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This paper proposes a resilient and robust model predictive control (MPC) scheme for a class of Cyber-Physical Systems (CPS) subject to state and input constraints, unknown but bounded disturbances and Denial of Service (DoS) attacks. The attacker blocks the controller to actuator communication and the attacks are assumed to be time-limited. The control is designed by extending a robust tube-based MPC, where a new type of invariant set, namely µ-step Robust Positively Invariant (µ-RPI) set, is introduced to deal with resilience. A set-based method is then developed for the control scheme to ensure both resilience to DoS attacks while preserving robustness to bounded disturbances. A computational algorithm is derived and a numerical example is provided to illustrate the potential of the proposed approach.

INTRODUCTION

Cyber-Physical Systems (CPSs) are next-generation engineered systems with deep integration of computation, communication and networking, physical processes, and control systems [START_REF] Lee | The past, present and future of cyberphysical systems: A focus on models[END_REF], [START_REF] Poovendran | Special issue on cyber-physical systems [scanning the issue[END_REF], [START_REF] Allgöwer | Position paper on the challenges posed by modern applications to cyber-physical systems theory[END_REF]). Varying widely in complexity and scale, CPSs concern many technological areas, including aerospace, automotive, energy, chemical industry, transportation, or healthcare. While safety and security have been traditionally addressed separately, some integrated approaches have been recently reported (see for instance [START_REF] Ji | Harmonizing safety and security risk analysis and prevention in cyber-physical systems[END_REF] and the references therein). In this perspective, this paper focuses on mitigating the impact of denial of services (DoS) attacks on systems evolving in an uncertain environment. In the literature, one can find many investigations for mitigation of DoS attacks. Among others, in [START_REF] Gupta | Dynamic games with asymmetric information and resource constrained players with applications to security of cyberphysical systems[END_REF] a method is proposed based on game theory where both attacker and controller are modeled as players of a game. De [START_REF] De Persis | Input-to-state stabilizing control under denial-of-service[END_REF] used event-triggered control, and the approach reported in [START_REF] Amin | Safe and secure networked control systems under denial-ofservice attacks[END_REF] takes advantage of optimal control. Nevertheless few of them deal with systems subject to state and input constraints. [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF] proposed a resilient MPC to address DoS attacks for a constrained system but without taking disturbances into account. In this paper, a similar resilient MPC is extended to disturbed systems with the aim of ensuring a joint resilience and robustness goal. By resilience, it is meant the system's ability to contain the maximal impact of anomalies, such as attacks, and to recover to an acceptable performance level.

In order to characterize the impact of uncertainties, a set-membership approach is used. This deterministic approach has been used in various ways when dealing with systems subject to unknown but bounded uncertainties. For instance, state bounding observation through Zonotopic Kalman Filters (ZKF) is considered in [START_REF] Combastel | Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence[END_REF]. In [START_REF] Mayne | Robust output feedback model predictive control of constrained linear systems[END_REF] a robust model predictive controller is proposed, and in [START_REF] Le | Robust tube-based constrained predictive control via zonotopic set-membership estimation[END_REF] a zonotopic tube-based approach is used to control a system subject to disturbances and measurement noise. In the last two papers, a particular class of invariant sets, the Robust Positively Invariant (RPI) set, is defined to ensure the robust convergence of the control scheme in the presence of bounded uncertainties. [START_REF] Franze | Resilient model predictive control for constrained cyber-physical systems subject to severe attacks on the communication channels[END_REF] also studied set membership theory and MPC to control constrained and disturbed linear systems subject to different possible attacks. The resilient approach we propose mainly relies on zonotopic rather than ellipsoidal sets. It ensures that the state trajectory comes back within some set after a DoS attack sequence, as in [START_REF] Franze | Resilient model predictive control for constrained cyber-physical systems subject to severe attacks on the communication channels[END_REF]. Moreover, an explicit bound for the state trajectory during attacks is also considered.

In this paper, a new kind of sets, namely µ-step Robust Positively Invariant (µ-RPI) sets, is introduced to address the resilience issue, that is, ensuring that an exit from nominal operation induced by the possibly repeated occurrence of attacks remains limited in time and/or magnitude. Then, a resilient tube-based model predictive control for uncertain linear discrete-time systems subject to DoS attack and bounded disturbances is proposed. The resulting MPC scheme relies on the off-line computation of such an µ-RPI set for which an algorithmic solution is provided, taking into account all design constraints. The paper is organized as follows. After some preliminaries given in Section 2, the problem is stated in Section 3. Section 4 describes the proposed control scheme and Section 5 presents a method to compute the required µ-RPI set. Finally an illustrative example is provided in Section 6, and Section 7 provides some concluding remarks.

