21, the distributions with a fixed angle provides a log-normal like distribution. The626

obtained distribution is narrower than the measured one (in other words, σ is smaller). The averaged 2D627

uniformity decreases when increasing the fixed θ angle. The case θ = π/2 can be considered as the limit628

where all the droplets are aligned with the streamwise axis. That is why this angle Dirac distribution over-629
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estimates the measured 2D uniformity. The random distribution shows a completely different behavior. The630

distribution is no longer a log-normal.631

This is linked to the fact that in this case the probability to see a perfect circle after projection is not null,632

neither the probability of a null value for η. In practice, this can occur only for a projection along streamwise633

Z direction, which is never the case in experiments. This random distribution under-estimated the measured634

2D uniformity obtained for X − Y projection (i.e. perpendicular to the streamwise direction). As conclusion,635

the random and the fixed angle at θ = π/2 distributions surround the true distribution for η2D as observed in636

figure 21. A more accurate knowledge of the θ distribution should give a better prediction of the reconstruction637

of the distribution for η2D. Here, this distribution has not been computed. The authors consider that it would638

be important to include this distribution in future measurements as it will allow a better understanding of the639

relationship between the 2D and 3D parameters.640

Figure 21: Probability density function of the uniformity of the numerical anisotropic experiment.
Reconstruction of 2D are given from 3D.

The previous results are encouraging since the shape parameters can be accurately estimated under basic641

assumptions. These assumptions should allow the estimation of the probability density function of the 3D642

parameters based on 2D parameter distributions. The present results have shown a sensibility to the selected643

reconstruction methodology, to go from a 2D distribution to a 3D distribution. Due to the complexity of the644

question, an extension of the present communication focusing on the reconstruction of the 3D distribution is645

considered by the authors.646

34



6 Conclusion647

An accurate characterization of the droplets shape is of main interest to understand the atomization process.648

This characterization is often done on 2D projections obtained from experimental setups. As seen in the lit-649

erature [Ghaemi et al., 2009], different shape parameters can be used to describe these droplets’ projections.650

Among the several parameters introduced in the present paper, the uniformity parameter is considered to ana-651

lyze the deviation of the 2D value from the 3D value. Two approaches are pursued: i) an analytical approach652

based on the assumption that the droplets are spheroids; ii) a numerical approach were numerical atomized653

droplets, and their projections, are analyzed.654

According to these two approaches, the following results are retained:655

• Droplets can be considered as spheroids in order to analyze their shape parameters.656

• For a given 3D shape, the 2D shape parameters can vary depending on the angle of projection. For the657

uniformity shape parameter, and under the assumption of spheroidal shape, analytical relations between658

the 2D and 3D parameters are given in §3.4 and appendix A).659

• The kind of spheroid considered (oblate or prolate) modifies strongly the relations between 2D and 3D660

uniformity parameter. In the present databases, the droplets projections follows the statistical behavior661

of prolate spheroid. In particular, the 2D uniformity underestimates the 3D uniformity.662

• The projection axis should be considered when analyzing a database. The primary lengths and the663

shape parameters can suffer from a systematic deviation due to this preferential projection angle. In664

the anisotropic numerical case studied here, the sketch of prolate-like droplets that are aligned prefer-665

entially along the injection axis (axis Z) is drawn. As a result, this projection axis exacerbates both666

the underestimation of the equivalent radius (affecting the size probability distribution function) and the667

underestimation of the uniformity shape parameter.668

In experiments, the projection axis is often perpendicular to the injection axis, which improves the estima-669

tion of 3D parameters. However, certain complex atomization configurations do not permit an optimal optical670

configuration, which can drastically influence the deviation from the 3D results. In order to show the effect671

of the projection on the shape parameter analysis, the comparison between an experimental database and the672

generated numerical databases is done in §5. This comparison shows that the uniformity distributions fit a log-673

normal distribution. Furthermore, the study of the uniformity distributions provides a tool that should allow us674
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to predict the 3D uniformity distribution from the 2D measured one, considered as an extension of the present675

communication.676

The authors are convinced that the true understanding of atomization, and in particular of the transition677

between primary and secondary atomization, requires a detailed characterization of the 3D droplet shape. This678

will require in the future more experiments using 2D projections, but also numerical simulations, and, the679

application of optical measurement methods allowing the 3D reconstruction of the droplet shape.680
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A Analytical integration of uniformity averages687

In this appendix we provide the methodology to obtain the integrals given in equations 15 and 16. For space688

reasons, here we develop only the η̄2D for prolate spherodids, η̄P2D. At the end of this appendix, the solution for689

each case is provided.690

η̄2D =

π∫
0

a2D − b2D√
a2Db2D

sin(θ)

2
dθ =

π∫
0

√
a2D

b2D

sin(θ)

2
dθ −

π∫
0

√
b2D

a2D

sin(θ)

2
dθ (17)

This equation can be reduced introducing the parameter A = λ2
λ1

. First, we consider a prolate spheroid691

where this parameter is equal to the aspect ratio A = α3D < 1. In this case the previous equation becomes:692

η̄P2D =

π∫
0

4

√
1

(A2 − 1) sin2 θ + 1

sin(θ)

2
dθ −

π∫
0

4

√
(A2 − 1) sin2 θ + 1

sin(θ)

2
dθ (18)

We can reduce the integrals to the interval 0 to π/2 and multiply by two since sin(θ) is symmetric at π/2.693