PRELIMINARIES

Notations:

The symbols R, N and N + represent respectively the sets of real numbers, natural numbers, and positive integers. k 1 , k 2 denotes the set of integers between, and including, k 1 and k 2 . The operators ⊕ and ⊖ denote the Minkowski sum and difference. Given the sequence of sets {S i , ⊂ R n } b i=a , the notation b i=a S i = S a ⊕ ... ⊕ S b is used. P ≻ 0 (resp. P ⪰ 0) denote a positive definite (resp. semi-definite) matrix. ρ(A) denotes the spectral radius of the matrix A i.e. the largest eigenvalue in absolute value. Given a vector x ∈ R n and P ≻ 0, x ⊤ denotes the transpose of the vector and the P -weighted norm is ||x|| P =

√

x ⊤ P x. The notations x k1|k2 and u k1|k2 are used to describe state and control input predicted for time k 1 and calculated at time k 2 .

A zonotope ⟨c, R⟩ ⊂ R n with center c ∈ R n and generator matrix R ∈ R n×p is a polytopic set defined as the affine image of the unit hypercube

[-1, +1] p ⊂ R p by R: ⟨c, R⟩ = {c + Rs, ||s|| ∞ ≤ 1}. The Minkowski sum of two zonotopes ⟨c 1 , R 1 ⟩ and ⟨c 2 , R 2 ⟩ is the zonotope ⟨c 1 , R 1 ⟩ ⊕ ⟨c 2 , R 2 ⟩ = ⟨c 1 + c 2 , [R 1 , R 2 ]⟩.
The linear image of ⟨c, R⟩ by L is the zonotope L ⊙ ⟨c, R⟩ = ⟨Lc, LR⟩. The interval/box hull of ⟨c, R⟩ is the interval c ± |R|1 where c ± r denotes the interval [c -r, c + r], |.| is the elementby-element absolute value operator, and 1 is a column of ones with appropriate size, [START_REF] Combastel | A state bounding observer based on zonotopes[END_REF].

PROBLEM STATEMENT

System Dynamics

A linear dynamic subject to bounded disturbances is first considered:

x k+1 = Ax k + Bu k + Dw k , (1) where x k ∈ R n , u k ∈ R m ,
and w k ∈ R l are respectively the system state, the control input and the disturbances evaluated at time k. It is assumed that the disturbances are bounded: w k ∈ W and the system state and control input satisfy constraints x k ∈ X and u k ∈ U, where X and U are compact sets containing the origin as an interior point. Assumption 1. There exists a state-feedback gain K such that A + BK is stable, that is ρ(A + BK) < 1.

Attack Model

The equation ( 1) is modelling the attack-free dynamic of a CPS where actuator and controller are spatially separated (e.g. remote control) while being connected through communication channel. In this paper, the case of a DoS attack occurring on this channel is considered. More precisely, the scenario considered here is time limited attacks which block the controller-actuator (C-A) communication channel. The indicator variable ν k , k ∈ N, is defined as follows:

ν k =
1 while there is no attack, 0 when an attack occurs.

(2)

Then, the applied input is u k = ν k u c k where u c k is the control input computed by the controller. Assumption 2. ∀k j ∈ N, the constraint on the occurrence of attacks is the following:

kj +N -1 k=kj (1 -ν k ) ≤ M < N, (3) 
where M denotes the maximal number of sample attack instances on the time interval from k j to k j + N -1.

This assumption could model power-limited attacks where the attacker can launch a maximal occurrence of attacks over a time period. M consecutive attacks are not necessarily the worst-case scenario, the assumption considers all the possible scenarios with at most M attacks over N sample times. Indeed, under assumption 2, distinct consecutive DoS attack sequences are possible within the considered time horizon, as illustrated in Fig. 3. In this paper, the number N matches with the time-horizon of the MPC scheme that will be introduced in next section.

Resilient sets and problem statement

In order to deal with the resilience property for a system subject to disturbances and attacks, a new kind of invariant set is proposed in this subsection. First, the definition of a Robust Positively Invariant (RPI) set is recalled: Definition 1. (RPI set, [START_REF] Rakovic | Invariant approximations of the minimal robust positively invariant set[END_REF]). Given a dynamic system x k+1 = f (x k , w k ), the set S is said to be Robust Positively Invariant (RPI), if f (x, w) ∈ S for all x ∈ S and all w ∈ W.

A resilient and robust invariant set, that both generalizes the usual RPI set and the µ-step invariant set originally proposed in [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF], is now introduced: Definition 2. (µ-RPI set). Given a system Σ modelled as

x k+1 = f (x k , w k ), if ∃µ ∈ N + such that the implication (4) is satisfied, then the set S is said to be µ-step Robust Positively Invariant (µ-RPI set) for Σ, ((x 0 ∈ S) ∧ (∀k ∈ N, w k ∈ W)) ⇒ ∀k ∈ N, x µ+k ∈ S. (4)
Given the system (1) subject to a DoS attack modeled by (2), the problem addressed is that of finding a resilient and robust model predictive control scheme for which an µ-RPI set exists, and compute this set. By this way, the purpose is to obtain a provenly stable control scheme which is jointly resilient to attacks as described in the paragraph 3.2 and robust to any arbitrary bounded disturbances w k ∈ W.

A ROBUST AND RESILIENT MPC SCHEME

In this section, a standard robust tube-based MPC is first briefly recalled. Then, a recent proposition of MPC scheme providing resilience to a non-disturbed LTI system under DoS attacks is reviewed. Finally, an original MPC scheme combining both robustness and resilience is proposed.

Tube-based MPC

In standard robust tube-based MPC, the objective is to control the system (1) such that its states remain in a tube centered on a nominal trajectory. Consider the following nominal model:

xk+1 = Ax k + B ūk . (5) 
Then, the general idea is to ensure that the disturbed system state x k stays close to xk , for any arbitrary disturbances belonging to W. To achieve this goal, the nominal system is controlled using MPC with tightened constraints and the control law ( 6) is applied to the disturbed system:

u k = ūk + K(x k -xk ). ( 6 
)
If K is chosen such that (A + BK) is stable, the difference x k -xk can be bounded in a Robust Positively Invariant (RPI) set and thus creates a tube around the nominal state trajectory that encloses the disturbed state trajectories as described in [START_REF] Rawlings | Model Predictive Control Theory and Design[END_REF]. Note that this is a simple version of the tube-based MPC where the nominal system is completely independent of the state trajectory and that improved versions of this control method exist (see [START_REF] Rawlings | Model Predictive Control Theory and Design[END_REF]).

Resilient MPC

This paragraph is intended to provide a short synopsis of the resilient MPC for non-disturbed systems as proposed in [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF]. In a classical MPC scheme, at each step time, the optimal sequence of control inputs u * k is computed over the whole N samples prediction horizon and only the first term u * k|k is applied to the system. In order to mitigate the impact of DoS attacks, [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF] made the assumption that the actuator side is able to store data and the computed control sequence {u * k|k , u * k+1|k , .., u * k+N -1|k } is sent to the actuator at each sample time. Thus, when a DoS attack impedes the reception of the optimal control at some time k, the actuator can still apply the next control stored in the previously received control sequence. Denoting k j the last sample time before an attack occurs, the control applied to the disturbed system is u * k|kj which leads to the dynamic:

x k+1 = Ax k + Bu * k|kj . (7) 
In [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF], the stability of ( 7) is proved under assumption 2 and for a region of attraction X M N . The later differs from that of a classical MPC by taking into account the case of an attack happening at a time when no control sequence is stored in the actuator side (just after the initialization of the controller, for instance). This set is such that for all x 0 ∈ X M N , there exists a control sequence u M = {0, .., 0

M , u M , .., u N -1 N -M } satisfying x N ∈ X f under the constraints u i ∈ U, ∀i ∈ M, N -1 and x i ∈ X, ∀i ∈ 1, N -1 ,
where X f denotes the terminal set of the MPC problem.

Toward a robust and resilient control law

To provide both resilience and robustness, a new control law combining the previous tube-based MPC ( §4.1) and resilient MPC ( §4.2) is proposed. First, the constrained optimization problem which is solved to control the nominal system (5) is introduced:

MPC optimization: The cost function is given by:

V N (x k , ūk ) = ||x k+N |k || 2 S + N -1 i=0 ||x k+i|k || 2 Q + ||ū k+i|k || 2 R
where ūk = {ū k|k , ūk+1|k , .., ūk+N-1|k }. and Q, R, S ≻ 0.