Thus, making an integral by substitution u = sin2(θ) we obtain:694

η̄P2D =
1

2

1∫
0

1
√

1− u 4
√

(A2 − 1)u+ 1
du− 1

2

1∫
0

4
√

(A2 − 1)u+ 1√
1− u

du (19)

These integrals can be computed analytically using hypergeometric function 2F1. Thus the final solution is695

given by:696

η̄P2D = 2F1

(
1

4
, 1;

3

2
; 1−A2

)
− 2F1

(
−1

4
, 1;

3

2
; 1−A2

)
(20)

Similar development can be done for the oblate case where A = 1
α3D

> 1. From Eq. 17, the following697

relation is obtained:698

η̄O2D = 2F1

(
−1

4
, 1;

3

2
; 1−A2

)
− 2F1

(
1

4
, 1;

3

2
; 1−A2

)
(21)

One can notice that the solution is similar to the prolate since the two integrals are switched.699

Similarly, the development is done for η̄P2D,P and η̄O2D,O. The solution is given by:

η̄P2D,P =

π∫
0

a2D − b2D

3
√
a2Db2

2D

sin(θ)

2
dθ = 2F1

(
1

3
, 1;

3

2
; 1−A2

)
− 2F1

(
−1

6
, 1;

3

2
; 1−A2

)
(22)

η̄O2D,O =

π∫
0

a2D − b2D

3
√
a2

2Db2D

sin(θ)

2
dθ = 2F1

(
−1

6
, 1;

3

2
; 1−A2

)
− 2F1

(
1

3
, 1;

3

2
; 1−A2

)
(23)
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B Influence of the correction on singular droplets from the isotropic700

database.701

In this appendix, four droplets are extracted from the isotropic database, illustrating the influence of the pro-702

jection. The lenghts and morphological parameters are also given for each droplet. These droplets (A, B, C,703

and D), represent 4 different morphological shapes:704

A) Almost spherical droplet.705

B) Slightly deformed droplet.706

C) Bean shape flattened droplet.707

D) Distorted droplet.708

B.1 Droplet A)709

Figure 22: Almost spherical droplet extracted from the
HIT-like flow database.

2D 3D
X Y Z -

REQ,3D/a 0.975 0.988 0.991 0.972
b/REQ,3D 0.973 0.999 0.987 0.971
REQ/REQ,3D 0.999 1.01 0.996 -
α 0.949 0.988 0.978 0.944
η 0.053 0.013 0.0225 0.0573
ι 0.999 1.0 1.0 0.998
ψ 0.031 0.007 0.012 0.0407
REQ,P/REQ,3D 1.008 1.008 1.002 -
ηP 0.0522 0.012 0.023 -
REQ,O/REQ,3D 0.990 1.004 0.994 -
ηO 0.053 0.013 0.023 -

Table 3: Morphological parameters of the
extracted droplet, see figure 22, of the HIT-like

flow database.

710

711
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B.2 Droplet B)712

Figure 23: Slightly deformed droplet extracted from the
HIT-like flow database.

2D 3D
X Y Z -

REQ,3D/a 0.804 0.9333 0.83 0.7767
b/REQ,3D 0.837 0.823 0.8893 0.8056
REQ/REQ,3D 1.050 0.9563 1.0351 -
α 0.673 0.768 0.738 0.626
η 0.387 0.260 0.305 0.482
ι 0.977 0.988 0.985 0.969
ψ 0.218 0.111 0.167 0.327
REQ,P/REQ,3D 1.090 0.981 1.089 -
ηP 0.373 0.253 0.290 -
REQ,O/REQ,3D 0.956 0.899 0.984 -
ηO 0.426 0.277 0.321 -

Table 4: Morphological parameters of the
extracted droplet, see figure 23, of the HIT-like

flow database.

713

714

B.3 Droplet C)715

Figure 24: Bean shape flattened droplet extracted from the
HIT-like flow database.

2D 3D
X Y Z -

REQ,3D/a 0.727 0.747 0.857 0.719
b/REQ,3D 1.07 0.587 0.603 0.401
REQ/REQ,3D 1.236 0.959 0.872 -
α 0.778 0.438 0.516 0.288
η 0.245 0.785 0.648 0.990
ι 0.987 0.902 0.929 0.877
ψ 0.116 0.499 0.409 0.749
REQ,P/REQ,3D 1.266 1.017 0.936 -
ηP 0.239 0.740 0.603 -
REQ,O/REQ,3D 1.165 0.773 0.751 -
ηO 0.260 0.974 0.752 -

Table 5: Morphological parameters of the
extracted droplet, see figure 24, of the HIT-like

flow database.

716
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B.4 Droplet D)718

Figure 25: Distorted droplet extracted from the HIT-like
flow database.

2D 3D
X Y Z -

REQ,3D/a 0.731 0.776 0.822 0.717
b/REQ,3D 0.546 1.132 0.721 0.491
REQ/REQ,3D 0.917 1.215 0.960 -
α 0.400 0.878 0.592 0.352
η 0.860 0.130 0.517 0.904
ι 0.893 0.994 0.952 0.877
ψ 0.406 0.066 0.314 0.529
REQ,P/REQ,3D 1.007 1.234 1.022 -
ηP 0.815 0.128 0.486 -
REQ,O/REQ,3D 0.742 1.182 0.859 -
ηO 1.107 0.133 0.578 -

Table 6: Morphological parameters of the
extracted droplet, see figure 25, of the HIT-like

flow database.
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