The constraints applied to the state and the control input of the nominal system are X = X ⊖ Z + and Ū = U ⊖ KZ + , where Z + denotes a set bounding the difference z k = x kxk . Those tightened constraints applied to the nominal system ensure that the disturbed system (1) meets the specification x k ∈ X and u k ∈ U.

In order to ensure the stability and feasibility of the considered MPC problem, a terminal set Xf is also introduced (see [START_REF] Rawlings | Model Predictive Control Theory and Design[END_REF] for details). The terminal cost ||..|| S and the terminal set Xf are chosen consistently according to assumption 3: Assumption 3. There exists a state-feedback gain K such that, for the system xk+1 = (A + BK)x k :

• There exists a terminal set Xf ⊂ X also satisfying

(A + BK) Xf ⊂ Xf and K Xf ⊂ Ū, • ||(A + BK)x k || 2 S + ||x k || 2 Q + ||K xk || 2 R ≤ ||x k || 2 S .
Then, the MPC constrained optimization is given by: ū

* k = min ūk V N (x k , ūk ) s.t. xk|k = xk , xk+i+1|k = Ax k+i|k + B ūk+i|k , ūk+i|k ∈ Ū for i ∈ 0 : N -1 , xk+i|k ∈ X for i ∈ 1 : N -1 , xk+N|k ∈ Xf . (8) 
Resilience: Since attacks can occur, the robust control (6) may not be received by the actuators at some time steps. Similarly to [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF] and [START_REF] Franze | Resilient model predictive control for constrained cyber-physical systems subject to severe attacks on the communication channels[END_REF], it is assumed that the actuator side is able to store data. Then, since only past measured states are available at each sample time k, the sequence {ū * k|k + K(x k -xk ), ū * k+1|k , .., ū * k+N -1|k } is sent to the actuator at each sample time k. Denoting k j the last sample time before an attack occurs and using ν k as defined in (2), the control applied to the disturbed system is:

u k = ū * k|kj + ν k K(x k -xk )
For the sake of simplicity, x k is assumed available. Otherwise, an observer should be used. Then, the robustness to the related observation error should be properly handled. Moreover, in a similar fashion to [START_REF] Amin | Safe and secure networked control systems under denial-ofservice attacks[END_REF]), the communication protocol is assumed to be acknowledgment-based like e.g. the TCP protocol [START_REF] Kumar | Survey on transport layer protocols: TCP & UDP[END_REF]). Then, the controller has access to k j and the nominal system can be controlled using ūk = ū * k|kj . With this control, the nominal system follows the dynamic (7) already studied by [START_REF] Sun | Resilient model predictive control of cyber-physical systems under DoS attacks[END_REF]. The controlled nominal system is thus stable for a region of attraction XM N . This region of attraction XM N is the same as in subsection 4.2, except that that the constraints on the states and the control inputs are given by the tightened constraints Xf , Ū and X.

Robustness and Resilience: The proposed approach relies on a dedicated management of the state error between the disturbed (1) and nominal (5) system models, z k = x k -xk , which follows the dynamics:

z k+1 = (A + ν k BK)z k + Dw k ( 
9) This is the subject of the main results developed in the next section.

MAIN RESULTS

In this section, an algorithmic solution is provided to test if a given RPI set for the dynamic (10),

z k+1 = (A + BK)z k + Dw k , (10 
) is also an N -RPI set for the dynamic (9) under attack scenarios characterized by the pair (M, N ). As a byproduct, it will thus be possible to determine the maximal value of M < N ensuring a resilient MPC control. Moreover, a solution for computing a set Z + bounding the trajectories of the state error z k is proposed. Z + is represented as an intersection of halfspaces and characterizes the worstcase impact of the specified disturbances and attacks with respect to the nominal state trajectory.

Testing if an RPI set is also an N -RPI set

In this section, P denotes an RPI set for the system (10). It can be computed as an approximation of the minimal RPI set of (10), as proposed in [START_REF] Rakovic | Invariant approximations of the minimal robust positively invariant set[END_REF].

The aim of this paragraph 5.1 is to test if P is also an N-RPI set for system (9). Indeed, since the condition (3) applies to sequences of N steps, a solution to ensure the resilience to repeating sequences of any length consists in focusing on µ-RPI sets with µ ≤ N (thus, on N -RPI sets), as illustrated in Fig. 1.

Fig. 1. Illustration of the usage of the N -RPI

To achieve this, the proposed method consists in testing if, for each considered attack scenario, the trajectory gets back into P in a maximum of N steps. Instead of testing all the possible attack scenarios, a sufficient subset is introduced in the sequel. In addition to reduce the algorithmic complexity, there is no loss of generality to prove, or disprove, that P is an N -RPI set when testing only this subset. This relevant subset is obtained as follows: Using the above rules, a sufficient subset of scenarios to be tested can be constructed. First, starting from an RPI set P at k = 0 and with one sample attack happening at this time, a minimal number k b of steps (up to N ) required for the system trajectories to provenly get back to P is determined. Then, the expression of the reachable set is computed as follows:

   Z 1 0 = P, Z 1 k+1 = AZ 1 k ⊕ DW, if ν k = 0, Z 1 k+1 = (A + BK)Z 1 k ⊕ DW, otherwise. ( 11 
)
Where Z j k is the set reached during the k th step for a scenario j. To test the scenarios with two sample attack instances, the initial set is given by Z 2 0 = Z 1 1 and the scenarios considered are the ones where an attack occurs at time k with k ∈ 0, k b -2 . The number of sample attacks is then incremented until it reaches M which is necessary for the test to succeed unless a set-inclusion test fails.

Algorithm 1 is a recursive function that tests if an RPI set P is also an N -RPI set for attack scenarios described by the integers (M, N ). Each call of the recursive function tests all the required scenarios, starting from the set Z 0 with an attack happening between step 0 and step n step -1, where n step is a number of steps passed as input argument (with initial value one) when calling the isNRPI function. For a scenario with an attack happening at time k a , and the trajectories entering in the RPI set in less than N steps, in k b steps for instance. The recursive function is recalled to test new scenarios starting from the set S = Z ka+1 and it tests that the trajectories will come back in the RPI set in less than N -k a -1 steps with an attack happening between the steps 0 and k b -2-k a . The function stops if a trajectory does not enter in the RPI before the maximum allowed step number or if there is no more attack to test i.e. the last scenarios tested already include the cases with M sample attacks.

For the sake of illustration, the operation of Algorithm 1 is exemplified in Fig. 2 where:

• During the first call, a scenario starting from P with an attack at the first step is considered. The trajectories get back to P in 2 steps. • The function is recalled and a scenario starting from Z 1 1 with an attack at the first step is considered. The trajectories get back to P in 3 steps.

• During the third call of the function, two scenarios are studied. Both start from the set Z 2 1 and one contains an attack at the first step and the other one an attack at the second step. The two trajectories from the scenarios come back in P in less than N -2 steps which is the limit for those trajectories.

Algorithm 1 Test if a RPI P is a N -RPI for a given number M of sample attacks over the horizon N

1: function [test, b] = isNRPI(M , N , P, Z 0 , n step , b) 2: if (Z 0 , n step , b) is undefined then ▷ Initialization 3:
Z 0 ← P ▷ where P has to be a RPI set 4:

n step ← 1 ▷ First attack happens at time k=0 5: b = (-∞)1 ▷ col. vector with -∞ elements 6: end if 7: if (M = 0) then ▷ Stop criterion for recursive calls 8: test ← T rue 9: else 10: k a ← 0 ▷ Sample attack time-step 11:
Cond 1 ← T rue 12:

while Cond 1 do 13:

i ← 0 ▷ Time-step index end if

23: b ← U pdateBound(H, b, Z) ▷ Update Z+ 24: i ← i + 1 25: Cond 2 ← (i < N ) ∧ ¬(Z ⊂ P) 26:
end while 27:

k b ← i 28:
if (Z ⊂ P) then 29:

▷ When back to P in less than N steps, then 30:

▷ recursive call with one less sample attack 31:

▷ and k a less steps to get back to P starting 32:

▷ from S: 

33: (test, b) ← isNRPI(M -1, N -k a -1, P, S, k b -1 -k a ,
k a ← k a + 1 38: Cond 1 ← (k a < n step ) ∧ (test) 39:
end while 40: end if 41: return test, b

The implementation of Algorithm 1 makes use of zonotopes to represent the RPI set and the sets reachable by the trajectories. This representation is well-suited in this case since it is closed for the Minkowski sum and affine image operators which can be easily computed (see §2). To test the containment of zonotopes at step 25 of Algorithm 1, the algorithm presented in [START_REF] Kulmburg | On the co-NPcompleteness of the zonotope containment problem[END_REF] and implemented in the CORA 2021 toolbox is used. Note also that the step 23 in Algorithm 1 is used to compute a set bounding all the trajectories as further described in the next paragraph 5.2.

Bound of trajectories

The aim of this paragraph is to compute an outer approximation Z+ of the set Z + bounding the trajectory error with respect to the nominal model, under both bounded disturbances and the specified attacks. Following (9) with z 0 ∈ P, where P is N -RPI as tested by Algorithm 1, Z + is given by ( 12):

Z + = n Z i=1 Z i , (12) 
where Z i , i ∈ 1, n Z denotes the collection of the sets Z computed at steps 18 and 21 during all the iterations within Algorithm 1 i.e. during the recursive exploration of the required scenarios. Since zonotopes are not closed for union, Z + is not a zonotope. To compute an outer approximation Z+ of Z + , a polytope in H-representation (i.e. intersection of half-spaces) can be used, Z+ = {z | Hz ≤ b}, and efficiently updated (see step 23 in Algorithm 1, and Algorithm 2). The half-space directions are predefined in a constant matrix H ∈ R d×n whose rows are made of d unitary vectors uniformly distributed on an n-dimensional unit hypersphere e.g. as in [START_REF] Marsaglia | Choosing a point from the surface of a sphere[END_REF]. If needed, H can be appended with other specific directions such as those related to the canonical basis, for instance.

Then, Z+ ⊃ Z + is obtained by the iterative update called at step 23 in Algorithm 1. The iteration itself is described in Algorithm 2. For each computed zonotope Z (like Z i in ( 12)), it consists in computing a tight inflation of the bounding vector b so that Z ⊂ Z+ is satisfied. This is basically achieved using the support point and interval hull properties of zonotopes, as expressed in vector form in the body of Algorithm 2.

Algorithm 2 Tight update of half-space bounds of polytope Z+ = {z | Hz ≤ b} to include the zonotope Z = ⟨c, R⟩

1: function b = UpdateBound(H, b, ⟨c, R⟩) 2: b ← max(b, Hc + |HR|1) ▷ 1 is a col. vec. of ones 3: return b
Finally, once the test implemented in Algorithm 1 successfully terminates, the iterative calls of Algorithm 2 result in an intersection of halfspaces, i.e. a polytope, bounding all the trajectories starting from the N -RPI set P. Note that, by definition 2, all these trajectories also get back to P in at most N steps, no matter how the specified attacks and the bounded disturbances change in time.

Robust and Resilient MPC

For the implementation of the robust and resilient control scheme introduced in Section 4, the objective is to find a sufficiently small N -RPI to ensure that the difference between the system dynamic (1) and the nominal model ( 5) meets an acceptable control accuracy (i.e. the required level of precision during normal operation). Moreover, the smaller the N -RPI is, the smaller the trajectory bounding set Z + will be, so leading to less restrictive tightened constraints X = X ⊖ Z + and Ū = U ⊖ KZ + for the MPC control of the nominal model. Also, the larger the N -RPI set is, the larger will be the allowable disturbance bounds and/or the maximum number M of sample attacks as in (3). Thus, for a given scenario, the parameterized (by α) family of sets F P = {αP | α ≥ 1} is considered and the objective is then to find the smallest α such that the set αP is N -RPI for the considered system and scenarios. F P is considered because any linear inflation of an RPI set by a scalar factor greater than one is also an RPI set. As a result, the proposed Resilient and Robust MPC can be set as follows: a) Compute a stable K (e.g. as an LQ solution), b) Compute P as described in [START_REF] Rakovic | Invariant approximations of the minimal robust positively invariant set[END_REF], c) Find α s.t. αP is N-RPI ( §5.1) and compute Z+ ( §5.2), d) Compute X and Ū (polytopic tightened constraints), e) Compute S as a solution of the Lyapunov equation:

(A + BK) ⊤ S(A + BK) -S = -(Q + K ⊤ RK), (13) f) Compute β s.t. the terminal set Xf = {x ∈ R 2 | ||x|| 2
S < β} satisfies Xf ⊂ X and K Xf ⊂ Ū. Note that Algorithm 1 can be called within a dichotomy search to minimize α at step c). Also, e) and f) are focused on the approach concretely used in section 6 to obtain a final weight and terminal set satisfying the requirements of Assumption 3, where the invariance of Xf as in f) is ensured by (13).

NUMERICAL EXAMPLE

Consider a second order system modelling the attack-free dynamic of a CPS as given by (1) and as explained in section 3 with: With those parameters, an ε-approximation of the minimal RPI set P is first obtained using the formula :

A = 1.05 0.5 -0.6 1.1 , B = 1 1 , D = 1 0.5 With the state constraint X = {x ∈ R 2 | ||x|| ∞ ≤ 20}, the control input constraint U = {u ∈ R | ||u|| ∞ ≤ 7},
P(s, γ) = (1 -γ) -1 s-1 i=0 (A + BK) i DW,
as proposed in [START_REF] Rakovic | Invariant approximations of the minimal robust positively invariant set[END_REF], with γ = 0.01 and s = 9. Then, the approach proposed in Section 5 ensures that the set Z = 3P (α = 3) is N -RPI with a maximal number M = 4 of attacks over an N = 10 steps horizon. Algorithm 1 runs in 0.45 seconds on a i5-5200U CPU. To illustrate the use of the obtained N -RPI set, a simulation was done using the attack scenario reported in Fig. 3. To implement the MPC controller, S is computed as a solution of the Lyapunov equation ( 13). This results in S = 2.2567 -0.6841 -0.6841 1.4846 . The terminal set is designed as an ellipsoid X f = {x ∈ R 2 | ||x|| 2 S < β} where β = 0.926 was computed to obtain the biggest set possible while verifying the assumption 3. Set computations were done using the CORA toolbox [START_REF] Althoff | Cora 2021 manual[END_REF]), using zonotope to obtain an RPI and then polytopes for the constraints of the MPC problem. The terminal set was inner-approximated by a polytope for convenience of the MPC implementation.

The online MPC problem ( 8) is formulated as a quadratic programming problem and solved using the function mp-cActiveSetSolver.m provided in the Model Predictive Control Toolbox of Matlab. Starting from an initial state x 0 = [1.4 -3] ⊤ , Fig. 4 shows the tube trajectory of the system along with the initial feasible set. To better observe the resilient set, Fig. 5 shows the trajectory of the difference z k , as well as the sets Z, Z+ and P.

CONCLUSION

A new resilient and robust control scheme is proposed for a class of CPS subject to state and input constraints, unknown but bounded disturbances and possibly repeated time-limited Denial of Service (DoS) attacks cutting an acknowledgement-based communication between the controller and smart 2 actuators. The proposed tube-based MPC scheme was proved to be robust to unknown-butbounded disturbances and jointly resilient to the DoS attacks. To achieve this, a new robust and resilient invariant set, namely µ-RPI set, was introduced in this paper. Finally, an algorithm was proposed to analyze and evaluate the maximal number M of sample DoS attacks over the MPC time horizon N such that the property of µ-step resilience is still robustly ensured. This work paves the way for further investigations. In particular, other common attacks such as false data injection or replay attacks may also be considered. Moreover, the original µ-RPI set introduced in this paper is not specific to an MPC context and may be adapted to other control framework. Special attention may be paid on combining µ-RPI sets with other resilient metrics such as the critical time recently proposed in [START_REF] Perodou | Critical-time analysis of cyber-physical systems subject to actuator attacks and faults[END_REF], all put together to move toward a robust and resilient control of cyber-physical systems.

Fig. 2 .•

 2 Fig. 2. Illustration of Algorithm 1 • Only the scenarios where the first attack happens at the first of N consecutive samples is tested. This is a direct consequence of Assumption 2, where the considered class of attacks satisfies (3) for timehorizon N . • If, for i sample attack instances with the last attack happening at step k a , the system gets back to the RPI set in a total of k b steps, then, to test a scenario with i + 1 attack instances where the first i attacks are the same, testing only the scenarios where the last attack happens between k a + 1 and k b -1 is sufficient.

  and the disturbance set W = {w ∈ R | ||w|| ∞ ≤ 0.1}. For the MPC problem, Q is the identity matrix, R = 0.1, and the prediction horizon is set to N = 10. Then, K is calculated as a solution of the LQ problem with the previous costs.

Fig. 5 .

 5 Fig. 3. DoS attack sequence for 30 times. The blue area denotes the DoS activation times
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	34:	else
	35:	test ← F alse
	36:	end if
	37:	
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